IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation

. 2016 ; 11 (6) : e0157156. [epub] 20160609

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27280708

Interferon-inducible protein 16 (IFI16) is a member of the HIN-200 protein family, containing two HIN domains and one PYRIN domain. IFI16 acts as a sensor of viral and bacterial DNA and is important for innate immune responses. IFI16 binds DNA and binding has been described to be DNA length-dependent, but a preference for supercoiled DNA has also been demonstrated. Here we report a specific preference of IFI16 for binding to quadruplex DNA compared to other DNA structures. IFI16 binds to quadruplex DNA with significantly higher affinity than to the same sequence in double stranded DNA. By circular dichroism (CD) spectroscopy we also demonstrated the ability of IFI16 to stabilize quadruplex structures with quadruplex-forming oligonucleotides derived from human telomere (HTEL) sequences and the MYC promotor. A novel H/D exchange mass spectrometry approach was developed to assess protein interactions with quadruplex DNA. Quadruplex DNA changed the IFI16 deuteration profile in parts of the PYRIN domain (aa 0-80) and in structurally identical parts of both HIN domains (aa 271-302 and aa 586-617) compared to single stranded or double stranded DNAs, supporting the preferential affinity of IFI16 for structured DNA. Our results reveal the importance of quadruplex DNA structure in IFI16 binding and improve our understanding of how IFI16 senses DNA. IFI16 selectivity for quadruplex structure provides a mechanistic framework for IFI16 in immunity and cellular processes including DNA damage responses and cell proliferation.

Zobrazit více v PubMed

Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, et al. Kaposi's sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol. 2013;87(8):4417–31. Epub 2013/02/08. 10.1128/JVI.03282-12 PubMed DOI PMC

Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011;9(5):363–75. Epub 2011/05/18. 10.1016/j.chom.2011.04.008 S1931-3128(11)00130-2 [pii]. PubMed DOI PMC

Johnstone RW, Kerry JA, Trapani JA. The human interferon-inducible protein, IFI 16, is a repressor of transcription. J Biol Chem. 1998;273(27):17172–7. Epub 1998/06/27. . PubMed

Thompson MR, Sharma S, Atianand M, Jensen SB, Carpenter S, Knipe DM, et al. Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem. 2014;289(34):23568–81. Epub 2014/07/09. 10.1074/jbc.M114.554147 M114.554147 [pii]. PubMed DOI PMC

Xin H, Curry J, Johnstone RW, Nickoloff BJ, Choubey D. Role of IFI 16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene. 2003;22(31):4831–40. Epub 2003/08/02. 10.1038/sj.onc.1206754 1206754 [pii]. . PubMed DOI

Cridland JA, Curley EZ, Wykes MN, Schroder K, Sweet MJ, Roberts TL, et al. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol. 2012;12:140 Epub 2012/08/09. 10.1186/1471-2148-12-140 PubMed DOI PMC

Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med. 2012;209(11):1969–83. Epub 2012/10/10. 10.1084/jem.20121960 PubMed DOI PMC

Dawson MJ, Trapani JA. The interferon-inducible autoantigen, IFI 16: localization to the nucleolus and identification of a DNA-binding domain. Biochem Biophys Res Commun. 1995;214(1):152–62. Epub 1995/09/05. 10.1006/bbrc.1995.2269 . PubMed DOI

Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11):997–1004. Epub 2010/10/05. 10.1038/ni.1932 PubMed DOI PMC

Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49(4):567–71. Epub 2011/12/06. 10.1016/j.molimm.2011.11.004 S0161-5890(11)00800-5 [pii]. PubMed DOI PMC

Choubey D, Lengyel P. Interferon action: nucleolar and nucleoplasmic localization of the interferon-inducible 72-kD protein that is encoded by the Ifi 204 gene from the gene 200 cluster. J Cell Biol. 1992;116(6):1333–41. Epub 1992/03/01. PubMed PMC

Li T, Diner BA, Chen J, Cristea IM. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci U S A. 2012;109(26):10558–63. Epub 2012/06/14. 10.1073/pnas.1203447109 1203447109 [pii]. PubMed DOI PMC

Costa S, Borgogna C, Mondini M, De Andrea M, Meroni PL, Berti E, et al. Redistribution of the nuclear protein IFI16 into the cytoplasm of ultraviolet B-exposed keratinocytes as a mechanism of autoantigen processing. Br J Dermatol. 2011;164(2):282–90. Epub 2010/10/27. 10.1111/j.1365-2133.2010.10097.x . PubMed DOI

Liao JC, Lam R, Brazda V, Duan S, Ravichandran M, Ma J, et al. Interferon-inducible protein 16: insight into the interaction with tumor suppressor p53. Structure. 2011;19(3):418–29. Epub 2011/03/15. 10.1016/j.str.2010.12.015 PubMed DOI PMC

Aglipay JA, Lee SW, Okada S, Fujiuchi N, Ohtsuka T, Kwak JC, et al. A member of the Pyrin family, IFI16, is a novel BRCA1-associated protein involved in the p53-mediated apoptosis pathway. Oncogene. 2003;22(55):8931–8. Epub 2003/12/05. 10.1038/sj.onc.1207057 1207057 [pii]. . PubMed DOI

Fujiuchi N, Aglipay JA, Ohtsuka T, Maehara N, Sahin F, Su GH, et al. Requirement of IFI16 for the maximal activation of p53 induced by ionizing radiation. J Biol Chem. 2004;279(19):20339–44. Epub 2004/03/03. 10.1074/jbc.M400344200 . PubMed DOI

Ouchi M, Ouchi T. Role of IFI16 in DNA damage and checkpoint. Front Biosci. 2008;13:236–9. Epub 2007/11/06. . PubMed

Johnson KE, Chikoti L, Chandran B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol. 2013;87(9):5005–18. Epub 2013/02/22. 10.1128/JVI.00082-13 JVI.00082-13 [pii]. PubMed DOI PMC

Ansari MA, Singh VV, Dutta S, Veettil MV, Dutta D, Chikoti L, et al. Constitutive interferon-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J Virol. 2013;87(15):8606–23. Epub 2013/05/31. 10.1128/JVI.00805-13 JVI.00805-13 [pii]. PubMed DOI PMC

Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, et al. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343(6169):428–32. Epub 2013/12/21. 10.1126/science.1243640 science.1243640 [pii]. PubMed DOI PMC

Dawson MJ, Trapani JA. IFI 16 gene encodes a nuclear protein whose expression is induced by interferons in human myeloid leukaemia cell lines. J Cell Biochem. 1995;57(1):39–51. Epub 1995/01/01. 10.1002/jcb.240570106 . PubMed DOI

Yan H, Dalal K, Hon BK, Youkharibache P, Lau D, Pio F. RPA nucleic acid-binding properties of IFI16-HIN200. Biochim Biophys Acta. 2008;1784(7–8):1087–97. Epub 2008/05/13. S1570-9639(08)00123-4 [pii] 10.1016/j.bbapap.2008.04.004 . PubMed DOI

Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36(4):561–71. Epub 2012/04/10. 10.1016/j.immuni.2012.02.014 S1074-7613(12)00124-0 [pii]. PubMed DOI PMC

Jin T, Perry A, Smith P, Jiang J, Xiao TS. Structure of the absent in melanoma 2 (AIM2) pyrin domain provides insights into the mechanisms of AIM2 autoinhibition and inflammasome assembly. J Biol Chem. 2013;288(19):13225–35. Epub 2013/03/27. 10.1074/jbc.M113.468033 M113.468033 [pii]. PubMed DOI PMC

Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci U S A. 2014;111(1):E62–71. Epub 2013/12/25. 10.1073/pnas.1313577111 1313577111 [pii]. PubMed DOI PMC

Brazda V, Coufal J, Liao JC, Arrowsmith CH. Preferential binding of IFI16 protein to cruciform structure and superhelical DNA. Biochem Biophys Res Commun. 2012;422(4):716–20. Epub 2012/05/24. 10.1016/j.bbrc.2012.05.065 S0006-291X(12)00942-4 [pii]. . PubMed DOI

Brazda V, Laister RC, Jagelska EB, Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol Biol. 2011;12:33 Epub 2011/08/06. 10.1186/1471-2199-12-33 1471-2199-12-33 [pii]. PubMed DOI PMC

Brazda V, Haronikova L, Liao JC, Fojta M. DNA and RNA quadruplex-binding proteins. Int J Mol Sci. 2014;15(10):17493–517. Epub 2014/10/01. 10.3390/ijms151017493 ijms151017493 [pii]. PubMed DOI PMC

Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33(9):2908–16. Epub 2005/05/26. 10.1093/nar/gki609 PubMed DOI PMC

Wang Y, Patel DJ. Solution structure of a parallel-stranded G-quadruplex DNA. J Mol Biol. 1993;234(4):1171–83. Epub 1993/12/20. S0022-2836(83)71668-2 [pii] 10.1006/jmbi.1993.1668 . PubMed DOI

Siddiqui-Jain A, Grand CL, Bearss DJ, Hurley LH. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A. 2002;99(18):11593–8. Epub 2002/08/27. 10.1073/pnas.182256799 182256799 [pii]. PubMed DOI PMC

Rankin S, Reszka AP, Huppert J, Zloh M, Parkinson GN, Todd AK, et al. Putative DNA quadruplex formation within the human c-kit oncogene. J Am Chem Soc. 2005;127(30):10584–9. Epub 2005/07/28. 10.1021/ja050823u PubMed DOI PMC

Dai J, Dexheimer TS, Chen D, Carver M, Ambrus A, Jones RA, et al. An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution. J Am Chem Soc. 2006;128(4):1096–8. Epub 2006/01/26. 10.1021/ja055636a PubMed DOI PMC

Virno A, Mayol L, Ramos A, Fraternali F, Pagano B, Randazzo A. Structural insight into the hTERT intron 6 sequence d(GGGGTGAAAGGGG) from 1H-NMR study. Nucleosides Nucleotides Nucleic Acids. 2007;26(8–9):1133–7. Epub 2007/12/07. 787854775 [pii] 10.1080/15257770701521854 . PubMed DOI

Gonzalez V, Guo K, Hurley L, Sun D. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J Biol Chem. 2009;284(35):23622–35. Epub 2009/07/08. 10.1074/jbc.M109.018028 M109.018028 [pii]. PubMed DOI PMC

Fekete A, Kenesi E, Hunyadi-Gulyas E, Durgo H, Berko B, Dunai ZA, et al. The guanine-quadruplex structure in the human c-myc gene's promoter is converted into B-DNA form by the human poly(ADP-ribose)polymerase-1. PLoS One. 2012;7(8):e42690 Epub 2012/08/11. 10.1371/journal.pone.0042690 PONE-D-12-05138 [pii]. PubMed DOI PMC

Cogoi S, Zorzet S, Rapozzi V, Geci I, Pedersen EB, Xodo LE. MAZ-binding G4-decoy with locked nucleic acid and twisted intercalating nucleic acid modifications suppresses KRAS in pancreatic cancer cells and delays tumor growth in mice. Nucleic Acids Res. 2013;41(7):4049–64. Epub 2013/03/09. 10.1093/nar/gkt127 gkt127 [pii]. PubMed DOI PMC

Wang Q, Liu JQ, Chen Z, Zheng KW, Chen CY, Hao YH, et al. G-quadruplex formation at the 3' end of telomere DNA inhibits its extension by telomerase, polymerase and unwinding by helicase. Nucleic Acids Res. 2011;39(14):6229–37. Epub 2011/03/29. 10.1093/nar/gkr164 gkr164 [pii]. PubMed DOI PMC

Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL, Preiss T, et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat Chem Biol. 2014;10(5):358–64. Epub 2014/03/19. 10.1038/nchembio.1479 nchembio.1479 [pii]. PubMed DOI PMC

Sundquist WI, Heaphy S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc Natl Acad Sci U S A. 1993;90(8):3393–7. Epub 1993/04/15. PubMed PMC

Piekna-Przybylska D, Sullivan MA, Sharma G, Bambara RA. U3 region in the HIV-1 genome adopts a G-quadruplex structure in its RNA and DNA sequence. Biochemistry. 2014;53(16):2581–93. Epub 2014/04/17. 10.1021/bi4016692 PubMed DOI PMC

Tluckova K, Marusic M, Tothova P, Bauer L, Sket P, Plavec J, et al. Human papillomavirus G-quadruplexes. Biochemistry. 2013;52(41):7207–16. Epub 2013/09/21. 10.1021/bi400897g . PubMed DOI

Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43(18):8627–37. Epub 2015/09/10. 10.1093/nar/gkv862 PubMed DOI PMC

Simonsson T, Pecinka P, Kubista M. DNA tetraplex formation in the control region of c-myc. Nucleic Acids Res. 1998;26(5):1167–72. Epub 1998/04/04. PubMed PMC

Gray DM, Hung SH, Johnson KH. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. Epub 1995/01/01. . PubMed

Renciuk D, Kejnovska I, Skolakova P, Bednarova K, Motlova J, Vorlickova M. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res. 2009;37(19):6625–34. Epub 2009/09/01. 10.1093/nar/gkp701 PubMed DOI PMC

Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res. 2006;34(Web Server issue):W676–82. Epub 2006/07/18. 34/suppl_2/W676 [pii] 10.1093/nar/gkl253 PubMed DOI PMC

Ambrus A, Chen D, Dai J, Jones RA, Yang D. Solution structure of the biologically relevant G-quadruplex element in the human c-MYC promoter. Implications for G-quadruplex stabilization. Biochemistry. 2005;44(6):2048–58. Epub 2005/02/09. 10.1021/bi048242p . PubMed DOI

Wang Y, Patel DJ. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G-tetraplex. Structure. 1993;1(4):263–82. Epub 1993/12/15. . PubMed

Vorlickova M, Kejnovska I, Bednarova K, Renciuk D, Kypr J. Circular dichroism spectroscopy of DNA: from duplexes to quadruplexes. Chirality. 2012;24(9):691–8. Epub 2012/06/15. 10.1002/chir.22064 . PubMed DOI

Palacky J, Vorlickova M, Kejnovska I, Mojzes P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013;41(2):1005–16. Epub 2012/11/30. 10.1093/nar/gks1135 PubMed DOI PMC

Quante T, Otto B, Brazdova M, Kejnovska I, Deppert W, Tolstonog GV. Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity. Cell Cycle. 2012;11(17):3290–303. Epub 2012/08/17. 10.4161/cc.21646 PubMed DOI PMC

Trcka F, Durech M, Man P, Hernychova L, Muller P, Vojtesek B. The assembly and intermolecular properties of the Hsp70-Tomm34-Hsp90 molecular chaperone complex. J Biol Chem. 2014;289(14):9887–901. Epub 2014/02/26. 10.1074/jbc.M113.526046 PubMed DOI PMC

Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, et al. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005;21(16):3435–8. Epub 2005/06/16. 10.1093/bioinformatics/bti537 . PubMed DOI

Renciuk D, Kejnovska I, Skolakova P, Bednarova K, Motlova J, Vorlickova M. Arrangements of human telomere DNA quadruplex in physiologically relevant K+ solutions. Nucleic Acids Res. 2009;37(19):6625–34. Epub 2009/09/01. 10.1093/nar/gkp701 gkp701 [pii]. PubMed DOI PMC

Li J, Correia JJ, Wang L, Trent JO, Chaires JB. Not so crystal clear: the structure of the human telomere G-quadruplex in solution differs from that present in a crystal. Nucleic Acids Res. 2005;33(14):4649–59. Epub 2005/08/18. 33/14/4649 [pii] 10.1093/nar/gki782 PubMed DOI PMC

Yang D, Hurley LH. Structure of the biologically relevant G-quadruplex in the c-MYC promoter. Nucleosides Nucleotides Nucleic Acids. 2006;25(8):951–68. Epub 2006/08/12. H715836R23K8223M [pii] 10.1080/15257770600809913 . PubMed DOI

Prakash A, Natarajan A, Marky LA, Ouellette MM, Borgstahl GE. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA. J Nucleic Acids. 2011;2011:896947 Epub 2011/07/21. 10.4061/2011/896947 PubMed DOI PMC

Prakash A, Kieken F, Marky LA, Borgstahl GE. Stabilization of a G-Quadruplex from Unfolding by Replication Protein A Using Potassium and the Porphyrin TMPyP4. J Nucleic Acids. 2011;2011:529828 Epub 2011/07/21. 10.4061/2011/529828 PubMed DOI PMC

Egistelli L, Chichiarelli S, Gaucci E, Eufemi M, Schinina ME, Giorgi A, et al. IFI16 and NM23 bind to a common DNA fragment both in the P53 and the cMYC gene promoters. J Cell Biochem. 2009;106(4):666–72. Epub 2009/01/27. 10.1002/jcb.22053 . PubMed DOI

Song LL, Ponomareva L, Shen H, Duan X, Alimirah F, Choubey D . Interferon-inducible IFI16, a negative regulator of cell growth, down-regulates expression of human telomerase reverse transcriptase (hTERT) gene. PLoS One. 2010;5(1):e8569 Epub 2010/01/07. 10.1371/journal.pone.0008569 PubMed DOI PMC

Ni X, Ru H, Ma F, Zhao L, Shaw N, Feng Y, et al. New insights into the structural basis of DNA recognition by HINa and HINb domains of IFI16. J Mol Cell Biol. 2015. Epub 2015/08/08. 10.1093/jmcb/mjv053 . PubMed DOI

Booiman T, Kootstra NA. Polymorphism in IFI16 affects CD4(+) T-cell counts in HIV-1 infection. Int J Immunogenet. 2014;41(6):518–20. Epub 2014/11/05. 10.1111/iji.12157 . PubMed DOI

Nissen SK, Hojen JF, Andersen KL, Kofod-Olsen E, Berg RK, Paludan SR, et al. Innate DNA sensing is impaired in HIV patients and IFI16 expression correlates with chronic immune activation. Clin Exp Immunol. 2014;177(1):295–309. Epub 2014/03/07. 10.1111/cei.12317 PubMed DOI PMC

Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E, Nadai M, et al. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res. 2015;43(18):8884–97. Epub 2015/09/12. 10.1093/nar/gkv897 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

DNA and RNA Binding Proteins: From Motifs to Roles in Cancer

. 2022 Aug 18 ; 23 (16) : . [epub] 20220818

Interaction of Proteins with Inverted Repeats and Cruciform Structures in Nucleic Acids

. 2022 May 31 ; 23 (11) : . [epub] 20220531

Evaluating the Influence of a G-Quadruplex Prone Sequence on the Transactivation Potential by Wild-Type and/or Mutant P53 Family Proteins through a Yeast-Based Functional Assay

. 2021 Feb 15 ; 12 (2) : . [epub] 20210215

Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins

. 2021 Jan 18 ; 22 (2) : . [epub] 20210118

In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-canonical Nucleic Acid Structures in Their Lifecycles

. 2020 ; 11 () : 1583. [epub] 20200703

The Rich World of p53 DNA Binding Targets: The Role of DNA Structure

. 2019 Nov 09 ; 20 (22) : . [epub] 20191109

The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors

. 2018 Sep 13 ; 23 (9) : . [epub] 20180913

Recognition of Local DNA Structures by p53 Protein

. 2017 Feb 10 ; 18 (2) : . [epub] 20170210

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...