The Presence and Localization of G-Quadruplex Forming Sequences in the Domain of Bacteria
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-15548S
Grant Agency of the Czech Republic
LO1208 TEWEP
Ministry of Education, Youth and Sports of the Czech Republic in the "National Feasibility Program I"
CZ.1.05/2.1.00/19.0388
EU structural funding Operational Programme Research and Development for innovation
SGS/09/PrF/2019
University of Ostrava
PubMed
31052562
PubMed Central
PMC6539912
DOI
10.3390/molecules24091711
PII: molecules24091711
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, G4Hunter, bacteria, bioinformatics, deinococcus,
- MeSH
- Bacteria genetika MeSH
- DNA bakterií chemie MeSH
- fylogeneze MeSH
- G-kvadruplexy * MeSH
- genom bakteriální MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
The role of local DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, the significance of G-quadruplexes was demonstrated in the last decade, and their presence and functional relevance has been demonstrated in many genomes, including humans. In this study, we analyzed the presence and locations of G-quadruplex-forming sequences by G4Hunter in all complete bacterial genomes available in the NCBI database. G-quadruplex-forming sequences were identified in all species, however the frequency differed significantly across evolutionary groups. The highest frequency of G-quadruplex forming sequences was detected in the subgroup Deinococcus-Thermus, and the lowest frequency in Thermotogae. G-quadruplex forming sequences are non-randomly distributed and are favored in various evolutionary groups. G-quadruplex-forming sequences are enriched in ncRNA segments followed by mRNAs. Analyses of surrounding sequences showed G-quadruplex-forming sequences around tRNA and regulatory sequences. These data point to the unique and non-random localization of G-quadruplex-forming sequences in bacterial genomes.
Department of Informatics Mendel University in Brno Zemedelska 1665 1 61300 Brno Czech Republic
Faculty of Chemistry Brno University of Technology Purkyňova 118 612 00 Brno Czech Republic
Zobrazit více v PubMed
Watson J.D., Crick F.H. Molecular structure of nucleic acids. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI
Szlachta K., Thys R.G., Atkin N.D., Pierce L.C.T., Bekiranov S., Wang Y.-H. Alternative DNA secondary structure formation affects RNA polymerase II promoter-proximal pausing in human. Genome Biol. 2018;19:89. doi: 10.1186/s13059-018-1463-8. PubMed DOI PMC
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Sun Z.-Y., Wang X.-N., Cheng S.-Q., Su X.-X., Ou T.-M. Developing Novel G-Quadruplex Ligands: From Interaction with Nucleic Acids to Interfering with Nucleic Acid–Protein Interaction. Molecules. 2019;24:396. doi: 10.3390/molecules24030396. PubMed DOI PMC
Nelson L.D., Bender C., Mannsperger H., Buergy D., Kambakamba P., Mudduluru G., Korf U., Hughes D., Van Dyke M.W., Allgayer H. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol. Cancer. 2012;11:38. doi: 10.1186/1476-4598-11-38. PubMed DOI PMC
Gellert M., Lipsett M.N., Davies D.R. Helix Formation by Guanylic acid. Proc. Natl. Acad. Sci. USA. 1962;48:2013–2018. doi: 10.1073/pnas.48.12.2013. PubMed DOI PMC
Harkness R.W., Mittermaier A.K. G-quadruplex dynamics. Biochim. Biophys. Acta Proteins Proteom. 2017;1865:1544–1554. doi: 10.1016/j.bbapap.2017.06.012. PubMed DOI
Siddiqui-Jain A., Grand C.L., Bearss D.J., Hurley L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl. Acad. Sci. USA. 2002;99:11593–11598. doi: 10.1073/pnas.182256799. PubMed DOI PMC
