In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles

. 2020 ; 11 () : 1583. [epub] 20200703

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32719673

Non-canonical nucleic acid structures play important roles in the regulation of molecular processes. Considering the importance of the ongoing coronavirus crisis, we decided to evaluate genomes of all coronaviruses sequenced to date (stated more broadly, the order Nidovirales) to determine if they contain non-canonical nucleic acid structures. We discovered much evidence of putative G-quadruplex sites and even much more of inverted repeats (IRs) loci, which in fact are ubiquitous along the whole genomic sequence and indicate a possible mechanism for genomic RNA packaging. The most notable enrichment of IRs was found inside 5'UTR for IRs of size 12+ nucleotides, and the most notable enrichment of putative quadruplex sites (PQSs) was located before 3'UTR, inside 5'UTR, and before mRNA. This indicates crucial regulatory roles for both IRs and PQSs. Moreover, we found multiple G-quadruplex binding motifs in human proteins having potential for binding of SARS-CoV-2 RNA. Non-canonical nucleic acids structures in Nidovirales and in novel SARS-CoV-2 are therefore promising druggable structures that can be targeted and utilized in the future.

Zobrazit více v PubMed

Afgan E., Baker D., Batut B., Van Den Beek M., Bouvier D., Cech M., et al. . (2018). The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucl. Acids Res. 46, W537–W544. 10.1093/nar/gky379 PubMed DOI PMC

Bagga R., Ramesh N., Brahmachari S. K. (1990). Supercoil-induced unusual DNA structures as transcriptional block. Nucl. Acids Res. 18, 3363–3369. 10.1093/nar/18.11.3363 PubMed DOI PMC

Bartas M., Cutová M., Brázda V., Kaura P., Št'astný J., Kolomazník J., et al. . (2019). The presence and localization of G-quadruplex forming sequences in the domain of bacteria. Molecules 24:1711. 10.3390/molecules24091711 PubMed DOI PMC

Bedrat A., Lacroix L., Mergny J.-L. (2016). Re-evaluation of G-quadruplex propensity with G4Hunter. Nucl. Acids Res. 44, 1746–1759. 10.1093/nar/gkw006 PubMed DOI PMC

Brázda V., Cerven J., Bartas M., Mikysková N., Coufal J., Pečinka P., et al. . (2018). The amino acid composition of quadruplex binding proteins reveals a shared motif and predicts new potential quadruplex interactors. Molecules 23:2341. 10.3390/molecules23092341 PubMed DOI PMC

Brázda V., Hároníková L., Liao J. C., Fojta M. (2014). DNA and RNA quadruplex-binding proteins. Int. J. Mol. Sci. 15, 17493–17517. 10.3390/ijms151017493 PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Bartas M., Fojta M., Štastný J., et al. . (2019). G4Hunter web application: a web server for G-quadruplex prediction. Bioinformatics 35, 3493–3495. 10.1093/bioinformatics/btz087 PubMed DOI PMC

Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št'astný J. (2016). Palindrome analyser–A new web-based server for predicting and evaluating inverted repeats in nucleotide sequences. Biochem. Biophys. Res. Commun. 478, 1739–1745. 10.1016/j.bbrc.2016.09.015 PubMed DOI

Brázda V., Laister R. C., Jagelská E. B., Arrowsmith C. (2011). Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 12:33. 10.1186/1471-2199-12-33 PubMed DOI PMC

Bridges R., Correia S., Wegner F., Venturini C., Palser A., White R. E., et al. . (2019). Essential role of inverted repeat in Epstein–Barr virus IR-1 in B cell transformation; geographical variation of the viral genome. Philos. Trans. R. Soc. B 374:20180299. 10.1098/rstb.2018.0299 PubMed DOI PMC

Burge S., Parkinson G. N., Hazel P., Todd A. K., Neidle S. (2006). Quadruplex DNA: sequence, topology and structure. Nucl. Acids Res. 34, 5402–5415. 10.1093/nar/gkl655 PubMed DOI PMC

Butovskaya E., Solda P., Scalabrin M., Nadai M., Richter S. N. (2019). HIV-1 nucleocapsid protein unfolds stable RNA G-quadruplexes in the viral genome and is inhibited by G-quadruplex ligands. ACS Infect. Dis. 5, 2127–2135. 10.1021/acsinfecdis.9b00272 PubMed DOI PMC

