In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32719673
PubMed Central
PMC7347907
DOI
10.3389/fmicb.2020.01583
Knihovny.cz E-zdroje
- Klíčová slova
- G-quadruplex, RNA, coronavirus, genome, inverted repeats,
- Publikační typ
- časopisecké články MeSH
Non-canonical nucleic acid structures play important roles in the regulation of molecular processes. Considering the importance of the ongoing coronavirus crisis, we decided to evaluate genomes of all coronaviruses sequenced to date (stated more broadly, the order Nidovirales) to determine if they contain non-canonical nucleic acid structures. We discovered much evidence of putative G-quadruplex sites and even much more of inverted repeats (IRs) loci, which in fact are ubiquitous along the whole genomic sequence and indicate a possible mechanism for genomic RNA packaging. The most notable enrichment of IRs was found inside 5'UTR for IRs of size 12+ nucleotides, and the most notable enrichment of putative quadruplex sites (PQSs) was located before 3'UTR, inside 5'UTR, and before mRNA. This indicates crucial regulatory roles for both IRs and PQSs. Moreover, we found multiple G-quadruplex binding motifs in human proteins having potential for binding of SARS-CoV-2 RNA. Non-canonical nucleic acids structures in Nidovirales and in novel SARS-CoV-2 are therefore promising druggable structures that can be targeted and utilized in the future.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Physics Faculty of Science University of Ostrava Ostrava Czechia
Faculty of Chemistry Brno University of Technology Brno Czechia
Zobrazit více v PubMed
Afgan E., Baker D., Batut B., Van Den Beek M., Bouvier D., Cech M., et al. . (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucl. Acids Res. 46, W537–W544. 10.1093/nar/gky379 PubMed DOI PMC
Bagga R., Ramesh N., Brahmachari S. K. (1990). Supercoil-induced unusual DNA structures as transcriptional block. Nucl. Acids Res. 18, 3363–3369. 10.1093/nar/18.11.3363 PubMed DOI PMC
Bartas M., Cutová M., Brázda V., Kaura P., Št'astný J., Kolomazník J., et al. . (2019). The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules 24:1711. 10.3390/molecules24091711 PubMed DOI PMC
Bedrat A., Lacroix L., Mergny J.-L. (2016). Re-evaluation of G-quadruplex propensity with G4Hunter. Nucl. Acids Res. 44, 1746–1759. 10.1093/nar/gkw006 PubMed DOI PMC
Brázda V., Cerven J., Bartas M., Mikysková N., Coufal J., Pečinka P., et al. . (2018). The amino acid composition of quadruplex binding proteins reveals a shared motif and predicts new potential quadruplex interactors. Molecules 23:2341. 10.3390/molecules23092341 PubMed DOI PMC
Brázda V., Hároníková L., Liao J. C., Fojta M. (2014). DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 15, 17493–17517. 10.3390/ijms151017493 PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Štastný J., et al. . (2019). G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495. 10.1093/bioinformatics/btz087 PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št'astný J. (2016). Palindrome analyser–A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun. 478, 1739–1745. 10.1016/j.bbrc.2016.09.015 PubMed DOI
Brázda V., Laister R. C., Jagelská E. B., Arrowsmith C. (2011). Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 12:33. 10.1186/1471-2199-12-33 PubMed DOI PMC
Bridges R., Correia S., Wegner F., Venturini C., Palser A., White R. E., et al. . (2019). Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. Soc. B 374:20180299. 10.1098/rstb.2018.0299 PubMed DOI PMC
Burge S., Parkinson G. N., Hazel P., Todd A. K., Neidle S. (2006). Quadruplex DNA: sequence, topology and structure. Nucl. Acids Res. 34, 5402–5415. 10.1093/nar/gkl655 PubMed DOI PMC