Lee S.C., Zhang J., Strom J., Yang D., Dinh T.N., Kappeler K., Chen Q.M. G-Quadruplex in the NRF2 mRNA 5′ Untranslated Region Regulates De Novo NRF2 Protein Translation under Oxidative Stress. Mol. Cell. Biol. 2016;37:e00122-16. doi: 10.1128/MCB.00122-16. PubMed DOI PMC
Endoh T., Kawasaki Y., Sugimoto N. Stability of RNA quadruplex in open reading frame determines proteolysis of human estrogen receptor α. Nucleic Acids Res. 2013;41:6222–6231. doi: 10.1093/nar/gkt286. PubMed DOI PMC
Lam E.Y.N., Beraldi D., Tannahill D., Balasubramanian S. G-quadruplex structures are stable and detectable in human genomic DNA. Nat. Commun. 2013;4:1796. doi: 10.1038/ncomms2792. PubMed DOI PMC
Long X., Stone M.D. Kinetic Partitioning Modulates Human Telomere DNA G-Quadruplex StructuralPolymorphism. PLoS ONE. 2013;8:e83420. doi: 10.1371/journal.pone.0083420. PubMed DOI PMC
Sun D., Thompson B., Cathers B.E., Salazar M., Kerwin S.M., Trent J.O., Jenkins T.C., Neidle S., Hurley L.H. Inhibition of human telomerase by a G-Quadruplex-Interactive compound. J. Med. Chem. 1997;40:2113–2116. doi: 10.1021/jm970199z. PubMed DOI
Lee H.-S., Carmena M., Liskovykh M., Peat E., Kim J.-H., Oshimura M., Masumoto H., Teulade-Fichou M.-P., Pommier Y., Earnshaw W.C., et al. Systematic Analysis of Compounds Specifically Targeting Telomeres and Telomerase for Clinical Implications in Cancer Therapy. Cancer Res. 2018;78:6282–6296. doi: 10.1158/0008-5472.CAN-18-0894. PubMed DOI PMC
Dickerhoff J., Onel B., Chen L., Chen Y., Yang D. Solution Structure of a MYC Promoter G-Quadruplex with 1:6:1 Loop Length. ACS Omega. 2019;4:2533–2539. doi: 10.1021/acsomega.8b03580. PubMed DOI PMC
Balasubramanian S., Hurley L.H., Neidle S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011;10:261–275. doi: 10.1038/nrd3428. PubMed DOI PMC
Cimino-Reale G., Zaffaroni N., Folini M. Emerging Role of G-quadruplex DNA as Target in Anticancer Therapy. Curr. Pharm. Design. 2016;22:6612–6624. doi: 10.2174/1381612822666160831101031. PubMed DOI
Asamitsu S., Obata S., Yu Z., Bando T., Sugiyama H. Recent Progress of Targeted G-Quadruplex-Preferred Ligands Toward Cancer Therapy. Molecules. 2019;24:429. doi: 10.3390/molecules24030429. PubMed DOI PMC
Yoshida W., Saikyo H., Nakabayashi K., Yoshioka H., Bay D.H., Iida K., Kawai T., Hata K., Ikebukuro K., Nagasawa K., et al. Identification of G-quadruplex clusters by high-throughput sequencing of whole-genome amplified products with a G-quadruplex ligand. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-21514-7. PubMed DOI PMC
Brázda V., Hároníková L., Liao J.C.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC
Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 2016;6:38144. doi: 10.1038/srep38144. PubMed DOI PMC
Brázda V., Cerveň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The amino acid composition of quadruplex binding proteins reveals a shared motif and predicts new potential quadruplex interactors. Molecules. 2018;23:2341. doi: 10.3390/molecules23092341. PubMed DOI PMC
Patro L.P.P., Kumar A., Kolimi N., Rathinavelan T. 3D-NuS: A web server for automated modeling and visualization of non-canonical 3-dimensional nucleic acid structures. J. Mol. Biol. 2017;429:2438–2448. doi: 10.1016/j.jmb.2017.06.013. PubMed DOI
Huppert J.L., Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. doi: 10.1093/nar/gki609. PubMed DOI PMC
Eddy J., Maizels N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006;34:3887–3896. doi: 10.1093/nar/gkl529. PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J.L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44:1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC
diCenzo G.C., Finan T.M. The Divided Bacterial Genome: Structure, Function, and Evolution. Microbiol. Mol. Biol. Rev. 2017;81:e00019-17. doi: 10.1128/MMBR.00019-17. PubMed DOI PMC
