Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-21903S
Grantová Agentura České Republiky
22-21903S
Grantová Agentura České Republiky
22-21903S
Grantová Agentura České Republiky
ATCZ0052
INTERREG AT-CZ
ATCZ0052
INTERREG AT-CZ
2023 - Pathogens
Fondation de l'Ecole Polytechnique
PubMed
39747944
PubMed Central
PMC11696869
DOI
10.1038/s41598-024-82613-2
PII: 10.1038/s41598-024-82613-2
Knihovny.cz E-zdroje
- Klíčová slova
- Bioinformatics, G-quadruplex, G4Hunter, Persistent infection, Retroviral genome,
- MeSH
- endogenní retroviry genetika MeSH
- G-kvadruplexy * MeSH
- genom virový * MeSH
- lidé MeSH
- Retroviridae * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Retroviruses are among the most extensively studied viral families, both historically and in contemporary research. They are primarily investigated in the fields of viral oncogenesis, reverse transcription mechanisms, and other infection-specific aspects. These include the integration of endogenous retroviruses (ERVs) into host genomes, a process widely utilized in genetic engineering, and the ongoing search for HIV/AIDS treatment. G-quadruplexes (G4) have emerged as potential therapeutic targets in antiviral therapy and have been identified in important regulatory regions of viral genomes. In this study, we examine the presence of potential G-quadruplex-forming sequences (PQS) across all currently available unique retroviral genomes. Given that these retroviral genomes typically consist of single-stranded RNA (ssRNA) molecules, we also investigated whether the localization of PQSs is strand-dependent. This is particularly relevant since antisense transcripts have been detected in HIV, and ERV integration into the host genome involves reverse transcription from genomic positive strand ssRNA to double-stranded DNA (dsDNA), implicating both strands in this process. We show that in most mammalian retroviruses, including human retroviruses, PQSs are significantly more prevalent on the negative (antisense) strand, with some notable exceptions such as HIV-1. In sharp contrast, avian retroviruses exhibit a higher prevalence of PQSs on the positive (sense) strand.
Faculty of Chemistry Brno University of Technology Purkyňova 118 Brno 61200 Czech Republic
Institute of Biophysics Czech Academy of Sciences Královopolská 135 Brno 612 65 Czech Republic
Zobrazit více v PubMed
Gellert, M., Lipsett, M. N. & Davies, D. R. HELIX FORMATION BY GUANYLIC ACID. Proc. Natl. Acad. Sci. U S A. 48, 2013–2018 (1962). PubMed PMC
Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet.13, 770–780 (2012). PubMed PMC
Cantara, A. et al. G-quadruplexes in helminth parasites. Nucleic Acids Res.50, 2719–2735 (2022). PubMed PMC
Brázda, V., Valková, N., Dobrovolná, M. & Mergny, J. L. Abundance of G-Quadruplex forming sequences in the Hepatitis Delta Virus genomes. ACS Omega. 9, 4096–4101 (2024). PubMed PMC
Brázda, V. et al. G-Quadruplexes in the Archaea Domain. Biomolecules10, 1349 (2020). PubMed PMC
Wu, F. et al. Genome-wide analysis of DNA G-quadruplex motifs across 37 species provides insights into G4 evolution. Commun. Biol.4, 1–11 (2021). PubMed PMC
Goswami, P. et al. SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci. Brief. Bioinform. 22, 1338–1345 (2020). PubMed PMC
Kharel, P., Becker, G., Tsvetkov, V. & Ivanov, P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res.48, 12534 (2020). PubMed PMC
Ding, Y., Fleming, A. M. & Burrows, C. J. Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes. Sci. Rep.8, 15679 (2018). PubMed PMC