Butovskaya E., Solda P., Scalabrin M., Nadai M., Richter S. N. (2019). HIV-1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is inhibited by G-quadruplex ligands. ACS Infect. Dis. 5, 2127–2135. 10.1021/acsinfecdis.9b00272 PubMed DOI PMC
Carrasco-Hernandez R., Jácome R., López Vidal Y., Ponce de León S. (2017). Are RNA viruses candidate agents for the next global pandemic? A review. ILAR J. 58, 343–358. 10.1093/ilar/ilx026 PubMed DOI PMC
Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S. (2015). High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33:877. 10.1038/nbt.3295 PubMed DOI
Chang C., Hou M.-H., Chang C.-F., Hsiao C.-D., Huang T. (2014). The SARS coronavirus nucleocapsid protein – Forms and functions. Antiviral Res. 103, 39–50. 10.1016/j.antiviral.2013.12.009 PubMed DOI PMC
Chen N., Li X., Li S., Xiao Y., Ye M., Yan X., et al. . (2020). How related is SARS-CoV-2 to other coronaviruses? Vet. Rec. 186, 496–496. 10.1136/vr.m1452 PubMed DOI
Cohen J. (2020). New coronavirus threat galvanizes scientists. Science 367, 492–493. 10.1126/science.367.6477.492 PubMed DOI
Cowling B. J., Park M., Fang V. J., Wu P., Leung G. M., Wu J. T. (2015). Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015. Euro Surveill. 20:21163. 10.2807/1560-7917.ES2015.20.25.21163 PubMed DOI PMC
Drake J. W., Holland J. J. (1999). Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. U. S.A. 96, 13910–13913. 10.1073/pnas.96.24.13910 PubMed DOI PMC
Dutkiewicz M., Stachowiak A., Swiatkowska A., Ciesiołka J. (2016). Structure and function of RNA elements present in enteroviral genomes. Acta Biochim. Polonica 63, 623–630. 10.18388/abp.2016_1337 PubMed DOI
Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC
Eigen M., Schuster P. (1977). A principle of natural self-organization: Part A: emergence of the hypercycle. Naturwissenschaften 64, 541–565. 10.1007/BF00450633 PubMed DOI
Erkelenz S., Poschmann G., Theiss S., Stefanski A., Hillebrand F., Otte M., et al. . (2013). Tra2-mediated recognition of HIV-1 5 ‘ splice site D3 as a key factor in the processing of vpr mRNA. J. Virol. 87, 2721–2734. 10.1128/JVI.02756-12 PubMed DOI PMC
Federhen S. (2011). The NCBI taxonomy database. Nucl. Acids Res. 40, D136–D143. 10.1093/nar/gkr1178 PubMed DOI PMC
Fehr A. R., Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23. 10.1007/978-1-4939-2438-7_1 PubMed DOI PMC
Fleming A. M., Ding Y., Alenko A., Burrows C. J. (2016). Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis. 2, 674–681. 10.1021/acsinfecdis.6b00109 PubMed DOI PMC
Frasson I., Nadai M., Richter S. N. (2019). Conserved G-quadruplexes regulate the immediate early promoters of human Alphaherpesviruses. Molecules 24:2375. 10.3390/molecules24132375 PubMed DOI PMC
Gage H. L., Merrick C. J. (2020). Conserved associations between G-quadruplex-forming DNA motifs and virulence gene families in malaria parasites. BMC Genomics 21:236. 10.1186/s12864-020-6625-x PubMed DOI PMC
Garant J.-M., Perreault J.-P., Scott M. S. (2018). G4RNA screener web server: user focused interface for RNA G-quadruplex prediction. Biochimie 151, 115–118. 10.1016/j.biochi.2018.06.002 PubMed DOI
Garcia-Moreno M., Jaervelin A. I., Castello A. (2018). Unconventional RNA-binding proteins step into the virus-host battlefront. Wiley Interdiscipl. Rev. RNA 9:e1498. 10.1002/wrna.1498 PubMed DOI PMC
Georgakopoulos-Soares I., Morganella S., Jain N., Hemberg M., Nik-Zainal S. (2018). Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res. 28, 1264–1271. 10.1101/gr.231688.117 PubMed DOI PMC
Ghosh P., Grellscheid S. N., Sowdhamini R. (2016). A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities. J. Biomol. Struct. Dyn. 34, 1979–1986. 10.1080/07391102.2015.1100551 PubMed DOI
