Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins

. 2021 Jan 18 ; 22 (2) : . [epub] 20210118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33477647

Grantová podpora
SGS01/PřF/2020 University of Ostrava

Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.

Zobrazit více v PubMed

Ghani N.S.A., Firdaus-Raih M., Ahmad S. Computational Prediction of Nucleic acid-binding Residues From Sequence. In: Ranganathan S., Gribskov M., Nakai K., Schönbach C., editors. Encyclopedia of Bioinformatics and Computational Biology. Academic Press; Oxford, UK: 2019. pp. 678–687.

Jutras B.L., Verma A., Stevenson B. Identification of Novel DNA-Binding Proteins Using DNA-Affinity Chromatography/Pull Down. Curr. Protoc. Microbiol. 2012;24:1F.1.1–1F.1.13. doi: 10.1002/9780471729259.mc01f01s24. PubMed DOI PMC

Wang I.X., Grunseich C., Fox J., Burdick J., Zhu Z., Ravazian N., Hafner M., Cheung V.G. Human Proteins That Interact with RNA/DNA Hybrids. Genome Res. 2018;28:1405–1414. doi: 10.1101/gr.237362.118. PubMed DOI PMC

Ouwerkerk P.B., Meijer A.H. Plant Reverse Genetics. Springer; Basel, Switzerland: 2011. Yeast one-hybrid screens for detection of transcription factor DNA interactions; pp. 211–227. PubMed

Gaudinier A., Tang M., Bågman A.-M., Brady S.M. Identification of Protein–DNA Interactions Using Enhanced Yeast One-Hybrid Assays and a Semiautomated Approach. In: Busch W., editor. Plant Genomics: Methods and Protocols. Springer; New York, NY: 2017. pp. 187–215. Methods in Molecular Biology. PubMed

Hellman L.M., Fried M.G. Electrophoretic Mobility Shift Assay (EMSA) for Detecting Protein–Nucleic Acid Interactions. Nat. Protoc. 2007;2:1849. doi: 10.1038/nprot.2007.249. PubMed DOI PMC

Seo M., Lei L., Egli M. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes. Curr. Protoc. Nucleic Acid Chem. 2019;76:e70. doi: 10.1002/cpnc.70. PubMed DOI PMC

Carey M.F., Peterson C.L., Smale S.T. Chromatin Immunoprecipitation (Chip) Cold Spring Harb. Protoc. 2009;2009:pdb-prot5279. doi: 10.1101/pdb.prot5279. PubMed DOI

de Barsy M., Herrgott L., Martin V., Pillonel T., Viollier P.H., Greub G. Identification of New DNA-Associated Proteins from Waddlia Chondrophila. Sci. Rep. 2019;9:4885. doi: 10.1038/s41598-019-40732-1. PubMed DOI PMC

Kunová N., Ondrovičová G., Bauer J.A., Bellová J., Ambro Ľ., Martináková L., Kotrasová V., Kutejová E., Pevala V. The Role of Lon-Mediated Proteolysis in the Dynamics of Mitochondrial Nucleic Acid-Protein Complexes. Sci. Rep. 2017;7:631. doi: 10.1038/s41598-017-00632-8. PubMed DOI PMC

Haronikova L., Coufal J., Kejnovska I., Jagelska E.B., Fojta M., Dvořáková P., Muller P., Vojtesek B., Brazda V. IFI16 Preferentially Binds to DNA with Quadruplex Structure and Enhances DNA Quadruplex Formation. PLoS ONE. 2016;11:e0157156. doi: 10.1371/journal.pone.0157156. PubMed DOI PMC

Liu B., Wang S., Wang X. DNA-binding Protein Identification by Combining Pseudo Amino Acid Composition and Profile-Based Protein Representation. Sci. Rep. 2015;5:15479. doi: 10.1038/srep15479. PubMed DOI PMC