Falabella, M. et al. G-quadruplex dynamics contribute to regulation of mitochondrial gene expression. Sci. Rep.9, 5605 (2019). PubMed PMC
Brázda, V., Bohálová, N. & Bowater, R. P. New telomere to telomere assembly of human chromosome 8 reveals a previous underestimation of G-quadruplex forming sequences and inverted repeats. Gene810, 146058 (2022). PubMed
Bohálová, N., Mergny, J. L. & Brázda, V. Novel G-quadruplex prone sequences emerge in the complete assembly of the human X chromosome. Biochimie191, 87–90 (2021). PubMed
Spiegel, J., Adhikari, S. & Balasubramanian, S. The structure and function of DNA G-Quadruplexes. Trends Chem.2, 123–136 (2020). PubMed PMC
Gehring, K., Leroy, J. L. & Guéron, M. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature363, 561–565 (1993). PubMed
Ruggiero, E., Zanin, I., Terreri, M. & Richter, S. N. G-Quadruplex Targeting in the fight against viruses: an update. Int. J. Mol. Sci.22, 10984 (2021). PubMed PMC
Brázda, V., Hároníková, L., Liao, J. & Fojta, M. DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci.15, 17493–17517 (2014). PubMed PMC
Bourdon, S. et al. QUADRatlas: the RNA G-quadruplex and RG4-binding proteins database. Nucleic Acids Res.51, D240–D247 (2023). PubMed PMC
Zareie, A. R., Dabral, P. & Verma, S. C. G-Quadruplexes in the regulation of viral gene expressions and their impacts on Controlling infection. Pathogens13, 60 (2024). PubMed PMC
Ruggiero, E. & Richter, S. N. Chapter Four - Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. in Annual Reports in Medicinal Chemistry (ed. Neidle, S.) vol. 54 101–131Academic Press, (2020). PubMed PMC
Abiri, A. et al. Unlocking G-Quadruplexes as antiviral targets. Pharmacol. Rev.73, 897–923 (2021). PubMed
Ruggiero, E. & Richter, S. N. G-Quadruplexes in Human viruses: a Promising Route to innovative antiviral therapies. in Handbook of Chemical Biology of Nucleic Acids (ed. Sugimoto, N.) 1–29 (Springer Nature, Singapore, doi:10.1007/978-981-16-1313-5_81-1. (2022).
Cian, A. D. & Mergny, J. L. Quadruplex ligands may act as molecular chaperones for tetramolecular quadruplex formation. Nucleic Acids Res.35, 2483–2493 (2007). PubMed PMC
González, V., Guo, K., Hurley, L. & Sun, D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem.284, 23622–23635 (2009). PubMed PMC
Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O. & Miller, D. M. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding *. J. Biol. Chem.274, 26369–26377 (1999). PubMed
González, V. & Hurley, L. H. The C-terminus of nucleolin promotes the formation of the c-MYC G-quadruplex and inhibits c-MYC promoter activity. Biochemistry49, 9706–9714 (2010). PubMed PMC
Cangelosi, D. et al. Nucleolin expression has prognostic value in neuroblastoma patients. eBioMedicine85, 104300 (2022). PubMed PMC
Berger, C. M., Gaume, X. & Bouvet, P. The roles of nucleolin subcellular localization in cancer. Biochimie113, 78–85 (2015). PubMed
Tosoni, E. et al. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res.43, 8884–8897 (2015). PubMed PMC
Lista, M. J. et al. Nucleolin directly mediates Epstein-Barr virus immune evasion through binding to G-quadruplexes of EBNA1 mRNA. Nat. Commun.8, 16043 (2017). PubMed PMC
Bian, W. X. et al. Binding of cellular nucleolin with the viral core RNA G-quadruplex structure suppresses HCV replication. Nucleic Acids Res.47, 56–68 (2019). PubMed PMC