Gorbalenya A. E. (2001). Big nidovirus genome. When count and order of domains matter. Adv. Exp. Med. Biol. 494, 1–17. 10.1007/978-1-4615-1325-4_1 PubMed DOI
Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res. 117, 17–37. 10.1016/j.virusres.2006.01.017 PubMed DOI PMC
Guedin A., Gros J., Alberti P., Mergny J.-L. (2010). How long is too long? Effects of loop size on G-quadruplex stability. Nucl. Acids Res. 38, 7858–7868. 10.1093/nar/gkq639 PubMed DOI PMC
Gui X., Luo F., Li Y., Zhou H., Qin Z., Liu Z., et al. . (2019). Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat. Commun. 10:2006. 10.1038/s41467-019-09902-7 PubMed DOI PMC
Hanada K., Suzuki Y., Nakane T., Hirose O., Gojobori T. (2005). The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol. Biol. Evol. 22, 1024–1031. 10.1093/molbev/msi089 PubMed DOI PMC
Hänsel-Hertsch R., Beraldi D., Lensing S. V., Marsico G., Zyner K., Parry A., et al. . (2016). G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48:1267. 10.1038/ng.3662 PubMed DOI
Hároníková L., Coufal J., Kejnovská I., Jagelská E. B., Fojta M., Dvoráková P., et al. . (2016). IFI16 preferentially binds to DNA with quadruplex structure and enhances DNA quadruplex formation. PLoS ONE 11:e0157156. 10.1371/journal.pone.0157156 PubMed DOI PMC
Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. . (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271–280.e8 10.1016/j.cell.2020.02.052 PubMed DOI PMC
Huang Z.-L., Dai J., Luo W.-H., Wang X.-G., Tan J.-H., Chen S.-B., et al. . (2018). Identification of G-quadruplex-binding protein from the exploration of RGG Motif/G-quadruplex interactions. J. Am. Chem. Soc. 140, 17945–17955. 10.1021/jacs.8b09329 PubMed DOI
Hung L. S. (2003). The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med. 96, 374–378. 10.1258/jrsm.96.8.374 PubMed DOI PMC
Ishimaru D., Plant E. P., Sims A. C., Yount B. L., Jr., Roth B. M., Eldho N. V., et al. . (2013). RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Nucl. Acids Res. 41, 2594–2608. 10.1093/nar/gks1361 PubMed DOI PMC
Jaubert C., Bedrat A., Bartolucci L., Di Primo C., Ventura M., Mergny J.-L., et al. . (2018). RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep. 8, 1–9. 10.1038/s41598-018-26582-3 PubMed DOI PMC
Kattimani Y., Veerappa A. M. (2018). Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity 51, 147–151. 10.1080/08916934.2018.1482883 PubMed DOI
Kikin O., D'Antonio L., Bagga P. S. (2006). QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucl. Acids Res. 34, W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC
Kim D., Lee J.-Y., Yang J.-S., Kim J. W., Kim V. N., Chang H. (2020). The architecture of SARS-CoV-2 transcriptome. bioRxiv. 181, 914–921.e10. 10.1016/j.cell.2020.04.011 PubMed DOI PMC
Kocman V., Plavec J. (2017). Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions. Nat. Commun. 8:15355. 10.1038/ncomms15355 PubMed DOI PMC
Kolesnikova S., Curtis E. A. (2019). Structure and function of multimeric G-quadruplexes. Molecules 24:3074. 10.3390/molecules24173074 PubMed DOI PMC
Krafčíková P., Demkovičová E., Víglaský V. (2017). Ebola virus derived G-quadruplexes: thiazole orange interaction. Biochim. Biophys. Acta General Subj. 1861, 1321–1328. 10.1016/j.bbagen.2016.12.009 PubMed DOI
Kusov Y., Tan J., Alvarez E., Enjuanes L., Hilgenfeld R. (2015). A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology 484, 313–322. 10.1016/j.virol.2015.06.016 PubMed DOI PMC
Lai M. M. C., Cavanagh D. (1997). “The molecular biology of coronaviruses,” in Advances in Virus Research (Elsevier: ), 1–100. Available online at: https://linkinghub.elsevier.com/retrieve/pii/S0065352708602869 PubMed PMC
Lauring A. S., Frydman J., Andino R. (2013). The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336. 10.1038/nrmicro3003 PubMed DOI PMC
Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A. R., et al. . (2018). G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLOS Comput. Biol. 14:e1006675. 10.1371/journal.pcbi.1006675 PubMed DOI PMC
Lei J., Kusov Y., Hilgenfeld R. (2018). Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 149, 58–74. 10.1016/j.antiviral.2017.11.001 PubMed DOI PMC
Letunic I., Bork P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, W256–W259. 10.1093/nar/gkz239 PubMed DOI PMC
Li F., Zhou J., Xu M., Yuan G. (2018). Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan. Int. J. Biol. Macromol. 107, 1474–1479. 10.1016/j.ijbiomac.2017.10.010 PubMed DOI
Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. . (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 382, 1199–1207. 10.1056/NEJMoa2001316 PubMed DOI PMC
Li R.-F., Li H. (2010). Study on the influences of palindromes in protein coding sequences on the folding rates of peptide chains. Protein Peptide Lett. 17, 881–888. 10.2174/092986610791306652 PubMed DOI
Lightfoot H. L., Hagen T., Tatum N. J., Hall J. (2019). The diverse structural landscape of quadruplexes. FEBS Lett. 593, 2083–2102. 10.1002/1873-3468.13547 PubMed DOI
Liò P., Goldman N. (2004). Phylogenomics and bioinformatics of SARS-CoV. Trends Microbiol. 12, 106–111. 10.1016/j.tim.2004.01.005 PubMed DOI PMC
Liu T., Sun H., Zhu D., Dong X., Liu F., Liang X., et al. . (2017). TRA2A promoted paclitaxel resistance and tumor progression in triple-negative breast cancers via regulating alternative splicing. Mol. Cancer Therap. 16, 1377–1388. 10.1158/1535-7163.MCT-17-0026 PubMed DOI
Liu Y., Chen J., Nikolaitchik O. A., Desimmie B. A., Busan S., Pathak V. K., et al. . (2018). The roles of five conserved lentiviral RNA structures in HIV-1 replication. Virology 514, 1–8. 10.1016/j.virol.2017.10.020 PubMed DOI PMC
Lorenz R., Bernhart S. H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P. F., et al. . (2011). ViennaRNA package 2.0. Algorith. Mol. Biol. 6:26. 10.1186/1748-7188-6-26 PubMed DOI PMC
Lu J., Gao F., Wei Z., Liu P., Liu C., Zheng H., et al. . (2011). A 5'-proximal stem-loop structure of 5' untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication. Virol. J. 8:172. 10.1186/1743-422X-8-172 PubMed DOI PMC
Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. . (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574. 10.1016/S0140-6736(20)30251-8 PubMed DOI PMC
Masuzawa T., Oyoshi T. (2020). Roles of the RGG domain and RNA recognition motif of nucleolin in G-quadruplex stabilization. ACS Omega. 5, 5202–5208. 10.1021/acsomega.9b04221 PubMed DOI PMC
Métifiot M., Amrane S., Litvak S., Andreola M.-L. (2014). G-quadruplexes in viruses: function and potential therapeutic applications. Nucl. Acids Res. 42, 12352–12366. 10.1093/nar/gku999 PubMed DOI PMC
Mishra S. K., Tawani A., Mishra A., Kumar A. (2016). G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 6:38144. 10.1038/srep38144 PubMed DOI PMC
Modrow S., Falke D., Truyen U., Schätzl H. (2013). “Viruses with single-stranded, positive-sense RNA genomes,” in Molecular Virology (Berlin: Springer Berlin Heidelberg; ), 185–349. Available online at: http://link.springer.com/10.1007/978-3-642-20718-1_14 DOI
Nishikawa T., Kuwano Y., Takahara Y., Nishida K., Rokutan K. (2019). HnRNPA1 interacts with G-quadruplex in the TRA2B promoter and stimulates its transcription in human colon cancer cells. Sci. Rep. 9:10276. 10.1038/s41598-019-46659-x PubMed DOI PMC
Oboho I. K., Tomczyk S. M., Al-Asmari A. M., Banjar A. A., Al-Mugti H., Aloraini M. S., et al. . (2015). 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities. N. Engl. J. Med. 372, 846–854. 10.1056/NEJMoa1408636 PubMed DOI PMC