Fang Y., Guo Y., Feng Y., Li M. Predicting DNA-Binding Proteins: Approached from Chou’s Pseudo Amino Acid Composition and Other Specific Sequence Features. Amino Acids. 2008;34:103–109. doi: 10.1007/s00726-007-0568-2. PubMed DOI

Wei L., Tang J., Zou Q. Local-DPP: An Improved DNA-Binding Protein Prediction Method by Exploring Local Evolutionary Information. Inf. Sci. 2017;384:135–144. doi: 10.1016/j.ins.2016.06.026. DOI

Liu B., Xu J., Lan X., Xu R., Zhou J., Wang X., Chou K.-C. IDNA-Prot|dis: Identifying DNA-Binding Proteins by Incorporating Amino Acid Distance-Pairs and Reduced Alphabet Profile into the General Pseudo Amino Acid Composition. PLoS ONE. 2014;9:e106691. doi: 10.1371/journal.pone.0106691. PubMed DOI PMC

Choi S., Han K. Prediction of RNA-Binding Amino Acids from Protein and RNA Sequences. BMC Bioinform. 2011;12:S7. doi: 10.1186/1471-2105-12-S13-S7. PubMed DOI PMC

Brázda V., Coufal J., Liao J.C.C., Arrowsmith C.H. Preferential Binding of IFI16 Protein to Cruciform Structure and Superhelical DNA. Biochem. Biophys. Res. Commun. 2012;422:716–720. doi: 10.1016/j.bbrc.2012.05.065. PubMed DOI

Čechová J., Coufal J., Jagelská E.B., Fojta M., Brázda V. P73, like Its P53 Homolog, Shows Preference for Inverted Repeats Forming Cruciforms. PLoS ONE. 2018;13:e0195835. doi: 10.1371/journal.pone.0195835. PubMed DOI PMC

Brázda V., Hároníková L., Liao J.C., Fojta M. DNA and RNA Quadruplex-Binding Proteins. Int. J. Mol. Sci. 2014;15:17493–17517. doi: 10.3390/ijms151017493. PubMed DOI PMC

Helma R., Bažantová P., Petr M., Adámik M., Renčiuk D., Tichỳ V., Pastuchová A., Soldánová Z., Pečinka P., Bowater R.P. P53 Binds Preferentially to Non-B DNA Structures Formed by the Pyrimidine-Rich Strands of GaA· TTC Trinucleotide Repeats Associated with Friedreich’s Ataxia. Molecules. 2019;24:2078. doi: 10.3390/molecules24112078. PubMed DOI PMC

Lyons S.M., Kharel P., Akiyama Y., Ojha S., Dave D., Tsvetkov V., Merrick W., Ivanov P., Anderson P. EIF4G Has Intrinsic G-Quadruplex Binding Activity That Is Required for TiRNA Function. Nucleic Acids Res. 2020;48:6223–6233. doi: 10.1093/nar/gkaa336. PubMed DOI PMC

Porubiaková O., Bohálová N., Inga A., Vadovičová N., Coufal J., Fojta M., Brázda V. The Influence of Quadruplex Structure in Proximity to P53 Target Sequences on the Transactivation Potential of P53 Alpha Isoforms. Int. J. Mol. Sci. 2020;21:127. doi: 10.3390/ijms21010127. PubMed DOI PMC

Oyoshi T., Masuzawa T. Modulation of Histone Modifications and G-Quadruplex Structures by G-Quadruplex-Binding Proteins. Biochem. Biophys. Res. Commun. 2020;531:39–44. doi: 10.1016/j.bbrc.2020.02.178. PubMed DOI

Bartas M., Brázda V., Bohálová N., Cantara A., Volná A., Stachurová T., Malachová K., Jagelská E.B., Porubiaková O., Červeň J. In-Depth Bioinformatic Analyses of Nidovirales Including Human SARS-CoV-2, SARS-CoV, MERS-CoV Viruses Suggest Important Roles of Non-Canonical Nucleic Acid Structures in Their Lifecycles. Front. Microbiol. 2020;11:1583. doi: 10.3389/fmicb.2020.01583. PubMed DOI PMC

