G-quadruplexes in H1N1 influenza genomes

. 2021 Jan 23 ; 22 (1) : 77. [epub] 20210123

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33485319

Grantová podpora
CZ.02.1.01/0.0/0.0/15_003/0000477 ERDF

Odkazy

PubMed 33485319
PubMed Central PMC7823172
DOI 10.1186/s12864-021-07377-9
PII: 10.1186/s12864-021-07377-9
Knihovny.cz E-zdroje

BACKGROUND: Influenza viruses are dangerous pathogens. Seventy-Seven genomes of recently emerged genotype 4 reassortant Eurasian avian-like H1N1 virus (G4-EA-H1N1) are currently available. We investigated the presence and variation of potential G-quadruplex forming sequences (PQS), which can serve as targets for antiviral treatment. RESULTS: PQS were identified in all 77 genomes. The total number of PQS in G4-EA-H1N1 genomes was 571. Interestingly, the number of PQS per genome in individual close relative viruses varied from 4 to 12. PQS were not randomly distributed in the 8 segments of the G4-EA-H1N1 genome, the highest frequency of PQS being found in the NP segment (1.39 per 1000 nt), which is considered a potential target for antiviral therapy. In contrast, no PQS was found in the NS segment. Analyses of variability pointed the importance of some PQS; even if genome variation of influenza virus is extreme, the PQS with the highest G4Hunter score is the most conserved in all tested genomes. G-quadruplex formation in vitro was experimentally confirmed using spectroscopic methods. CONCLUSIONS: The results presented here hint several G-quadruplex-forming sequences in G4-EA-H1N1 genomes, that could provide good therapeutic targets.

Zobrazit více v PubMed

Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza a epidemic. Nature. 2009;459(7250):1122–1125. doi: 10.1038/nature08182. PubMed DOI

Hoffmann M, Pöhlmann S. Cell entry of influenza a viruses: sweet talk between HA and CaV1.2. Cell Host Microbe. 2018;23(6):697–699. doi: 10.1016/j.chom.2018.05.019. PubMed DOI

Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature. 2009;459(7249):931–939. doi: 10.1038/nature08157. PubMed DOI PMC

Zhang R, Xu C, Duan Z. Novel antigenic shift in HA sequences of H1N1 viruses detected by big data analysis. Infect Genet Evol. 2017;51:138–142. doi: 10.1016/j.meegid.2017.03.028. PubMed DOI

Mostafa A, Kanrai P, Ziebuhr J, Pleschka S. The PB1 segment of an influenza a virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs. J Gen Virol. 2016;97(3):620–631. doi: 10.1099/jgv.0.000390. PubMed DOI

Lee J-Y, Ouh I-O, Cho S-D, Cho I-S, Park CK, Song J-Y. Complete genome sequence of H1N1 swine influenza virus from pigs in the Republic of Korea in 2016. Baltrus DA, editor. Microbiol Resour Announc 2018;7(23):e01229–e01218, e01229-18. PubMed PMC

Sullivan SJ, Jacobson RM, Dowdle WR, Poland GA. 2009 H1N1 Influenza. Mayo Clin Proc. 2010;85(1):64–76. doi: 10.4065/mcp.2009.0588. PubMed DOI PMC

Zimmer SM, Burke DS. Historical perspective — emergence of influenza a (H1N1) viruses. N Engl J Med. 2009;361(3):279–285. doi: 10.1056/NEJMra0904322. PubMed DOI

Shope RE. The incidence of neutralizing antibodies for swine influenza virus in the sera of human beings of different ages. J Exp Med. 1936;63(5):669–684. doi: 10.1084/jem.63.5.669. PubMed DOI PMC

Sun H, Xiao Y, Liu J, Wang D, Li F, Wang C, et al. Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc Natl Acad Sci U S A. 2020;29:201921186. PubMed PMC

Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34(19):5402–5415. doi: 10.1093/nar/gkl655. PubMed DOI PMC

Malgowska M, Czajczynska K, Gudanis D, Tworak A, Gdaniec Z. Overview of the RNA G-quadruplex structures. Acta Biochim Pol. 2016;63(4):609–21. PubMed

Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol. 2020;21(8):459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Ruggiero E, Richter SN. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. In: Annual Reports in Medicinal Chemistry. Elsevier; 2020 [cited 2020 Jul 29]. p. S0065774320300142. PubMed PMC