Yadav V.K., Abraham J.K., Mani P., Kulshrestha R., Chowdhury S. QuadBase: Genome-wide database of G4 DNA—Occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res. 2008;36:D381–D385. doi: 10.1093/nar/gkm781. PubMed DOI PMC
König S.L.B., Huppert J.L., Sigel R.K.O., Evans A.C. Distance-dependent duplex DNA destabilization proximal to G-quadruplex/i-motif sequences. Nucleic Acids Res. 2013;41:7453–7461. doi: 10.1093/nar/gkt476. PubMed DOI PMC
Mishra S.K., Jain N., Shankar U., Tawani A., Sharma T.K., Kumar A. Characterization of highly conserved G-quadruplex motifs as potential drug targets in Streptococcus pneumoniae. Sci. Rep. 2019;9:1791. doi: 10.1038/s41598-018-38400-x. PubMed DOI PMC
Rawal P., Kummarasetti V.B.R., Ravindran J., Kumar N., Halder K., Sharma R., Mukerji M., Das S.K., Chowdhury S. Genome-wide prediction of G4 DNA as regulatory motifs: Role in Escherichia coli global regulation. Genome Res. 2006;16:644–655. doi: 10.1101/gr.4508806. PubMed DOI PMC
Neidle S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009;19:239–250. doi: 10.1016/j.sbi.2009.04.001. PubMed DOI
Saranathan N., Vivekanandan P. G-Quadruplexes: More than just a kink in microbial genomes. Trends Microbiol. 2018;27:148–163. doi: 10.1016/j.tim.2018.08.011. PubMed DOI PMC
Kaplan O.I., Berber B., Hekim N., Doluca O. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-Hairpin-Duplex switch. Nucleic Acids Res. 2016;44:9083–9095. PubMed PMC
Brocchieri L. The GC Content of Bacterial Genomes. J. Phylogenet. Evolut. Biol. 2013;2:1–3. doi: 10.4172/2329-9002.1000e108. DOI
Ding Y., Fleming A.M., Burrows C.J. Case studies on potential G-quadruplex-forming sequences from the bacterial orders Deinococcales and Thermales derived from a survey of published genomes. Sci. Rep. 2018;8:15679. doi: 10.1038/s41598-018-33944-4. PubMed DOI PMC
Brumm P.J., Monsma S., Keough B., Jasinovica S., Ferguson E., Schoenfeld T., Lodes M., Mead D.A. Complete Genome Sequence of Thermus aquaticus Y51MC23. PLoS ONE. 2015;10:e0138674. doi: 10.1371/journal.pone.0138674. PubMed DOI PMC
Waller Z.A.E., Pinchbeck B.J., Buguth B.S., Meadows T.G., Richardson D.J., Gates A.J. Control of bacterial nitrate assimilation by stabilization of G-quadruplex DNA. Chem. Commun. 2016;52:13511–13514. doi: 10.1039/C6CC06057A. PubMed DOI PMC
Čechová J., Lýsek J., Bartas M., Brázda V. Complex analyses of inverted repeats in mitochondrial genomes revealed their importance and variability. Bioinformatics. 2018;34:1081–1085. doi: 10.1093/bioinformatics/btx729. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome analyser—A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Brázda V., Lýsek J., Bartas M., Fojta M. Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs. BioMed Res. Int. 2018;2018:1097018. doi: 10.1155/2018/1097018. PubMed DOI PMC
Ruggiero E., Richter S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46:3270–3283. doi: 10.1093/nar/gky187. PubMed DOI PMC
Chen B.-J., Wu Y.-L., Tanaka Y., Zhang W. Small Molecules Targeting c-Myc Oncogene: Promising Anti-Cancer Therapeutics. Int. J. Biol. Sci. 2014;10:1084–1096. doi: 10.7150/ijbs.10190. PubMed DOI PMC
Belmonte-Reche E., Martínez-García M., Guédin A., Zuffo M., Arévalo-Ruiz M., Doria F., Campos-Salinas J., Maynadier M., López-Rubio J.J., Freccero M., et al. G-Quadruplex Identification in the Genome of Protozoan Parasites Points to Naphthalene Diimide Ligands as New Antiparasitic Agents. J. Med. Chem. 2018;61:1231–1240. doi: 10.1021/acs.jmedchem.7b01672. PubMed DOI PMC
Li F., Mulyana Y., Feterl M., Warner J.M., Collins J.G., Keene F.R. The antimicrobial activity of inert oligonuclear polypyridylruthenium(II) complexes against pathogenic bacteria, including MRSA. Dalton Trans. 2011;40:5032–5038. doi: 10.1039/c1dt10250h. PubMed DOI
Li F., Grant Collins J., Richard Keene F. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015;44:2529–2542. doi: 10.1039/C4CS00343H. PubMed DOI
Xu L., Chen X., Wu J., Wang J., Ji L., Chao H. Dinuclear Ruthenium(II) Complexes That Induce and Stabilise G-Quadruplex DNA. Chem. Eur. J. 2015;21:4008–4020. doi: 10.1002/chem.201405991. PubMed DOI
Xu L., Zhang D., Huang J., Deng M., Zhang M., Zhou X. High fluorescence selectivity and visual detection of G-quadruplex structures by a novel dinuclear ruthenium complex. Chem. Commun. 2010;46:743–745. doi: 10.1039/B918045A. PubMed DOI
Wilson T., Williamson M.P., Thomas J.A. Differentiating quadruplexes: Binding preferences of a luminescent dinuclear ruthenium (II) complex with four-stranded DNA structures. Org. Biomol. Chem. 2010;8:2617–2621. doi: 10.1039/b924263e. PubMed DOI
Codd G.A., Lindsay J., Young F.M., Morrison L.F., Metcalf J.S. Harmful Cyanobacteria. Springer; Dordrecht, The Netherlands: 2005. Harmful cyanobacteria; pp. 1–23.
Perrone R., Lavezzo E., Riello E., Manganelli R., Palù G., Toppo S., Provvedi R., Richter S.N. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 2017;7:5743. doi: 10.1038/s41598-017-05867-z. PubMed DOI PMC
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A.R., Richter S.N., Toppo S. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLOS Comput. Biol. 2018;14:e1006675. doi: 10.1371/journal.pcbi.1006675. PubMed DOI PMC
Beaume N., Pathak R., Yadav V.K., Kota S., Misra H.S., Gautam H.K., Chowdhury S. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: Radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res. 2013;41:76–89. doi: 10.1093/nar/gks1071. PubMed DOI PMC
Kota S., Dhamodharan V., Pradeepkumar P.I., Misra H.S. G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions. Appl. Microbiol. Biotechnol. 2015;99:9761–9769. doi: 10.1007/s00253-015-6808-6. PubMed DOI
Repoila F., Darfeuille F. Small regulatory non-coding RNAs in bacteria: Physiology and mechanistic aspects. Biol. Cell. 2009;101:117–131. doi: 10.1042/BC20070137. PubMed DOI
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Št’astný J., Mergny J.-L. G4Hunter web application: A web server for G-quadruplex prediction. Bioinformatics. 2019:btz087. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC
Sayers E.W., Agarwala R., Bolton E.E., Brister J.R., Canese K., Clark K., Connor R., Fiorini N., Funk K., Hefferon T., et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23–D28. doi: 10.1093/nar/gky1069. PubMed DOI PMC
Federhen S. The NCBI taxonomy database. Nucleic Acids Res. 2011;40:D136–D143. doi: 10.1093/nar/gkr1178. PubMed DOI PMC
Letunic I., Bork P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–W245. doi: 10.1093/nar/gkw290. PubMed DOI PMC
Asymmetric distribution of G-quadruplex forming sequences in genomes of retroviruses
G-quadruplex propensity in H. neanderthalensis, H. sapiens and Denisovans mitochondrial genomes
Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes
Variability of Inverted Repeats in All Available Genomes of Bacteria
G-quadruplexes in helminth parasites
R-Loop Tracker: Web Access-Based Tool for R-Loop Detection and Analysis in Genomic DNA Sequences
G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story
Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?
Tracing dsDNA Virus-Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences
G-quadruplexes in H1N1 influenza genomes
G-Quadruplexes in the Archaea Domain
Structures and stability of simple DNA repeats from bacteria
The Rich World of p53 DNA Binding Targets: The Role of DNA Structure