Carrasco-Hernandez R., Jácome R., López Vidal Y., Ponce de León S. (2017). Are RNA viruses candidate agents for the next global pandemic? A review. ILAR J. 58, 343–358. 10.1093/ilar/ilx026 PubMed DOI PMC

Chambers V. S., Marsico G., Boutell J. M., Di Antonio M., Smith G. P., Balasubramanian S. (2015). High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 33:877. 10.1038/nbt.3295 PubMed DOI

Chang C., Hou M.-H., Chang C.-F., Hsiao C.-D., Huang T. (2014). The SARS coronavirus nucleocapsid protein – Forms and functions. Antiviral Res. 103, 39–50. 10.1016/j.antiviral.2013.12.009 PubMed DOI PMC

Chen N., Li X., Li S., Xiao Y., Ye M., Yan X., et al. . (2020). How related is SARS-CoV-2 to other coronaviruses? Vet. Rec. 186, 496–496. 10.1136/vr.m1452 PubMed DOI

Cohen J. (2020). New coronavirus threat galvanizes scientists. Science 367, 492–493. 10.1126/science.367.6477.492 PubMed DOI

Cowling B. J., Park M., Fang V. J., Wu P., Leung G. M., Wu J. T. (2015). Preliminary epidemiologic assessment of MERS-CoV outbreak in South Korea, May–June 2015. Euro Surveill. 20:21163. 10.2807/1560-7917.ES2015.20.25.21163 PubMed DOI PMC

Drake J. W., Holland J. J. (1999). Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. U. S.A. 96, 13910–13913. 10.1073/pnas.96.24.13910 PubMed DOI PMC

Dutkiewicz M., Stachowiak A., Swiatkowska A., Ciesiołka J. (2016). Structure and function of RNA elements present in enteroviral genomes. Acta Biochim. Polonica 63, 623–630. 10.18388/abp.2016_1337 PubMed DOI

Edgar R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797. 10.1093/nar/gkh340 PubMed DOI PMC

Eigen M., Schuster P. (1977). A principle of natural self-organization: Part A: emergence of the hypercycle. Naturwissenschaften 64, 541–565. 10.1007/BF00450633 PubMed DOI

Erkelenz S., Poschmann G., Theiss S., Stefanski A., Hillebrand F., Otte M., et al. . (2013). Tra2-mediated recognition of HIV-1 5 ‘ splice site D3 as a key factor in the processing of vpr mRNA. J. Virol. 87, 2721–2734. 10.1128/JVI.02756-12 PubMed DOI PMC

Federhen S. (2011). The NCBI taxonomy database. Nucl. Acids Res. 40, D136–D143. 10.1093/nar/gkr1178 PubMed DOI PMC

Fehr A. R., Perlman S. (2015). Coronaviruses: an overview of their replication and pathogenesis. Methods Mol. Biol. 1282, 1–23. 10.1007/978-1-4939-2438-7_1 PubMed DOI PMC

Fleming A. M., Ding Y., Alenko A., Burrows C. J. (2016). Zika virus genomic RNA possesses conserved G-quadruplexes characteristic of the flaviviridae family. ACS Infect. Dis. 2, 674–681. 10.1021/acsinfecdis.6b00109 PubMed DOI PMC

Frasson I., Nadai M., Richter S. N. (2019). Conserved G-quadruplexes regulate the immediate early promoters of human Alphaherpesviruses. Molecules 24:2375. 10.3390/molecules24132375 PubMed DOI PMC

Gage H. L., Merrick C. J. (2020). Conserved associations between G-quadruplex-forming DNA motifs and virulence gene families in malaria parasites. BMC Genomics 21:236. 10.1186/s12864-020-6625-x PubMed DOI PMC

Garant J.-M., Perreault J.-P., Scott M. S. (2018). G4RNA screener web server: user focused interface for RNA G-quadruplex prediction. Biochimie 151, 115–118. 10.1016/j.biochi.2018.06.002 PubMed DOI

Garcia-Moreno M., Jaervelin A. I., Castello A. (2018). Unconventional RNA-binding proteins step into the virus-host battlefront. Wiley Interdiscipl. Rev. RNA 9:e1498. 10.1002/wrna.1498 PubMed DOI PMC

Georgakopoulos-Soares I., Morganella S., Jain N., Hemberg M., Nik-Zainal S. (2018). Noncanonical secondary structures arising from non-B DNA motifs are determinants of mutagenesis. Genome Res. 28, 1264–1271. 10.1101/gr.231688.117 PubMed DOI PMC

Ghosh P., Grellscheid S. N., Sowdhamini R. (2016). A tale of two paralogs: human Transformer2 proteins with differential RNA-binding affinities. J. Biomol. Struct. Dyn. 34, 1979–1986. 10.1080/07391102.2015.1100551 PubMed DOI

Gorbalenya A. E. (2001). Big nidovirus genome. When count and order of domains matter. Adv. Exp. Med. Biol. 494, 1–17. 10.1007/978-1-4615-1325-4_1 PubMed DOI

Gorbalenya A. E., Enjuanes L., Ziebuhr J., Snijder E. J. (2006). Nidovirales: evolving the largest RNA virus genome. Virus Res. 117, 17–37. 10.1016/j.virusres.2006.01.017 PubMed DOI PMC

Guedin A., Gros J., Alberti P., Mergny J.-L. (2010). How long is too long? Effects of loop size on G-quadruplex stability. Nucl. Acids Res. 38, 7858–7868. 10.1093/nar/gkq639 PubMed DOI PMC

Gui X., Luo F., Li Y., Zhou H., Qin Z., Liu Z., et al. . (2019). Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nat. Commun. 10:2006. 10.1038/s41467-019-09902-7 PubMed DOI PMC

Hanada K., Suzuki Y., Nakane T., Hirose O., Gojobori T. (2005). The origin and evolution of porcine reproductive and respiratory syndrome viruses. Mol. Biol. Evol. 22, 1024–1031. 10.1093/molbev/msi089 PubMed DOI PMC

Hänsel-Hertsch R., Beraldi D., Lensing S. V., Marsico G., Zyner K., Parry A., et al. . (2016). G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 48:1267. 10.1038/ng.3662 PubMed DOI

Hároníková L., Coufal J., Kejnovská I., Jagelská E. B., Fojta M., Dvoráková P., et al. . (2016). IFI16 preferentially binds to DNA with quadruplex structure and enhances DNA quadruplex formation. PLoS ONE 11:e0157156. 10.1371/journal.pone.0157156 PubMed DOI PMC

Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., et al. . (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181, 271–280.e8 10.1016/j.cell.2020.02.052 PubMed DOI PMC

Huang Z.-L., Dai J., Luo W.-H., Wang X.-G., Tan J.-H., Chen S.-B., et al. . (2018). Identification of G-quadruplex-binding protein from the exploration of RGG Motif/G-quadruplex interactions. J. Am. Chem. Soc. 140, 17945–17955. 10.1021/jacs.8b09329 PubMed DOI

Hung L. S. (2003). The SARS epidemic in Hong Kong: what lessons have we learned? J. R. Soc. Med. 96, 374–378. 10.1258/jrsm.96.8.374 PubMed DOI PMC

Ishimaru D., Plant E. P., Sims A. C., Yount B. L., Jr., Roth B. M., Eldho N. V., et al. . (2013). RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus. Nucl. Acids Res. 41, 2594–2608. 10.1093/nar/gks1361 PubMed DOI PMC

Jaubert C., Bedrat A., Bartolucci L., Di Primo C., Ventura M., Mergny J.-L., et al. . (2018). RNA synthesis is modulated by G-quadruplex formation in Hepatitis C virus negative RNA strand. Sci. Rep. 8, 1–9. 10.1038/s41598-018-26582-3 PubMed DOI PMC

Kattimani Y., Veerappa A. M. (2018). Complex interaction between mutant HNRNPA1 and gE of varicella zoster virus in pathogenesis of multiple sclerosis. Autoimmunity 51, 147–151. 10.1080/08916934.2018.1482883 PubMed DOI

Kikin O., D'Antonio L., Bagga P. S. (2006). QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucl. Acids Res. 34, W676–W682. 10.1093/nar/gkl253 PubMed DOI PMC

Kim D., Lee J.-Y., Yang J.-S., Kim J. W., Kim V. N., Chang H. (2020). The architecture of SARS-CoV-2 transcriptome. bioRxiv. 181, 914–921.e10. 10.1016/j.cell.2020.04.011 PubMed DOI PMC

Kocman V., Plavec J. (2017). Tetrahelical structural family adopted by AGCGA-rich regulatory DNA regions. Nat. Commun. 8:15355. 10.1038/ncomms15355 PubMed DOI PMC

Kolesnikova S., Curtis E. A. (2019). Structure and function of multimeric G-quadruplexes. Molecules 24:3074. 10.3390/molecules24173074 PubMed DOI PMC

Krafčíková P., Demkovičová E., Víglaský V. (2017). Ebola virus derived G-quadruplexes: thiazole orange interaction. Biochim. Biophys. Acta General Subj. 1861, 1321–1328. 10.1016/j.bbagen.2016.12.009 PubMed DOI

Kusov Y., Tan J., Alvarez E., Enjuanes L., Hilgenfeld R. (2015). A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication–transcription complex. Virology 484, 313–322. 10.1016/j.virol.2015.06.016 PubMed DOI PMC

Lai M. M. C., Cavanagh D. (1997). “The molecular biology of coronaviruses,” in Advances in Virus Research (Elsevier: ), 1–100. Available online at: https://linkinghub.elsevier.com/retrieve/pii/S0065352708602869 PubMed PMC

Lauring A. S., Frydman J., Andino R. (2013). The role of mutational robustness in RNA virus evolution. Nat. Rev. Microbiol. 11, 327–336. 10.1038/nrmicro3003 PubMed DOI PMC

Lavezzo E., Berselli M., Frasson I., Perrone R., Palù G., Brazzale A. R., et al. . (2018). G-quadruplex forming sequences in the genome of all known human viruses: a comprehensive guide. PLOS Comput. Biol. 14:e1006675. 10.1371/journal.pcbi.1006675 PubMed DOI PMC

Lei J., Kusov Y., Hilgenfeld R. (2018). Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 149, 58–74. 10.1016/j.antiviral.2017.11.001 PubMed DOI PMC

Letunic I., Bork P. (2019). Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucl. Acids Res. 47, W256–W259. 10.1093/nar/gkz239 PubMed DOI PMC

Li F., Zhou J., Xu M., Yuan G. (2018). Exploration of G-quadruplex function in c-Myb gene and its transcriptional regulation by topotecan. Int. J. Biol. Macromol. 107, 1474–1479. 10.1016/j.ijbiomac.2017.10.010 PubMed DOI

Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., et al. . (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N. Engl. J. Med. 382, 1199–1207. 10.1056/NEJMoa2001316 PubMed DOI PMC

Li R.-F., Li H. (2010). Study on the influences of palindromes in protein coding sequences on the folding rates of peptide chains. Protein Peptide Lett. 17, 881–888. 10.2174/092986610791306652 PubMed DOI

Lightfoot H. L., Hagen T., Tatum N. J., Hall J. (2019). The diverse structural landscape of quadruplexes. FEBS Lett. 593, 2083–2102. 10.1002/1873-3468.13547 PubMed DOI

Liò P., Goldman N. (2004). Phylogenomics and bioinformatics of SARS-CoV. Trends Microbiol. 12, 106–111. 10.1016/j.tim.2004.01.005 PubMed DOI PMC

Liu T., Sun H., Zhu D., Dong X., Liu F., Liang X., et al. . (2017). TRA2A promoted paclitaxel resistance and tumor progression in triple-negative breast cancers via regulating alternative splicing. Mol. Cancer Therap. 16, 1377–1388. 10.1158/1535-7163.MCT-17-0026 PubMed DOI

Liu Y., Chen J., Nikolaitchik O. A., Desimmie B. A., Busan S., Pathak V. K., et al. . (2018). The roles of five conserved lentiviral RNA structures in HIV-1 replication. Virology 514, 1–8. 10.1016/j.virol.2017.10.020 PubMed DOI PMC

Lorenz R., Bernhart S. H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P. F., et al. . (2011). ViennaRNA package 2.0. Algorith. Mol. Biol. 6:26. 10.1186/1748-7188-6-26 PubMed DOI PMC