Okonechnikov K., Golosova O., Fursov M., Team U. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167. 10.1093/bioinformatics/bts091 PubMed DOI
Oprea T. I., Mestres J. (2012). Drug repurposing: far beyond new targets for old drugs. AAPS J. 14, 759–763. 10.1208/s12248-012-9390-1 PubMed DOI PMC
Patino-Galindo J. A., Filip I., AlQuraishi M., Rabadan R. (2020). Recombination and lineage-specific mutations led to the emergence of SARS-CoV-2. bioRxiv [Preprint]. 10.1101/2020.02.10.942748 PubMed DOI PMC
Paz I., Kosti I., Ares M., Jr., Cline M., Mandel-Gutfreund Y. (2014). RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucl. Acids Res. 42, W361–W367. 10.1093/nar/gku406 PubMed DOI PMC
Pham T. N. D., Stempel S., Shields M. A., Spaulding C., Kumar K., Bentrem D. J., et al. . (2019). Quercetin enhances the anti-tumor effects of BET inhibitors by suppressing hnRNPA1. Int. J. Mol. Sci. 20:4293. 10.3390/ijms20174293 PubMed DOI PMC
Plant E., Perez-Alvarado G., Jacobs J., Mukhopadhyay B., Hennig M., Dinman J. (2005). A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3, 1012–1023. 10.1371/journal.pbio.0030172 PubMed DOI PMC
Platella C., Riccardi C., Montesarchio D., Roviello G. N., Musumeci D. (2017). G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim. Biophys. Acta General Subj. 1861, 1429–1447. 10.1016/j.bbagen.2016.11.027 PubMed DOI PMC
Puig Lombardi E., Londoño-Vallejo A. (2020). A guide to computational methods for G-quadruplex prediction. Nucl. Acids Res. 48, 1–15. 10.1093/nar/gkaa033 PubMed DOI PMC
Roberts L. O., Jopling C. L., Jackson R. J., Willis A. E. (2009). “Chapter 9 viral strategies to subvert the mammalian translation machinery,” in Progress in Molecular Biology and Translational Science, Translational Control in Health and Disease. (Academic Press; ), 313–367. Available online at: http://www.sciencedirect.com/science/article/pii/S1877117309900096 PubMed PMC
Ruggiero E., Richter S. N. (2018). G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucl. Acids Res. 46, 3270–3283. 10.1093/nar/gky187 PubMed DOI PMC
Ruggiero E., Richter S. N. (2020). Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 10.1016/bs.armc.2020.04.001. [Epub ahead of print]. PubMed DOI PMC
Saberi A., Gulyaeva A. A., Brubacher J. L., Newmark P. A., Gorbalenya A. E. (2018). A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog. 14:e1007314. 10.1371/journal.ppat.1007314 PubMed DOI PMC
Saijo S., Kuwano Y., Masuda K., Nishikawa T., Rokutan K., Nishida K. (2016). Serine/arginine-rich splicing factor 7 regulates p21-dependent growth arrest in colon cancer cells. J. Med. Invest. 63, 219–226. 10.2152/jmi.63.219 PubMed DOI
Satpathi S., Singh R. K., Mukherjee A., Hazra P. (2018). Controlling anticancer drug mediated G-quadruplex formation and stabilization by a molecular container. Phys. Chem. Chem. Phys. 20, 7808–7818. 10.1039/C8CP00325D PubMed DOI
Sinden R., Zheng G., Brankamp R., Allen K. (1991). On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics 129, 991–1005. PubMed PMC
Singh A., Lakhanpaul S. (2019). Genome-wide analysis of putative G-quadruplex sequences (PGQSs) in onion yellows phytoplasma (strain OY-M): an emerging plant pathogenic bacteria. Indian J. Microbiol. 59, 468–475. 10.1007/s12088-019-00831-z PubMed DOI PMC
Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L. M., et al. . (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004. 10.1016/S0022-2836(03)00865-9 PubMed DOI PMC
Surovtsev I. V., Jacobs-Wagner C. (2018). Subcellular organization: a critical feature of bacterial cell replication. Cell 172, 1271–1293. 10.1016/j.cell.2018.01.014 PubMed DOI PMC
Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. . (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43, D447–52. 10.1093/nar/gku1003 PubMed DOI PMC