Lavezzo E, Berselli M, Frasson I, Perrone R, Palù G, Brazzale AR, et al. G-quadruplex forming sequences in the genome of all known human viruses: A comprehensive guide. PLoS Comput Biol. 2018 13; 14(12). PubMed PMC

Lombardi EP, Londoño-Vallejo A. A guide to computational methods for G-quadruplex prediction. Nucleic Acids Res. 2020;48(3):1603. doi: 10.1093/nar/gkaa033. PubMed DOI PMC

Bedrat A, Lacroix L, Mergny J-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016;44(4):1746–1759. doi: 10.1093/nar/gkw006. PubMed DOI PMC

Gazanion E, Lacroix L, Alberti P, Gurung P, Wein S, Cheng M, et al. Genome wide distribution of G-quadruplexes and their impact on gene expression in malaria parasites. Di Antonio M, editor. PLoS Genet. 2020;16(7):e1008917. doi: 10.1371/journal.pgen.1008917. PubMed DOI PMC

Bartas M, Čutová M, Brázda V, Kaura P, Šťastný J, Kolomazník J, et al. The presence and localization of G-Quadruplex forming sequences in the domain of Bacteria. Molecules. 2019;24(9):1711. doi: 10.3390/molecules24091711. PubMed DOI PMC

Čutová M, Manta J, Porubiaková O, Kaura P, Šťastný J, Jagelská EB, et al. Divergent distributions of inverted repeats and G-quadruplex forming sequences in Saccharomyces cerevisiae. Genomics. 2019:S0888754319305269. PubMed

Brázda V, Kolomazník J, Lýsek J, Bartas M, Fojta M, Šťastný J, et al. G4Hunter web application: a web server for G-quadruplex prediction. Hancock J, editor. Bioinformatics. 2019;35(18):3493–3495. doi: 10.1093/bioinformatics/btz087. PubMed DOI PMC

Bartas M, Brázda V, Bohálová N, Cantara A, Volná A, Stachurová T, et al. In-depth Bioinformatic analyses of Nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles. Front Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC

Di Antonio M, Ponjavic A, Radzevičius A, Ranasinghe RT, Catalano M, Zhang X, et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat Chem [Internet]. 2020 20. PubMed PMC

Prorok P, Artufel M, Aze A, Coulombe P, Peiffer I, Lacroix L, et al. Involvement of G-quadruplex regions in mammalian replication origin activity. Nat Commun. 2019;10(1):3274. doi: 10.1038/s41467-019-11104-0. PubMed DOI PMC

Artusi S, Perrone R, Lago S, Raffa P, Di Iorio E, Palù G, et al. Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. Nucleic Acids Res. 2016;44(21):10343–10353. PubMed PMC

Callegaro S, Perrone R, Scalabrin M, Doria F, Palù G, Richter SN. A core extended naphtalene diimide G-quadruplex ligand potently inhibits herpes simplex virus 1 replication. Sci Rep. 2017;7(1):2341. doi: 10.1038/s41598-017-02667-3. PubMed DOI PMC

Métifiot M, Amrane S, Litvak S, Andreola M-L. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res. 2014;42(20):12352–12366. doi: 10.1093/nar/gku999. PubMed DOI PMC

González VM, Martín ME, Fernández G, García-Sacristán A. Use of Aptamers as Diagnostics Tools and Antiviral Agents for Human Viruses. Pharmaceuticals. 2016;9(4):78. PubMed PMC

Majerciak V, Zheng Z-M. Detection of Viral RNA Splicing in Diagnostic Virology. In: Tang Y-W, Stratton CW, editors. Advanced Techniques in Diagnostic Microbiology. Cham: Springer International Publishing; 2018. p. 345–402.

Renaud de la Faverie A, Guédin A, Bedrat A, Yatsunyk LA, Mergny J-L. Thioflavin T as a fluorescence light-up probe for G4 formation. Nucleic Acids Res. 2014;42(8):e65. doi: 10.1093/nar/gku111. PubMed DOI PMC

Vondrušková J, Kypr J, Kejnovská I, Fialová M, Vorlíčková M. Guanine quadruplex formation by RNA/DNA hybrid analogs of Oxytricha telomere G4T4G4 fragment. Biopolymers. 2008;89(10):797–806. doi: 10.1002/bip.21015. PubMed DOI

Brázda V, Laister RC, Jagelská EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011;12(1):33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC

Ruggiero E, Richter SN. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res. 2018;46(7):3270–3283. doi: 10.1093/nar/gky187. PubMed DOI PMC

Shen L-W, Qian M-Q, Yu K, Narva S, Yu F, Wu Y-L, et al. Inhibition of influenza a virus propagation by benzoselenoxanthenes stabilizing TMPRSS2 gene G-quadruplex and hence down-regulating TMPRSS2 expression. Sci Rep. 2020;10(1):7635. doi: 10.1038/s41598-020-64368-8. PubMed DOI PMC

Eisfeld AJ, Neumann G, Kawaoka Y. At the Centre: influenza a virus ribonucleoproteins. Nat Rev Microbiol. 2015;13(1):28–41. doi: 10.1038/nrmicro3367. PubMed DOI PMC

Compans RW, Content J, Duesberg PH. Structure of the ribonucleoprotein of influenza virus. J Virol. 1972;10(4):795–800. doi: 10.1128/JVI.10.4.795-800.1972. PubMed DOI PMC

Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem. 2017;17(20):2271–85. PubMed PMC

Kikin O, D’Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006; 34(Web Server):W676–W682. PubMed PMC

Dolinnaya NG, Ogloblina AM, Yakubovskaya MG. Structure, properties, and biological relevance of the DNA and RNA G-quadruplexes: overview 50 years after their discovery. Biochem Moscow. 2016;81(13):1602–1649. doi: 10.1134/S0006297916130034. PubMed DOI PMC

Hognon C, Miclot T, García-Iriepa C, Francés-Monerris A, Grandemange S, Terenzi A, et al. Role of RNA guanine Quadruplexes in Favoring the dimerization of SARS unique domain in coronaviruses. J Phys Chem Lett 2020;11(14):5661–5667. PubMed

Speranskaia AS, Mel’nikova NV, Belenkin MS, Dmitriev AA, Oparina NI, Kudriavtseva AV. Genetic diversity and evolution of the influenza C virus. Genetika. 2012;48(7):797–805. PubMed

Xu R, Ekiert DC, Krause JC, Hai R, Crowe JE, Wilson IA. Structural basis of preexisting immunity to the 2009 H1N1 pandemic influenza virus. Science. 2010;328(5976):357–360. doi: 10.1126/science.1186430. PubMed DOI PMC

Kuenstling TE, Sambol AR, Hinrichs SH, Larson MA. Oligomerization of bacterially expressed H1N1 recombinant hemagglutinin contributes to protection against viral challenge. Sci Rep. 2018;8(1):11856. doi: 10.1038/s41598-018-30079-4. PubMed DOI PMC

Gómez-Puertas P, Albo C, Pérez-Pastrana E, Vivo A, Portela A. Influenza virus matrix protein is the major driving force in virus budding. J Virol. 2000;74(24):11538–11547. doi: 10.1128/JVI.74.24.11538-11547.2000. PubMed DOI PMC

Campbell PJ, Danzy S, Kyriakis CS, Deymier MJ, Lowen AC, Steel J. The M segment of the 2009 pandemic influenza virus confers increased neuraminidase activity, filamentous morphology, and efficient contact transmissibility to a/Puerto Rico/8/1934-based Reassortant viruses. J Virol. 2014;88(7):3802–3814. doi: 10.1128/JVI.03607-13. PubMed DOI PMC

Ji D, Juhas M, Tsang CM, Kwok CK, Li Y, Zhang Y. Discovery of G-quadruplex-forming sequences in SARS-CoV-2. Brief Bioinform. 2020:bbaa114. PubMed PMC

Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for biotechnology information. Nucleic Acids Res. 2019;47(D1):D23–D28. doi: 10.1093/nar/gky1069. PubMed DOI PMC

Stothard P. The sequence manipulation suite: JavaScript programs for Analyzing and formatting protein and DNA sequences. BioTechniques. 2000;28(6):1102–1104. doi: 10.2144/00286ir01. PubMed DOI

Sievers F, Higgins DG. Clustal omega. Curr Protoc Bioinformatics. 2014;48:3.13.1–16. PubMed

Crooks GE. WebLogo: A Sequence Logo Generator. Genome Res. 2004;14(6):1188–1190. doi: 10.1101/gr.849004. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes

. 2024 Jan 23 ; 9 (3) : 4096-4101. [epub] 20240109

G-quadruplexes in the evolution of hepatitis B virus

. 2023 Aug 11 ; 51 (14) : 7198-7204.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...