Tateishi-Karimata H., Sugimoto N. Chemical Biology of Non-Canonical Structures of Nucleic Acids for Therapeutic Applications. Chem. Commun. 2020;56:2379–2390. doi: 10.1039/C9CC09771F. PubMed DOI

Cer R.Z., Donohue D.E., Mudunuri U.S., Temiz N.A., Loss M.A., Starner N.J., Halusa G.N., Volfovsky N., Yi M., Luke B.T. Non-B DB v2. 0: A Database of Predicted Non-B DNA-Forming Motifs and Its Associated Tools. Nucleic Acids Res. 2012;41:D94–D100. doi: 10.1093/nar/gks955. PubMed DOI PMC

Brazda V., Fojta M., Bowater R.P. Structures and Stability of Simple DNA Repeats from Bacteria. Biochem. J. 2020;477:325–339. doi: 10.1042/BCJ20190703. PubMed DOI PMC

Brázda V., Luo Y., Bartas M., Kaura P., Porubiaková O., Št’astnỳ J., Pečinka P., Verga D., Da Cunha V., Takahashi T.S. G-Quadruplexes in the Archaea Domain. Biomolecules. 2020;10:1349. doi: 10.3390/biom10091349. PubMed DOI PMC

Rhodes D., Lipps H.J. G-Quadruplexes and Their Regulatory Roles in Biology. Nucleic Acids Res. 2015;43:8627–8637. doi: 10.1093/nar/gkv862. PubMed DOI PMC

Zeraati M., Langley D.B., Schofield P., Moye A.L., Rouet R., Hughes W.E., Bryan T.M., Dinger M.E., Christ D. I-Motif DNA Structures Are Formed in the Nuclei of Human Cells. Nat. Chem. 2018;10:631–637. doi: 10.1038/s41557-018-0046-3. PubMed DOI

Brázdová M., Tichý V., Helma R., Bažantová P., Polášková A., Krejčí A., Petr M., Navrátilová L., Tichá O., Nejedlý K., et al. P53 Specifically Binds Triplex DNA In Vitro and in Cells. PLoS ONE. 2016;11:e0167439. doi: 10.1371/journal.pone.0167439. PubMed DOI PMC

Chedin F., Benham C.J. Emerging Roles for R-Loop Structures in the Management of Topological Stress. J. Biol. Chem. 2020;295:4684–4695. doi: 10.1074/jbc.REV119.006364. PubMed DOI PMC

Xu P., Pan F., Roland C., Sagui C., Weninger K. Dynamics of Strand Slippage in DNA Hairpins Formed by CAG Repeats: Roles of Sequence Parity and Trinucleotide Interrupts. Nucleic Acids Res. 2020;48:2232–2245. doi: 10.1093/nar/gkaa036. PubMed DOI PMC

Fleming A.M., Zhu J., Jara-Espejo M., Burrows C.J. Cruciform DNA Sequences in Gene Promoters Can Impact Transcription upon Oxidative Modification of 2′-Deoxyguanosine. Biochemistry. 2020;59:2616–2626. doi: 10.1021/acs.biochem.0c00387. PubMed DOI

Bevilacqua P.C., Ritchey L.E., Su Z., Assmann S.M. Genome-Wide Analysis of RNA Secondary Structure. Annu. Rev. Genet. 2016;50:235–266. doi: 10.1146/annurev-genet-120215-035034. PubMed DOI

Shin S.-I., Ham S., Park J., Seo S.H., Lim C.H., Jeon H., Huh J., Roh T.-Y. Z-DNA-Forming Sites Identified by ChIP-Seq Are Associated with Actively Transcribed Regions in the Human Genome. DNA Res. 2016;23:477–486. doi: 10.1093/dnares/dsw031. PubMed DOI PMC

Spiegel J., Adhikari S., Balasubramanian S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020;2:123–136. doi: 10.1016/j.trechm.2019.07.002. PubMed DOI PMC