Tan W., Zhou J., Yuan G. (2014). Electrospray ionization mass spectrometry probing of binding affinity of berbamine, a flexible cyclic alkaloid from traditional Chinese medicine, with G-quadruplex DNA. Rapid Commun. Mass Spectr. 28, 143–147. 10.1002/rcm.6763 PubMed DOI
Tan Y., Hu X., Deng Y., Yuan P., Xie Y., Wang J. (2018). TRA2A promotes proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells. Brain Res. Bull. 143, 138–144. 10.1016/j.brainresbull.2018.10.006 PubMed DOI
Thandapani P., O'Connor T. R., Bailey T. L., Richard S. (2013). Defining the RGG/RG motif. Mol. Cell 50, 613–623. 10.1016/j.molcel.2013.05.021 PubMed DOI
Topotecan - Chemotherapy Drugs – Chemocare Available online at: http://chemocare.com/chemotherapy/drug-info/Topotecan.aspx
Travers A., Muskhelishvili G. (2015). DNA structure and function. FEBS J. 2279–2295. 10.1111/febs.13307 PubMed DOI
Unterholzner L., Keating S. E., Baran M., Horan K. A., Jensen S. B., Sharma S., et al. . (2010). IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. 10.1038/ni.1932 PubMed DOI PMC
Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., et al. . (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2:69. 10.1186/1743-422X-2-69 PubMed DOI PMC
Vorlíčková M., Kejnovská I., Bednárová K., Renčiuk D., Kypr J. (2012). Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality 24, 691–698. 10.1002/chir.22064 PubMed DOI
Voter A. F., Callaghan M. M., Tippana R., Myong S., Dillard J. P., Keck J. L. (2020). Antigenic variation in neisseria gonorrhoeae occurs independently of RecQ-mediated unwinding of the pilE G quadruplex. J. Bacteriol. 202:e00607-19. 10.1128/JB.00607-19 PubMed DOI PMC
Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., et al. . (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. 10.1038/s41422-020-0282-0 PubMed DOI PMC
Wang S.-K., Wu Y., Ou T.-M. (2015). RNA G-quadruplex: the new potential targets for therapy. Curr. Topics Med. Chem. 15, 1947–1956. 10.2174/1568026615666150515145733 PubMed DOI
Wang S.-R., Zhang Q.-Y., Wang J.-Q., Ge X.-Y., Song Y.-Y., Wang Y.-F., et al. . (2016). Chemical targeting of a G-quadruplex RNA in the Ebola virus L gene. Cell Chem. Biol. 23, 1113–1122. 10.1016/j.chembiol.2016.07.019 PubMed DOI
Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., et al. . (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. 10.1038/s41586-020-2008-3 PubMed DOI PMC
Wu Y., Shin-ya K., Brosh R. M., Jr. (2008). FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28, 4116–4128. 10.1128/MCB.02210-07 PubMed DOI PMC
Xie J., Mao Q., Tai P. W., He R., Ai J., Su Q., et al. . (2017). Short DNA hairpins compromise recombinant adeno-associated virus genome homogeneity. Mol. Ther. 25, 1363–1374. 10.1016/j.ymthe.2017.03.028 PubMed DOI PMC
Yu L. O. (2009). Bioinformatic analysis of inverted repeats of coronaviruses genome. Biopolym. Cell 25, 307–314. 10.7124/bc.0007EA DOI
Ziebuhr J. (2004). Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol. 7, 412–419. 10.1016/j.mib.2004.06.007 PubMed DOI PMC
Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31, 3406–3415. 10.1093/nar/gkg595 PubMed DOI PMC
Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes
Variability of Inverted Repeats in All Available Genomes of Bacteria
G-quadruplexes in the evolution of hepatitis B virus
Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids
G-quadruplexes in helminth parasites
G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story
Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?
Tracing dsDNA Virus-Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences
SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci
G-quadruplexes in H1N1 influenza genomes
Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins