Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
22-21903S
Czech Science Foundation
PubMed
35682854
PubMed Central
PMC9180970
DOI
10.3390/ijms23116171
PII: ijms23116171
Knihovny.cz E-zdroje
- Klíčová slova
- DNA base sequence, DNA structure, DNA supercoiling, cruciform, epigenetics, genome stability, inverted repeat, replication, transcription,
- MeSH
- DNA genetika MeSH
- konformace nukleové kyseliny MeSH
- křížová struktura DNA MeSH
- lidé MeSH
- nukleové kyseliny * MeSH
- obrácené repetice MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- křížová struktura DNA MeSH
- nukleové kyseliny * MeSH
Cruciforms occur when inverted repeat sequences in double-stranded DNA adopt intra-strand hairpins on opposing strands. Biophysical and molecular studies of these structures confirm their characterization as four-way junctions and have demonstrated that several factors influence their stability, including overall chromatin structure and DNA supercoiling. Here, we review our understanding of processes that influence the formation and stability of cruciforms in genomes, covering the range of sequences shown to have biological significance. It is challenging to accurately sequence repetitive DNA sequences, but recent advances in sequencing methods have deepened understanding about the amounts of inverted repeats in genomes from all forms of life. We highlight that, in the majority of genomes, inverted repeats are present in higher numbers than is expected from a random occurrence. It is, therefore, becoming clear that inverted repeats play important roles in regulating many aspects of DNA metabolism, including replication, gene expression, and recombination. Cruciforms are targets for many architectural and regulatory proteins, including topoisomerases, p53, Rif1, and others. Notably, some of these proteins can induce the formation of cruciform structures when they bind to DNA. Inverted repeat sequences also influence the evolution of genomes, and growing evidence highlights their significance in several human diseases, suggesting that the inverted repeat sequences and/or DNA cruciforms could be useful therapeutic targets in some cases.
Zobrazit více v PubMed
Sato M.P., Ogura Y., Nakamura K., Nishida R., Gotoh Y., Hayashi M., Hisatsune J., Sugai M., Takehiko I., Hayashi T. Comparison of the Sequencing Bias of Currently Available Library Preparation Kits for Illumina Sequencing of Bacterial Genomes and Metagenomes. DNA Res. 2019;26:391–398. doi: 10.1093/dnares/dsz017. PubMed DOI PMC
Oprzeska-Zingrebe E.A., Meyer S., Roloff A., Kunte H.-J., Smiatek J. Influence of Compatible Solute Ectoine on Distinct DNA Structures: Thermodynamic Insights into Molecular Binding Mechanisms and Destabilization Effects. Phys. Chem. Chem. Phys. 2018;20:25861–25874. doi: 10.1039/C8CP03543A. PubMed DOI
Brazda V., Fojta M., Bowater R.P. Structures and Stability of Simple DNA Repeats from Bacteria. Biochem. J. 2020;477:325–339. doi: 10.1042/BCJ20190703. PubMed DOI PMC
Summers P.A., Lewis B.W., Gonzalez-Garcia J., Porreca R.M., Lim A.H.M., Cadinu P., Martin-Pintado N., Mann D.J., Edel J.B., Vannier J.B., et al. Visualising G-Quadruplex DNA Dynamics in Live Cells by Fluorescence Lifetime Imaging Microscopy. Nat. Commun. 2021;12:162. doi: 10.1038/s41467-020-20414-7. PubMed DOI PMC
Di Antonio M., Ponjavic A., Radzevičius A., Ranasinghe R.T., Catalano M., Zhang X., Shen J., Needham L.-M., Lee S.F., Klenerman D., et al. Single-Molecule Visualization of DNA G-Quadruplex Formation in Live Cells. Nat. Chem. 2020;12:832–837. doi: 10.1038/s41557-020-0506-4. PubMed DOI PMC
Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2021;85:e00110-20. doi: 10.1128/MMBR.00110-20. PubMed DOI PMC
Brown J.A. Unraveling the Structure and Biological Functions of RNA Triple Helices. Wiley Interdiscip. Rev. RNA. 2020;11:e1598. doi: 10.1002/wrna.1598. PubMed DOI PMC
Neil A.J., Liang M.U., Khristich A.N., Shah K.A., Mirkin S.M. RNA–DNA Hybrids Promote the Expansion of Friedreich’s Ataxia (GAA)n Repeats via Break-Induced Replication. Nucleic Acids Res. 2018;46:3487–3497. doi: 10.1093/nar/gky099. PubMed DOI PMC
Kosiol N., Juranek S., Brossart P., Heine A., Paeschke K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer. 2021;20:40. doi: 10.1186/s12943-021-01328-4. PubMed DOI PMC
Martella M., Pichiorri F., Chikhale R.V., Abdelhamid M.A.S., Waller Z.A.E., Smith S.S. I-Motif Formation and Spontaneous Deletions in Human Cells. Nucleic Acids Res. 2022;50:gkac158. doi: 10.1093/nar/gkac158. PubMed DOI PMC
Niehrs C., Luke B. Regulatory R-Loops as Facilitators of Gene Expression and Genome Stability. Nat. Rev. Mol. Cell Biol. 2020;21:167–178. doi: 10.1038/s41580-019-0206-3. PubMed DOI PMC
Tye S., Ronson G.E., Morris J.R. A Fork in the Road: Where Homologous Recombination and Stalled Replication Fork Protection Part Ways. Semin. Cell Dev. Biol. 2021;113:14–26. doi: 10.1016/j.semcdb.2020.07.004. PubMed DOI PMC
Palecek E. Local Supercoil-Stabilized DNA Structures. Crit. Rev. Biochem. Mol. Biol. 1991;26:151–226. doi: 10.3109/10409239109081126. PubMed DOI
Brázda V., Fojta M. The Rich World of P53 DNA Binding Targets: The Role of DNA Structure. Int. J. Mol. Sci. 2019;20:5605. doi: 10.3390/ijms20225605. PubMed DOI PMC
Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC
Benham C.J., Savitt A.G., Bauer W.R. Extrusion of an Imperfect Palindrome to a Cruciform in Superhelical DNA: Complete Determination of Energetics Using a Statistical Mechanical Model. J. Mol. Biol. 2002;316:563–581. doi: 10.1006/jmbi.2001.5361. PubMed DOI
Čutová M., Manta J., Porubiaková O., Kaura P., Šťastný J., Jagelská E.B., Goswami P., Bartas M., Brázda V. Divergent Distributions of Inverted Repeats and G-Quadruplex Forming Sequences in Saccharomyces Cerevisiae. Genomics. 2020;112:1897–1901. doi: 10.1016/j.ygeno.2019.11.002. PubMed DOI
Brázda V., Bartas M., Lýsek J., Coufal J., Fojta M. Global Analysis of Inverted Repeat Sequences in Human Gene Promoters Reveals Their Non-Random Distribution and Association with Specific Biological Pathways. Genomics. 2020;112:2772–2777. doi: 10.1016/j.ygeno.2020.03.014. PubMed DOI
Lavi B., Karin E.L., Pupko T., Hazkani-Covo E. The Prevalence and Evolutionary Conservation of Inverted Repeats in Proteobacteria. Genome Biol. Evol. 2018;10:918–927. doi: 10.1093/gbe/evy044. PubMed DOI PMC
Brázda V., Lýsek J., Bartas M., Fojta M. Complex Analyses of Short Inverted Repeats in All Sequenced Chloroplast DNAs. BioMed Res. Int. 2018;2018:1097018. doi: 10.1155/2018/1097018. PubMed DOI PMC
Čechová J., Lýsek J., Bartas M., Brázda V. Complex Analyses of Inverted Repeats in Mitochondrial Genomes Revealed Their Importance and Variability. Bioinformatics. 2018;34:1081–1085. doi: 10.1093/bioinformatics/btx729. PubMed DOI PMC
Gierer A. Model for DNA and Protein Interactions and the Function of the Operator. Nature. 1966;212:1480–1481. doi: 10.1038/2121480a0. PubMed DOI
Murchie A.I., Bowater R., Aboul-ela F., Lilley D.M. Helix Opening Transitions in Supercoiled DNA. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1992;1131:1–15. doi: 10.1016/0167-4781(92)90091-D. PubMed DOI
Zhabinskaya D., Benham C.J. Competitive Superhelical Transitions Involving Cruciform Extrusion. Nucleic Acids Res. 2013;41:9610–9621. doi: 10.1093/nar/gkt733. PubMed DOI PMC
Neelsen K.J., Chaudhuri A.R., Follonier C., Herrador R., Lopes M. Visualization and Interpretation of Eukaryotic DNA Replication Intermediates In Vivo by Electron Microscopy. In: Stockert J.C., Espada J., Blázquez-Castro A., editors. Functional Analysis of DNA and Chromatin. Humana Press; Totowa, NJ, USA: 2014. pp. 177–208. Methods in Molecular Biology. PubMed
Torregrosa-Muñumer R., Goffart S., Haikonen J.A., Pohjoismäki J.L.O. Low Doses of Ultraviolet Radiation and Oxidative Damage Induce Dramatic Accumulation of Mitochondrial DNA Replication Intermediates, Fork Regression, and Replication Initiation Shift. Mol. Biol. Cell. 2015;26:4197–4208. doi: 10.1091/mbc.e15-06-0390. PubMed DOI PMC
Correll-Tash S., Lilley B., Iv H.S., Mlynarski E., Franconi C.P., McNamara M., Woodbury C., Easley C.A., Emanuel B.S. Double Strand Breaks (DSBs) as Indicators of Genomic Instability in PATRR-Mediated Translocations. Hum. Mol. Genet. 2021;29:3872–3881. doi: 10.1093/hmg/ddaa251. PubMed DOI PMC
Rekvig O.P. The Anti-DNA Antibodies: Their Specificities for Unique DNA Structures and Their Unresolved Clinical Impact—A System Criticism and a Hypothesis. Front. Immunol. 2022;12:808008. doi: 10.3389/fimmu.2021.808008. PubMed DOI PMC
Brázda V., Kolomazník J., Lýsek J., Hároníková L., Coufal J., Št’astný J. Palindrome Analyser-A New Web-Based Server for Predicting and Evaluating Inverted Repeats in Nucleotide Sequences. Biochem. Biophys. Res. Commun. 2016;478:1739–1745. doi: 10.1016/j.bbrc.2016.09.015. PubMed DOI
Gibbs D.R., Dhakal S. Homologous Recombination under the Single-Molecule Fluorescence Microscope. Int. J. Mol. Sci. 2019;20:6102. doi: 10.3390/ijms20236102. PubMed DOI PMC
Stefanovsky V.Y., Moss T. The Cruciform DNA Mobility Shift Assay: A Tool to Study Proteins That Recognize Bent DNA. Methods Mol. Biol. Clifton NJ. 2015;1334:195–203. doi: 10.1007/978-1-4939-2877-4_12. PubMed DOI
Ramreddy T., Sachidanandam R., Strick T.R. Real-Time Detection of Cruciform Extrusion by Single-Molecule DNA Nanomanipulation. Nucleic Acids Res. 2011;39:4275–4283. doi: 10.1093/nar/gkr008. PubMed DOI PMC
Shaheen C., Hastie C., Metera K., Scott S., Zhang Z., Chen S., Gu G., Weber L., Munsky B., Kouzine F., et al. Non-Equilibrium Structural Dynamics of Supercoiled DNA Plasmids Exhibits Asymmetrical Relaxation. Nucleic Acids Res. 2022;50:2754–2764. doi: 10.1093/nar/gkac101. PubMed DOI PMC
Mandal S., Selvam S., Cui Y., Hoque M.E., Mao H. Mechanical Cooperativity in DNA Cruciform Structures. ChemPhysChem. 2018;19:2627–2634. doi: 10.1002/cphc.201800480. PubMed DOI
Lilley D.M.J. Holliday Junction-Resolving Enzymes-Structures and Mechanisms. FEBS Lett. 2017;591:1073–1082. doi: 10.1002/1873-3468.12529. PubMed DOI
Ho P.S. Structure of the Holliday Junction: Applications beyond Recombination. Biochem. Soc. Trans. 2017;45:1149–1158. doi: 10.1042/BST20170048. PubMed DOI
Eichman B.F., Vargason J.M., Mooers B.H.M., Ho P.S. The Holliday Junction in an Inverted Repeat DNA Sequence: Sequence Effects on the Structure of Four-Way Junctions. Proc. Natl. Acad. Sci. USA. 2000;97:3971–3976. doi: 10.1073/pnas.97.8.3971. PubMed DOI PMC
Yadav R.K., Yadava U. Molecular Dynamics Simulation of Hydrated d(CGGGTACCCG)4 as a Four-Way DNA Holliday Junction and Comparison with the Crystallographic Structure. Mol. Simul. 2016;42:25–30. doi: 10.1080/08927022.2015.1007052. DOI
Kulkarni D.S., Owens S.N., Honda M., Ito M., Yang Y., Corrigan M.W., Chen L., Quan A.L., Hunter N. PCNA Activates the MutLγ Endonuclease to Promote Meiotic Crossing Over. Nature. 2020;586:623–627. doi: 10.1038/s41586-020-2645-6. PubMed DOI PMC
Yan J., Hong S., Guan Z., He W., Zhang D., Yin P. Structural Insights into Sequence-Dependent Holliday Junction Resolution by the Chloroplast Resolvase MOC1. Nat. Commun. 2020;11:1417. doi: 10.1038/s41467-020-15242-8. PubMed DOI PMC
Wendorff T.J., Berger J.M. Topoisomerase VI Senses and Exploits Both DNA Crossings and Bends to Facilitate Strand Passage. eLife. 2018;7:e31724. doi: 10.7554/eLife.31724. PubMed DOI PMC
Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J., et al. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC
Treangen T.J., Salzberg S.L. Repetitive DNA and Next-Generation Sequencing: Computational Challenges and Solutions. Nat. Rev. Genet. 2012;13:36–46. doi: 10.1038/nrg3117. PubMed DOI PMC
Altemose N., Logsdon G.A., Bzikadze A.V., Sidhwani P., Langley S.A., Caldas G.V., Hoyt S.J., Uralsky L., Ryabov F.D., Shew C.J., et al. Complete Genomic and Epigenetic Maps of Human Centromeres. Science. 2022;376:eabl4178. doi: 10.1126/science.abl4178. PubMed DOI PMC
Hoyt S.J., Storer J.M., Hartley G.A., Grady P.G.S., Gershman A., de Lima L.G., Limouse C., Halabian R., Wojenski L., Rodriguez M., et al. From Telomere to Telomere: The Transcriptional and Epigenetic State of Human Repeat Elements. Science. 2022;376:eabk3112. doi: 10.1126/science.abk3112. PubMed DOI PMC
Spanò M., Lillo F., Miccichè S., Mantegna R.N. Inverted Repeats in Viral Genomes. Fluct. Noise Lett. 2005;5:L193–L200. doi: 10.1142/S0219477505002550. DOI
Bartas M., Goswami P., Lexa M., Červeň J., Volná A., Fojta M., Brázda V., Pečinka P. Letter to the Editor: Significant Mutation Enrichment in Inverted Repeat Sites of New SARS-CoV-2 Strains. Brief. Bioinform. 2021;22:bbab129. doi: 10.1093/bib/bbab129. PubMed DOI PMC
Goswami P., Bartas M., Lexa M., Bohálová N., Volná A., Červeň J., Červeňová V., Pečinka P., Špunda V., Fojta M., et al. SARS-CoV-2 Hot-Spot Mutations Are Significantly Enriched within Inverted Repeats and CpG Island Loci. Brief. Bioinform. 2021;22:1338–1345. doi: 10.1093/bib/bbaa385. PubMed DOI PMC
Berns K.I. The Unusual Properties of the AAV Inverted Terminal Repeat. Hum. Gene Ther. 2020;31:518–523. doi: 10.1089/hum.2020.017. PubMed DOI
Miura O., Ogake T., Ohyama T. Requirement or Exclusion of Inverted Repeat Sequences with Cruciform-Forming Potential in Escherichia Coli Revealed by Genome-Wide Analyses. Curr. Genet. 2018;64:945–958. doi: 10.1007/s00294-018-0815-y. PubMed DOI PMC
Miura O., Ogake T., Yoneyama H., Kikuchi Y., Ohyama T. A Strong Structural Correlation between Short Inverted Repeat Sequences and the Polyadenylation Signal in Yeast and Nucleosome Exclusion by These Inverted Repeats. Curr. Genet. 2019;65:575–590. doi: 10.1007/s00294-018-0907-8. PubMed DOI PMC
Lal A., Dhar A., Trostel A., Kouzine F., Seshasayee A.S.N., Adhya S. Genome Scale Patterns of Supercoiling in a Bacterial Chromosome. Nat. Commun. 2016;7:11055. doi: 10.1038/ncomms11055. PubMed DOI PMC
Lillo F., Basile S., Mantegna R.N. Comparative Genomics Study of Inverted Repeats in Bacteria. Bioinformatics. 2002;18:971–979. doi: 10.1093/bioinformatics/18.7.971. PubMed DOI
Pourcel C., Touchon M., Villeriot N., Vernadet J.-P., Couvin D., Toffano-Nioche C., Vergnaud G. CRISPRCasdb a Successor of CRISPRdb Containing CRISPR Arrays and Cas Genes from Complete Genome Sequences, and Tools to Download and Query Lists of Repeats and Spacers. Nucleic Acids Res. 2020;48:D535–D544. doi: 10.1093/nar/gkz915. PubMed DOI PMC
Makarova K.S., Grishin N.V., Shabalina S.A., Wolf Y.I., Koonin E.V. A Putative RNA-Interference-Based Immune System in Prokaryotes: Computational Analysis of the Predicted Enzymatic Machinery, Functional Analogies with Eukaryotic RNAi, and Hypothetical Mechanisms of Action. Biol. Direct. 2006;1:7. doi: 10.1186/1745-6150-1-7. PubMed DOI PMC
Nuñez J.K., Lee A.S.Y., Engelman A., Doudna J.A. Integrase-Mediated Spacer Acquisition during CRISPR-Cas Adaptive Immunity. Nature. 2015;519:193–198. doi: 10.1038/nature14237. PubMed DOI PMC
Moch C., Fromant M., Blanquet S., Plateau P. DNA Binding Specificities of Escherichia Coli Cas1-Cas2 Integrase Drive Its Recruitment at the CRISPR Locus. Nucleic Acids Res. 2017;45:2714–2723. doi: 10.1093/nar/gkw1309. PubMed DOI PMC
Zhang R., Ge F., Li H., Chen Y., Zhao Y., Gao Y., Liu Z., Yang L. PCIR: A Database of Plant Chloroplast Inverted Repeats. Database J. Biol. Databases Curation. 2019;2019:baz127. doi: 10.1093/database/baz127. PubMed DOI PMC
Liu X., Wu X., Tan H., Xie B., Deng Y. Large Inverted Repeats Identified by Intra-Specific Comparison of Mitochondrial Genomes Provide Insights into the Evolution of Agrocybe Aegerita. Comput. Struct. Biotechnol. J. 2020;18:2424–2437. doi: 10.1016/j.csbj.2020.08.022. PubMed DOI PMC
Damas J., Carneiro J., Gonçalves J., Stewart J.B., Samuels D.C., Amorim A., Pereira F. Mitochondrial DNA Deletions Are Associated with Non-B DNA Conformations. Nucleic Acids Res. 2012;40:7606–7621. doi: 10.1093/nar/gks500. PubMed DOI PMC
Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., Altemose N., Uralsky L., Gershman A., et al. The Complete Sequence of a Human Genome. Science. 2022;376:44–53. doi: 10.1126/science.abj6987. PubMed DOI PMC
Miga K.H., Koren S., Rhie A., Vollger M.R., Gershman A., Bzikadze A., Brooks S., Howe E., Porubsky D., Logsdon G.A., et al. Telomere-to-Telomere Assembly of a Complete Human X Chromosome. Nature. 2020;585:79–84. doi: 10.1038/s41586-020-2547-7. PubMed DOI PMC
Logsdon G.A., Vollger M.R., Hsieh P., Mao Y., Liskovykh M.A., Koren S., Nurk S., Mercuri L., Dishuck P.C., Rhie A., et al. The Structure, Function and Evolution of a Complete Human Chromosome 8. Nature. 2021;593:101–107. doi: 10.1038/s41586-021-03420-7. PubMed DOI PMC
Brazda V., Bohalova N., Bowater R.P. New Telomere to Telomere Assembly of Human Chromosome 8 Reveals a Previous Underestimation of G-Quadruplex Forming Sequences and Inverted Repeats. Gene. 2021;810:146058. doi: 10.1016/j.gene.2021.146058. PubMed DOI
Bohálová N., Mergny J.-L., Brázda V. Novel G-Quadruplex Prone Sequences Emerge in the Complete Assembly of the Human X Chromosome. Biochimie. 2021;191:87–90. doi: 10.1016/j.biochi.2021.09.004. PubMed DOI
Forth S., Sheinin M.Y., Inman J., Wang M.D. Torque Measurement at the Single Molecule Level. Annu. Rev. Biophys. 2013;42:583–604. doi: 10.1146/annurev-biophys-083012-130412. PubMed DOI PMC
Ma J., Wang M.D. DNA Supercoiling during Transcription. Biophys. Rev. 2016;8:75–87. doi: 10.1007/s12551-016-0215-9. PubMed DOI PMC
Yamamoto Y., Miura O., Ohyama T. Cruciform Formable Sequences within Pou5f1 Enhancer Are Indispensable for Mouse ES Cell Integrity. Int. J. Mol. Sci. 2021;22:3399. doi: 10.3390/ijms22073399. PubMed DOI PMC
Brázda V., Cechová J., Coufal J., Rumpel S., Jagelská E.B. Superhelical DNA as a Preferential Binding Target of 14-3-3γ Protein. J. Biomol. Struct. Dyn. 2012;30:371–378. doi: 10.1080/07391102.2012.682205. PubMed DOI
Brázda V., Hároníková L., Liao J.C.C., Fridrichová H., Jagelská E.B. Strong Preference of BRCA1 Protein to Topologically Constrained Non-B DNA Structures. BMC Mol. Biol. 2016;17:14. doi: 10.1186/s12867-016-0068-6. PubMed DOI PMC
Samoilova E.O., Krasheninnikov I.A., Levitskii S.A. Interaction between Saccharomyces Cerevisiae Mitochondrial DNA-Binding Protein Abf2p and Cce1p Resolvase. Biochemistry. 2016;81:1111–1117. doi: 10.1134/S0006297916100096. PubMed DOI
Phung H.T.T., Tran D.H., Nguyen T.X. The Cruciform DNA-Binding Protein Crp1 Stimulates the Endonuclease Activity of Mus81-Mms4 in Saccharomyces Cerevisiae. FEBS Lett. 2020;594:4320–4337. doi: 10.1002/1873-3468.13931. PubMed DOI
Deutzmann A., Ganz M., Schönenberger F., Vervoorts J., Kappes F., Ferrando-May E. The Human Oncoprotein and Chromatin Architectural Factor DEK Counteracts DNA Replication Stress. Oncogene. 2015;34:4270–4277. doi: 10.1038/onc.2014.346. PubMed DOI
Martinez-Useros J., Rodriguez-Remirez M., Borrero-Palacios A., Moreno I., Cebrian A., del Pulgar T.G., del Puerto-Nevado L., Vega-Bravo R., Puime-Otin A., Perez N., et al. DEK Is a Potential Marker for Aggressive Phenotype and Irinotecan-Based Therapy Response in Metastatic Colorectal Cancer. BMC Cancer. 2014;14:965. doi: 10.1186/1471-2407-14-965. PubMed DOI PMC
Calhoun L.N., Kwon Y.M. Structure, Function and Regulation of the DNA-Binding Protein Dps and Its Role in Acid and Oxidative Stress Resistance in Escherichia Coli: A Review. J. Appl. Microbiol. 2011;110:375–386. doi: 10.1111/j.1365-2672.2010.04890.x. PubMed DOI
Antipov S.S., Tutukina M.N., Preobrazhenskaya E.V., Kondrashov F.A., Patrushev M.V., Toshchakov S.V., Dominova I., Shvyreva U.S., Vrublevskaya V.V., Morenkov O.S., et al. The Nucleoid Protein Dps Binds Genomic DNA of Escherichia Coli in a Non-Random Manner. PLoS ONE. 2017;12:e0182800. doi: 10.1371/journal.pone.0182800. PubMed DOI PMC
Melekhov V.V., Shvyreva U.S., Timchenko A.A., Tutukina M.N., Preobrazhenskaya E.V., Burkova D.V., Artiukhov V.G., Ozoline O.N., Antipov S.S. Modes of Escherichia Coli Dps Interaction with DNA as Revealed by Atomic Force Microscopy. PLoS ONE. 2015;10:e0126504. doi: 10.1371/journal.pone.0126504. PubMed DOI PMC
Freeman A.D.J., Déclais A.-C., Lilley D.M.J. The Importance of the N-Terminus of T7 Endonuclease I in the Interaction with DNA Junctions. J. Mol. Biol. 2013;425:395–410. doi: 10.1016/j.jmb.2012.11.029. PubMed DOI
Inagaki H., Ohye T., Kogo H., Tsutsumi M., Kato T., Tong M., Emanuel B.S., Kurahashi H. Two Sequential Cleavage Reactions on Cruciform DNA Structures Cause Palindrome-Mediated Chromosomal Translocations. Nat. Commun. 2013;4:1592. doi: 10.1038/ncomms2595. PubMed DOI
Li D., Lv B., Zhang H., Lee J.Y., Li T. Disintegration of Cruciform and G-Quadruplex Structures during the Course of Helicase-Dependent Amplification (HDA) Bioorg. Med. Chem. Lett. 2015;25:1709–1714. doi: 10.1016/j.bmcl.2015.02.070. PubMed DOI
Boyer A.-S., Grgurevic S., Cazaux C., Hoffmann J.-S. The Human Specialized DNA Polymerases and Non-B DNA: Vital Relationships to Preserve Genome Integrity. J. Mol. Biol. 2013;425:4767–4781. doi: 10.1016/j.jmb.2013.09.022. PubMed DOI
Bettridge K., Verma S., Weng X., Adhya S., Xiao J. Single-Molecule Tracking Reveals That the Nucleoid-Associated Protein HU Plays a Dual Role in Maintaining Proper Nucleoid Volume through Differential Interactions with Chromosomal DNA. Mol. Microbiol. 2021;115:12–27. doi: 10.1111/mmi.14572. PubMed DOI PMC
Brázda V., Coufal J., Liao J., Arrowsmith C. Preferential Binding of IFI16 Protein to Cruciform Structure and Superhelical DNA. Biochem. Biophys. Res. Commun. 2012;422:716–720. doi: 10.1016/j.bbrc.2012.05.065. PubMed DOI
Hároníková L., Coufal J., Kejnovská I., Jagelská E.B., Fojta M., Dvořáková P., Muller P., Vojtesek B., Brázda V. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation. PLoS ONE. 2016;11:e0157156. doi: 10.1371/journal.pone.0157156. PubMed DOI PMC
Cannavo E., Sanchez A., Anand R., Ranjha L., Hugener J., Adam C., Acharya A., Weyland N., Aran-Guiu X., Charbonnier J.-B., et al. Regulation of the MLH1–MLH3 Endonuclease in Meiosis. Nature. 2020;586:618–622. doi: 10.1038/s41586-020-2592-2. PubMed DOI
Rogacheva M.V., Manhart C.M., Chen C., Guarne A., Surtees J., Alani E. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-Stimulated Endonuclease. J. Biol. Chem. 2014;289:5664–5673. doi: 10.1074/jbc.M113.534644. PubMed DOI PMC
Saada A.A., Costa A.B., Sheng Z., Guo W., Haber J.E., Lobachev K.S. Structural Parameters of Palindromic Repeats Determine the Specificity of Nuclease Attack of Secondary Structures. Nucleic Acids Res. 2021;49:3932–3947. doi: 10.1093/nar/gkab168. PubMed DOI PMC
Brázda V., Čechová J., Battistin M., Coufal J., Jagelská E.B., Raimondi I., Inga A. The Structure Formed by Inverted Repeats in P53 Response Elements Determines the Transactivation Activity of P53 Protein. Biochem. Biophys. Res. Commun. 2017;483:516–521. doi: 10.1016/j.bbrc.2016.12.113. PubMed DOI
Čechová J., Coufal J., Jagelská E.B., Fojta M., Brázda V. P73, like Its P53 Homolog, Shows Preference for Inverted Repeats Forming Cruciforms. PLoS ONE. 2018;13:e0195835. doi: 10.1371/journal.pone.0195835. PubMed DOI PMC
Feng X., Xie F.-Y., Ou X.-H., Ma J.-Y. Cruciform DNA in Mouse Growing Oocytes: Its Dynamics and Its Relationship with DNA Transcription. PLoS ONE. 2020;15:e0240844. doi: 10.1371/journal.pone.0240844. PubMed DOI PMC
Marie L., Symington L.S. Mechanism for Inverted-Repeat Recombination Induced by a Replication Fork Barrier. Nat. Commun. 2022;13:32. doi: 10.1038/s41467-021-27443-w. PubMed DOI PMC
Pastrana C.L., Carrasco C., Akhtar P., Leuba S.H., Khan S.A., Moreno-Herrero F. Force and Twist Dependence of RepC Nicking Activity on Torsionally-Constrained DNA Molecules. Nucleic Acids Res. 2016;44:8885–8896. doi: 10.1093/nar/gkw689. PubMed DOI PMC
Sukackaite R., Jensen M.R., Mas P.J., Blackledge M., Buonomo S.B., Hart D.J. Structural and Biophysical Characterization of Murine Rif1 C Terminus Reveals High Specificity for DNA Cruciform Structures. J. Biol. Chem. 2014;289:13903–13911. doi: 10.1074/jbc.M114.557843. PubMed DOI PMC
Mukherjee C., Tripathi V., Manolika E.M., Heijink A.M., Ricci G., Merzouk S., de Boer H.R., Demmers J., van Vugt M.A.T.M., Chaudhuri A.R. RIF1 Promotes Replication Fork Protection and Efficient Restart to Maintain Genome Stability. Nat. Commun. 2019;10:3287. doi: 10.1038/s41467-019-11246-1. PubMed DOI PMC
Eykelenboom J.K., Blackwood J.K., Okely E., Leach D.R.F. SbcCD Causes a Double-Strand Break at a DNA Palindrome in the Escherichia Coli Chromosome. Mol. Cell. 2008;29:644–651. doi: 10.1016/j.molcel.2007.12.020. PubMed DOI
Achar Y.J., Adhil M., Choudhary R., Gilbert N., Foiani M. Negative Supercoil at Gene Boundaries Modulates Gene Topology. Nature. 2020;577:701–705. doi: 10.1038/s41586-020-1934-4. PubMed DOI
Lu S., Wang G., Bacolla A., Zhao J., Spitser S., Vasquez K.M. Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Cancer Genomes. Cell Rep. 2015;10:1674–1680. doi: 10.1016/j.celrep.2015.02.039. PubMed DOI PMC
Carreira R., Aguado F.J., Hurtado-Nieves V., Blanco M.G. Canonical and Novel Non-Canonical Activities of the Holliday Junction Resolvase Yen1. Nucleic Acids Res. 2021;50:259–280. doi: 10.1093/nar/gkab1225. PubMed DOI PMC
Vos S.M., Tretter E.M., Schmidt B.H., Berger J.M. All Tangled up: How Cells Direct, Manage and Exploit Topoisomerase Function. Nat. Rev. Mol. Cell Biol. 2011;12:827–841. doi: 10.1038/nrm3228. PubMed DOI PMC
Coufal J., Jagelská E.B., Liao J.C.C., Brázda V. Preferential Binding of P53 Tumor Suppressor to P21 Promoter Sites That Contain Inverted Repeats Capable of Forming Cruciform Structure. Biochem. Biophys. Res. Commun. 2013;441:83–88. doi: 10.1016/j.bbrc.2013.10.015. PubMed DOI
Unterholzner L., Keating S.E., Baran M., Horan K.A., Jensen S.B., Sharma S., Sirois C.M., Jin T., Latz E., Xiao T.S., et al. IFI16 Is an Innate Immune Sensor for Intracellular DNA. Nat. Immunol. 2010;11:997–1004. doi: 10.1038/ni.1932. PubMed DOI PMC
Johnson K.E., Bottero V., Flaherty S., Dutta S., Singh V.V., Chandran B. IFI16 Restricts HSV-1 Replication by Accumulating on the HSV-1 Genome, Repressing HSV-1 Gene Expression, and Directly or Indirectly Modulating Histone Modifications. PLoS Pathog. 2014;10:e1004503. doi: 10.1371/journal.ppat.1004503. PubMed DOI PMC
Toleikis A., Webb M.R., Molloy J.E. OriD Structure Controls RepD Initiation during Rolling-Circle Replication. Sci. Rep. 2018;8:1206. doi: 10.1038/s41598-017-18817-6. PubMed DOI PMC
Noirot P., Bargonetti J., Novick R.P. Initiation of Rolling-Circle Replication in PT181 Plasmid: Initiator Protein Enhances Cruciform Extrusion at the Origin. Proc. Natl. Acad. Sci. USA. 1990;87:8560–8564. doi: 10.1073/pnas.87.21.8560. PubMed DOI PMC
Liao H., Ji F., Helleday T., Ying S. Mechanisms for Stalled Replication Fork Stabilization: New Targets for Synthetic Lethality Strategies in Cancer Treatments. EMBO Rep. 2018;19:e46263. doi: 10.15252/embr.201846263. PubMed DOI PMC
Rass U., Compton S.A., Matos J., Singleton M.R., Ip S.C.Y., Blanco M.G., Griffith J.D., West S.C. Mechanism of Holliday Junction Resolution by the Human GEN1 Protein. Genes Dev. 2010;24:1559–1569. doi: 10.1101/gad.585310. PubMed DOI PMC
Chen S., Geng X., Syeda M.Z., Huang Z., Zhang C., Ying S. Human MUS81: A Fence-Sitter in Cancer. Front. Cell Dev. Biol. 2021;9:657305. doi: 10.3389/fcell.2021.657305. PubMed DOI PMC
Leach D.R. Long DNA Palindromes, Cruciform Structures, Genetic Instability and Secondary Structure Repair. Bioessays. 1994;16:893–900. doi: 10.1002/bies.950161207. PubMed DOI
Lai P.J., Lim C.T., Le H.P., Katayama T., Leach D.R.F., Furukohri A., Maki H. Long Inverted Repeat Transiently Stalls DNA Replication by Forming Hairpin Structures on Both Leading and Lagging Strands. Genes Cells. 2016;21:136–145. doi: 10.1111/gtc.12326. PubMed DOI
Ganapathiraju M.K., Subramanian S., Chaparala S., Karunakaran K.B. A Reference Catalog of DNA Palindromes in the Human Genome and Their Variations in 1000 Genomes. Hum. Genome Var. 2020;7:40. doi: 10.1038/s41439-020-00127-5. PubMed DOI PMC
Guiblet W.M., Cremona M.A., Harris R.S., Chen D., Eckert K.A., Chiaromonte F., Huang Y.-F., Makova K.D. Non-B DNA: A Major Contributor to Small- and Large-Scale Variation in Nucleotide Substitution Frequencies across the Genome. Nucleic Acids Res. 2021;49:1497–1516. doi: 10.1093/nar/gkaa1269. PubMed DOI PMC
Tanaka H., Watanabe T. Mechanisms Underlying Recurrent Genomic Amplification in Human Cancers. Trends Cancer. 2020;6:462–477. doi: 10.1016/j.trecan.2020.02.019. PubMed DOI PMC
Tanaka H., Tapscott S.J., Trask B.J., Yao M.-C. Short Inverted Repeats Initiate Gene Amplification through the Formation of a Large DNA Palindrome in Mammalian Cells. Proc. Natl. Acad. Sci. USA. 2002;99:8772–8777. doi: 10.1073/pnas.132275999. PubMed DOI PMC
Lopes-Nunes J., Oliveira P.A., Cruz C. G-Quadruplex-Based Drug Delivery Systems for Cancer Therapy. Pharmaceuticals. 2021;14:671. doi: 10.3390/ph14070671. PubMed DOI PMC
Miklenić M.S., Svetec I.K. Palindromes in DNA—A Risk for Genome Stability and Implications in Cancer. Int. J. Mol. Sci. 2021;22:2840. doi: 10.3390/ijms22062840. PubMed DOI PMC
Inagaki H., Kato T., Tsutsumi M., Ouchi Y., Ohye T., Kurahashi H. Palindrome-Mediated Translocations in Humans: A New Mechanistic Model for Gross Chromosomal Rearrangements. Front. Genet. 2016;7:125. doi: 10.3389/fgene.2016.00125. PubMed DOI PMC
Kaushal S., Wollmuth C.E., Das K., Hile S.E., Regan S.B., Barnes R.P., Haouzi A., Lee S.M., House N.C.M., Guyumdzhyan M., et al. Sequence and Nuclease Requirements for Breakage and Healing of a Structure-Forming (AT)n Sequence within Fragile Site FRA16D. Cell Rep. 2019;27:1151–1164.e5. doi: 10.1016/j.celrep.2019.03.103. PubMed DOI PMC
Brosh R.M., Jr., Matson S.W. History of DNA Helicases. Genes. 2020;11:255. doi: 10.3390/genes11030255. PubMed DOI PMC
Datta A., Brosh R.M., Jr. New Insights into DNA Helicases as Druggable Targets for Cancer Therapy. Front. Mol. Biosci. 2018;5:59. doi: 10.3389/fmolb.2018.00059. PubMed DOI PMC
Savvateeva-Popova E.V., Zhuravlev A.V., Brázda V., Zakharov G.A., Kaminskaya A.N., Medvedeva A.V., Nikitina E.A., Tokmatcheva E.V., Dolgaya J.F., Kulikova D.A., et al. Drosophila Model for the Analysis of Genesis of LIM-Kinase 1-Dependent Williams-Beuren Syndrome Cognitive Phenotypes: INDELs, Transposable Elements of the Tc1/Mariner Superfamily and MicroRNAs. Front. Genet. 2017;8:123. doi: 10.3389/fgene.2017.00123. PubMed DOI PMC
Abnous K., Danesh N.M., Ramezani M., Charbgoo F., Bahreyni A., Taghdisi S.M. Targeted Delivery of Doxorubicin to Cancer Cells by a Cruciform DNA Nanostructure Composed of AS1411 and FOXM1 Aptamers. Expert Opin. Drug Deliv. 2018;15:1045–1052. doi: 10.1080/17425247.2018.1530656. PubMed DOI
Yao F., An Y., Li X., Li Z., Duan J., Yang X.-D. Targeted Therapy of Colon Cancer by Aptamer-Guided Holliday Junctions Loaded with Doxorubicin. Int. J. Nanomed. 2020;15:2119–2129. doi: 10.2147/IJN.S240083. PubMed DOI PMC
Fleming A.M., Zhu J., Jara-Espejo M., Burrows C.J. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2′-Deoxyguanosine. Biochemistry. 2020;59:2616–2626. doi: 10.1021/acs.biochem.0c00387. PubMed DOI
Kurahashi H., Inagaki H., Yamada K., Ohye T., Taniguchi M., Emanuel B.S., Toda T. Cruciform DNA Structure Underlies the Etiology for Palindrome-Mediated Human Chromosomal Translocations. J. Biol. Chem. 2004;279:35377–35383. doi: 10.1074/jbc.M400354200. PubMed DOI PMC
Variability of Inverted Repeats in All Available Genomes of Bacteria
Impacts of Molecular Structure on Nucleic Acid-Protein Interactions