Lu J., Gao F., Wei Z., Liu P., Liu C., Zheng H., et al. . (2011). A 5'-proximal stem-loop structure of 5' untranslated region of porcine reproductive and respiratory syndrome virus genome is key for virus replication. Virol. J. 8:172. 10.1186/1743-422X-8-172 PubMed DOI PMC

Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., et al. . (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395, 565–574. 10.1016/S0140-6736(20)30251-8 PubMed DOI PMC

Masuzawa T., Oyoshi T. (2020). Roles of the RGG domain and RNA recognition motif of nucleolin in G-quadruplex stabilization. ACS Omega. 5, 5202–5208. 10.1021/acsomega.9b04221 PubMed DOI PMC

Métifiot M., Amrane S., Litvak S., Andreola M.-L. (2014). G-quadruplexes in viruses: function and potential therapeutic applications. Nucl. Acids Res. 42, 12352–12366. 10.1093/nar/gku999 PubMed DOI PMC

Mishra S. K., Tawani A., Mishra A., Kumar A. (2016). G4IPDB: A database for G-quadruplex structure forming nucleic acid interacting proteins. Sci. Rep. 6:38144. 10.1038/srep38144 PubMed DOI PMC

Modrow S., Falke D., Truyen U., Schätzl H. (2013). “Viruses with single-stranded, positive-sense RNA genomes,” in Molecular Virology (Berlin: Springer Berlin Heidelberg; ), 185–349. Available online at: http://link.springer.com/10.1007/978-3-642-20718-1_14 DOI

Nishikawa T., Kuwano Y., Takahara Y., Nishida K., Rokutan K. (2019). HnRNPA1 interacts with G-quadruplex in the TRA2B promoter and stimulates its transcription in human colon cancer cells. Sci. Rep. 9:10276. 10.1038/s41598-019-46659-x PubMed DOI PMC

Oboho I. K., Tomczyk S. M., Al-Asmari A. M., Banjar A. A., Al-Mugti H., Aloraini M. S., et al. . (2015). 2014 MERS-CoV outbreak in Jeddah—a link to health care facilities. N. Engl. J. Med. 372, 846–854. 10.1056/NEJMoa1408636 PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M., Team U. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167. 10.1093/bioinformatics/bts091 PubMed DOI

Oprea T. I., Mestres J. (2012). Drug repurposing: far beyond new targets for old drugs. AAPS J. 14, 759–763. 10.1208/s12248-012-9390-1 PubMed DOI PMC

Patino-Galindo J. A., Filip I., AlQuraishi M., Rabadan R. (2020). Recombination and lineage-specific mutations led to the emergence of SARS-CoV-2. bioRxiv [Preprint]. 10.1101/2020.02.10.942748 PubMed DOI PMC

Paz I., Kosti I., Ares M., Jr., Cline M., Mandel-Gutfreund Y. (2014). RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucl. Acids Res. 42, W361–W367. 10.1093/nar/gku406 PubMed DOI PMC

Pham T. N. D., Stempel S., Shields M. A., Spaulding C., Kumar K., Bentrem D. J., et al. . (2019). Quercetin enhances the anti-tumor effects of BET inhibitors by suppressing hnRNPA1. Int. J. Mol. Sci. 20:4293. 10.3390/ijms20174293 PubMed DOI PMC

Plant E., Perez-Alvarado G., Jacobs J., Mukhopadhyay B., Hennig M., Dinman J. (2005). A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal. PLoS Biol. 3, 1012–1023. 10.1371/journal.pbio.0030172 PubMed DOI PMC

Platella C., Riccardi C., Montesarchio D., Roviello G. N., Musumeci D. (2017). G-quadruplex-based aptamers against protein targets in therapy and diagnostics. Biochim. Biophys. Acta General Subj. 1861, 1429–1447. 10.1016/j.bbagen.2016.11.027 PubMed DOI PMC

Puig Lombardi E., Londoño-Vallejo A. (2020). A guide to computational methods for G-quadruplex prediction. Nucl. Acids Res. 48, 1–15. 10.1093/nar/gkaa033 PubMed DOI PMC

Roberts L. O., Jopling C. L., Jackson R. J., Willis A. E. (2009). “Chapter 9 viral strategies to subvert the mammalian translation machinery,” in Progress in Molecular Biology and Translational Science, Translational Control in Health and Disease. (Academic Press; ), 313–367. Available online at: http://www.sciencedirect.com/science/article/pii/S1877117309900096 PubMed PMC

Ruggiero E., Richter S. N. (2018). G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucl. Acids Res. 46, 3270–3283. 10.1093/nar/gky187 PubMed DOI PMC

Ruggiero E., Richter S. N. (2020). Viral G-quadruplexes: new frontiers in virus pathogenesis and antiviral therapy. Annu. Rep. Med. Chem. 10.1016/bs.armc.2020.04.001. [Epub ahead of print]. PubMed DOI PMC

Saberi A., Gulyaeva A. A., Brubacher J. L., Newmark P. A., Gorbalenya A. E. (2018). A planarian nidovirus expands the limits of RNA genome size. PLoS Pathog. 14:e1007314. 10.1371/journal.ppat.1007314 PubMed DOI PMC

Saijo S., Kuwano Y., Masuda K., Nishikawa T., Rokutan K., Nishida K. (2016). Serine/arginine-rich splicing factor 7 regulates p21-dependent growth arrest in colon cancer cells. J. Med. Invest. 63, 219–226. 10.2152/jmi.63.219 PubMed DOI

Satpathi S., Singh R. K., Mukherjee A., Hazra P. (2018). Controlling anticancer drug mediated G-quadruplex formation and stabilization by a molecular container. Phys. Chem. Chem. Phys. 20, 7808–7818. 10.1039/C8CP00325D PubMed DOI

Sinden R., Zheng G., Brankamp R., Allen K. (1991). On the deletion of inverted repeated DNA in Escherichia coli: effects of length, thermal stability, and cruciform formation in vivo. Genetics 129, 991–1005. PubMed PMC

Singh A., Lakhanpaul S. (2019). Genome-wide analysis of putative G-quadruplex sequences (PGQSs) in onion yellows phytoplasma (strain OY-M): an emerging plant pathogenic bacteria. Indian J. Microbiol. 59, 468–475. 10.1007/s12088-019-00831-z PubMed DOI PMC

Snijder E. J., Bredenbeek P. J., Dobbe J. C., Thiel V., Ziebuhr J., Poon L. L. M., et al. . (2003). Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004. 10.1016/S0022-2836(03)00865-9 PubMed DOI PMC

Surovtsev I. V., Jacobs-Wagner C. (2018). Subcellular organization: a critical feature of bacterial cell replication. Cell 172, 1271–1293. 10.1016/j.cell.2018.01.014 PubMed DOI PMC

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D., Huerta-Cepas J., et al. . (2015). STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucl. Acids Res. 43, D447–52. 10.1093/nar/gku1003 PubMed DOI PMC

Tan W., Zhou J., Yuan G. (2014). Electrospray ionization mass spectrometry probing of binding affinity of berbamine, a flexible cyclic alkaloid from traditional Chinese medicine, with G-quadruplex DNA. Rapid Commun. Mass Spectr. 28, 143–147. 10.1002/rcm.6763 PubMed DOI

Tan Y., Hu X., Deng Y., Yuan P., Xie Y., Wang J. (2018). TRA2A promotes proliferation, migration, invasion and epithelial mesenchymal transition of glioma cells. Brain Res. Bull. 143, 138–144. 10.1016/j.brainresbull.2018.10.006 PubMed DOI

Thandapani P., O'Connor T. R., Bailey T. L., Richard S. (2013). Defining the RGG/RG motif. Mol. Cell 50, 613–623. 10.1016/j.molcel.2013.05.021 PubMed DOI

Topotecan - Chemotherapy Drugs – Chemocare Available online at: http://chemocare.com/chemotherapy/drug-info/Topotecan.aspx

Travers A., Muskhelishvili G. (2015). DNA structure and function. FEBS J. 2279–2295. 10.1111/febs.13307 PubMed DOI

Unterholzner L., Keating S. E., Baran M., Horan K. A., Jensen S. B., Sharma S., et al. . (2010). IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004. 10.1038/ni.1932 PubMed DOI PMC

Vincent M. J., Bergeron E., Benjannet S., Erickson B. R., Rollin P. E., Ksiazek T. G., et al. . (2005). Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2:69. 10.1186/1743-422X-2-69 PubMed DOI PMC