Kusov, Y., Tan, J., Alvarez, E., Enjuanes, L. & Hilgenfeld, R. A G-quadruplex-binding macrodomain within the SARS-unique domain is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology484, 313–322 (2015). PubMed PMC
Platella, C., Riccardi, C., Montesarchio, D., Roviello, G. N. & Musumeci, D. G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim. Biophys. Acta BBA - Gen. Subj.1861, 1429–1447 (2017). PubMed PMC
Brázda, V. et al. G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics35, 3493–3495 (2019). PubMed PMC
Bedrat, A., Lacroix, L. & Mergny, J. L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res.44, 1746–1759 (2016). PubMed PMC
Bohálová, N. et al. Analyses of viral genomes for G-quadruplex forming sequences reveal their correlation with the type of infection. Biochimie186, 13–27 (2021). PubMed
Jaubert, C. et al. RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep.8, 8120 (2018). PubMed PMC
Dobrovolná, M., Mergny, J. L. & Brázda, V. Complete analysis of G-quadruplex forming sequences in the gapless assembly of human chromosome Y. BiochimieS030090842400233510.1016/j.biochi.2024.10.007 (2024). PubMed
Harris, L. M. & Merrick, C. J. G-Quadruplexes in pathogens: a Common Route to Virulence Control? PLoS Pathog. 11, e1004562 (2015). PubMed PMC
Lobo, F. P. et al. Virus-host coevolution: common patterns of Nucleotide Motif usage in Flaviviridae and their hosts. PLoS ONE. 4, e6282 (2009). PubMed PMC
Mihara, T. et al. Linking virus genomes with host taxonomy. Viruses8, 66 (2016). PubMed PMC
Petropoulos, C. & Retroviral Taxonomy Protein Structures, Sequences, and Genetic Maps. In Retroviruses (Cold Spring Harbor Laboratory Press, 1997).
Chen, J. et al. The reservoir of latent HIV. Front. Cell. Infect. Microbiol.12, 945956 (2022). PubMed PMC
Louten, J., Virus & Replication Essent. Hum. Virol. 49–70 doi:10.1016/B978-0-12-800947-5.00004-1. (2016).
Lavezzo, E. et al. G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLoS Comput. Biol.14, e1006675 (2018). PubMed PMC
Amrane, S. et al. Deciphering RNA G-quadruplex function during the early steps of HIV-1 infection. Nucleic Acids Res.50, 12328–12343 (2022). PubMed PMC
Perrone, R. et al. Formation of a Unique Cluster of G-Quadruplex structures in the HIV-1 nef Coding Region: implications for antiviral activity. PLoS ONE. 8, e73121 (2013). PubMed PMC
Perrone, R. et al. A dynamic G-Quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem.56, 6521–6530 (2013). PubMed PMC
Ruggiero, E. et al. Fused in Liposarcoma Protein, a New Player in the regulation of HIV-1 transcription, binds to known and newly identified LTR G-Quadruplexes. ACS Infect. Dis.8, 958–968 (2022). PubMed PMC
Piekna-Przybylska, D., Sullivan, M. A., Sharma, G. & Bambara, R. A. U3 region in the HIV-1 genome adopts a G-quadruplex structure in its RNA and DNA sequence. Biochemistry53, 2581–2593 (2014). PubMed PMC
Lyonnais, S. G-quartets assembly within a G-rich DNA flap. A possible event at the center of the HIV-1 genome. Nucleic Acids Res.30, 5276–5283 (2002). PubMed PMC
Malet, I. et al. Variability of the HIV-1 3′ polypurine tract (3′PPT) region and implication in integrase inhibitor resistance. J. Antimicrob. Chemother.74, 3440–3444 (2019). PubMed
Perrone, R., Lavezzo, E., Palù, G. & Richter, S. N. Conserved presence of G-quadruplex forming sequences in the long terminal repeat promoter of Lentiviruses. Sci. Rep.7, 2018 (2017). PubMed PMC
Hegedus, L. et al. Werner helicase interacting protein 1 contributes to G-quadruplex processing in human cells. Sci. Rep.14, 15740 (2024). PubMed PMC
Grasso, N. et al. Unveiling the interaction between DNA G-quadruplexes and RG-rich peptides. Int. J. Biol. Macromol.253, 126749 (2023). PubMed
Brázda, V. et al. The amino acid composition of quadruplex binding proteins reveals a Shared Motif and predicts new potential quadruplex interactors. Mol. Basel Switz.23, 2341 (2018). PubMed PMC
Brázda, V., Dobrovolná, M., Bohálová, N. & Mergny, J. L. G-quadruplexes in the evolution of hepatitis B virus. Nucleic Acids Res.51, 7198–7204 (2023). PubMed PMC
Chen, Y., Wei, X., Zhang, G., Holmes, E. C. & Cui, J. Identification and evolution of avian endogenous foamy viruses. Virus Evol.5, vez049 (2019). PubMed PMC
Garant, J. M., Perreault, J. P. & Scott, M. S. Motif independent identification of potential RNA G-quadruplexes by G4RNA screener. Bioinformatics33, 3532–3537 (2017). PubMed PMC
Puig Lombardi, E. & Londoño-Vallejo, A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res.48, 1–15 (2020). PubMed PMC
Yang, B. et al. Prediction of DNA i-motifs via machine learning. Nucleic Acids Res.52, 2188–2197 (2024). PubMed PMC
Ruggiero, E. et al. A dynamic i-motif with a duplex stem-loop in the long terminal repeat promoter of the HIV-1 proviral genome modulates viral transcription. Nucleic Acids Res.47, 11057–11068 (2019). PubMed PMC
Gong, J. et al. G-quadruplex structural variations in human genome associated with single-nucleotide variations and their impact on gene activity. Proc. Natl. Acad. Sci. U. S. A. 118, e2013230118 (2021). PubMed PMC
Warner, E. F., Bohálová, N., Brázda, V., Waller, Z. A. E. & Bidula, S. Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets? Microb. Genomics. 7, 000570 (2021). PubMed PMC
Bartas, M. et al. The Presence and localization of G-Quadruplex forming sequences in the domain of Bacteria. Molecules24, 1711 (2019). PubMed PMC
Hagihara, M., Yoneda, K., Yabuuchi, H., Okuno, Y. & Nakatani, K. A reverse transcriptase stop assay revealed diverse quadruplex formations in UTRs in mRNA. Bioorg. Med. Chem. Lett.20, 2350–2353 (2010). PubMed
Hagihara, M. et al. Antisense-Induced Guanine quadruplexes inhibit reverse transcription by HIV-1 reverse transcriptase. J. Am. Chem. Soc.132, 11171–11178 (2010). PubMed
Tateishi-Karimata, H., Muraoka, T., Kinbara, K. & Sugimoto, N. G-Quadruplexes with Tetra(ethylene glycol)-Modified deoxythymidines are resistant to Nucleases and inhibit HIV-1 reverse transcriptase. ChemBioChem17, 1399–1402 (2016). PubMed
Perrone, R. et al. Synthesis, binding and antiviral properties of Potent Core-Extended Naphthalene diimides Targeting the HIV-1 long terminal repeat promoter G-Quadruplexes. J. Med. Chem.58, 9639–9652 (2015). PubMed PMC
Pávová, M. et al. Helquat dyes targeting G-quadruplexes as a new class of anti-HIV-1 inhibitors. Sci. Rep.13, 6096 (2023). PubMed PMC
The UniProt Consortium. UniProt: the Universal protein knowledgebase in 2023. Nucleic Acids Res.51, D523–D531 (2023). PubMed PMC
Garant, J. M., Perreault, J. P. & Scott, M. S. G4RNA screener web server: user focused interface for RNA G-quadruplex prediction. Biochimie151, 115–118 (2018). PubMed
Sahakyan, A. B. et al. Machine learning model for sequence-driven DNA G-quadruplex formation. Sci. Rep.7, 14535 (2017). PubMed PMC
Robinson, J. T., Thorvaldsdottir, H., Turner, D. & Mesirov, J. P. igv.js: an embeddable JavaScript implementation of the Integrative Genomics viewer (IGV). Bioinformatics39, btac830 (2023). PubMed PMC