Vorlíčková M., Kejnovská I., Bednárová K., Renčiuk D., Kypr J. (2012). Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality 24, 691–698. 10.1002/chir.22064 PubMed DOI

Voter A. F., Callaghan M. M., Tippana R., Myong S., Dillard J. P., Keck J. L. (2020). Antigenic variation in neisseria gonorrhoeae occurs independently of RecQ-mediated unwinding of the pilE G quadruplex. J. Bacteriol. 202:e00607-19. 10.1128/JB.00607-19 PubMed DOI PMC

Wang M., Cao R., Zhang L., Yang X., Liu J., Xu M., et al. . (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30, 269–271. 10.1038/s41422-020-0282-0 PubMed DOI PMC

Wang S.-K., Wu Y., Ou T.-M. (2015). RNA G-quadruplex: the new potential targets for therapy. Curr. Topics Med. Chem. 15, 1947–1956. 10.2174/1568026615666150515145733 PubMed DOI

Wang S.-R., Zhang Q.-Y., Wang J.-Q., Ge X.-Y., Song Y.-Y., Wang Y.-F., et al. . (2016). Chemical targeting of a G-quadruplex RNA in the Ebola virus L gene. Cell Chem. Biol. 23, 1113–1122. 10.1016/j.chembiol.2016.07.019 PubMed DOI

Wu F., Zhao S., Yu B., Chen Y.-M., Wang W., Song Z.-G., et al. . (2020). A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. 10.1038/s41586-020-2008-3 PubMed DOI PMC

Wu Y., Shin-ya K., Brosh R. M., Jr. (2008). FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol. Cell. Biol. 28, 4116–4128. 10.1128/MCB.02210-07 PubMed DOI PMC

Xie J., Mao Q., Tai P. W., He R., Ai J., Su Q., et al. . (2017). Short DNA hairpins compromise recombinant adeno-associated virus genome homogeneity. Mol. Ther. 25, 1363–1374. 10.1016/j.ymthe.2017.03.028 PubMed DOI PMC

Yu L. O. (2009). Bioinformatic analysis of inverted repeats of coronaviruses genome. Biopolym. Cell 25, 307–314. 10.7124/bc.0007EA DOI

Ziebuhr J. (2004). Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol. 7, 412–419. 10.1016/j.mib.2004.06.007 PubMed DOI PMC

Zuker M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31, 3406–3415. 10.1093/nar/gkg595 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Abundance of G-Quadruplex Forming Sequences in the Hepatitis Delta Virus Genomes

. 2024 Jan 23 ; 9 (3) : 4096-4101. [epub] 20240109

Variability of Inverted Repeats in All Available Genomes of Bacteria

. 2023 Aug 17 ; 11 (4) : e0164823. [epub] 20230626

G-quadruplexes in the evolution of hepatitis B virus

. 2023 Aug 11 ; 51 (14) : 7198-7204.

Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids

. 2022 May 31 ; 23 (11) : . [epub] 20220531

G-quadruplexes in helminth parasites

. 2022 Mar 21 ; 50 (5) : 2719-2735.

Searching for G-Quadruplex-Binding Proteins in Plants: New Insight into Possible G-Quadruplex Regulation

. 2021 Sep 22 ; 10 (4) : . [epub] 20210922

G-Quadruplex in Gene Encoding Large Subunit of Plant RNA Polymerase II: A Billion-Year-Old Story

. 2021 Jul 09 ; 22 (14) : . [epub] 20210709

Analysis of putative quadruplex-forming sequences in fungal genomes: novel antifungal targets?

. 2021 May ; 7 (5) : .

Tracing dsDNA Virus-Host Coevolution through Correlation of Their G-Quadruplex-Forming Sequences

. 2021 Mar 26 ; 22 (7) : . [epub] 20210326

SARS-CoV-2 hot-spot mutations are significantly enriched within inverted repeats and CpG island loci

. 2021 Mar 22 ; 22 (2) : 1338-1345.

G-quadruplexes in H1N1 influenza genomes

. 2021 Jan 23 ; 22 (1) : 77. [epub] 20210123

Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins

. 2021 Jan 18 ; 22 (2) : . [epub] 20210118

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...