Varshney D., Spiegel J., Zyner K., Tannahill D., Balasubramanian S. The Regulation and Functions of DNA and RNA G-Quadruplexes. Nat. Rev. Mol. Cell Biol. 2020;21:459–474. doi: 10.1038/s41580-020-0236-x. PubMed DOI PMC

Kaushik M., Kaushik S., Roy K., Singh A., Mahendru S., Kumar M., Chaudhary S., Ahmed S., Kukreti S. A Bouquet of DNA Structures: Emerging Diversity. Biochem. Biophys. Rep. 2016;5:388–395. doi: 10.1016/j.bbrep.2016.01.013. PubMed DOI PMC

Masai H., Tanaka T. G-Quadruplex DNA and RNA: Their Roles in Regulation of DNA Replication and Other Biological Functions. Biochem. Biophys. Res. Commun. 2020;531:25–38. doi: 10.1016/j.bbrc.2020.05.132. PubMed DOI

Herbert A. Z-DNA and Z-RNA in Human Disease. Commun. Biol. 2019;2:1–10. doi: 10.1038/s42003-018-0237-x. PubMed DOI PMC

Yuan W.-F., Wan L.-Y., Peng H., Zhong Y.-M., Cai W.-L., Zhang Y.-Q., Ai W.-B., Wu J.-F. The Influencing Factors and Functions of DNA G-Quadruplexes. Cell Biochem. Funct. 2020;38:524–532. doi: 10.1002/cbf.3505. PubMed DOI PMC

Bacolla A., Cooper D.N., Vasquez K.M., Tainer J.A. eLS. American Cancer Society; Atlanta, GA, USA: 2018. Non-B DNA Structure and Mutations Causing Human Genetic Disease; pp. 1–15.

Bacolla A., Tainer J.A., Vasquez K.M., Cooper D.N. Translocation and Deletion Breakpoints in Cancer Genomes Are Associated with Potential Non-B DNA-Forming Sequences. Nucleic Acids Res. 2016;44:5673–5688. doi: 10.1093/nar/gkw261. PubMed DOI PMC

Cammas A., Millevoi S. RNA G-Quadruplexes: Emerging Mechanisms in Disease. Nucleic Acids Res. 2017;45:1584–1595. doi: 10.1093/nar/gkw1280. PubMed DOI PMC

Kharel P., Balaratnam S., Beals N., Basu S. The Role of RNA G-Quadruplexes in Human Diseases and Therapeutic Strategies. Wiley Interdiscip. Rev. RNA. 2020;11:e1568. doi: 10.1002/wrna.1568. PubMed DOI

Brázda V., Cerveň J., Bartas M., Mikysková N., Coufal J., Pečinka P. The Amino Acid Composition of Quadruplex Binding Proteins Reveals a Shared Motif and Predicts New Potential Quadruplex Interactors. Molecules. 2018;23 doi: 10.3390/molecules23092341. PubMed DOI PMC

Bartas M., Bažantová P., Brázda V., Liao J., Červeň J., Pečinka P. Identification of Distinct Amino Acid Composition of Human Cruciform Binding Proteins. Mol. Biol. 2019;53:97–106. doi: 10.1134/S0026893319010023. PubMed DOI

Consortium G.O. Expansion of the Gene Ontology Knowledgebase and Resources. Nucleic Acids Res. 2017;45:D331–D338. PubMed PMC

Consortium G.O. Gene Ontology Consortium: Going Forward. Nucleic Acids Res. 2015;43:D1049–D1056. doi: 10.1093/nar/gku1179. PubMed DOI PMC

Carbon S., Ireland A., Mungall C.J., Shu S., Marshall B., Lewis S., Hub A., Group W.P.W. AmiGO: Online Access to Ontology and Annotation Data. Bioinformatics. 2009;25:288–289. doi: 10.1093/bioinformatics/btn615. PubMed DOI PMC

Mishra S.K., Tawani A., Mishra A., Kumar A. G4IPDB: A Database for G-Quadruplex Structure Forming Nucleic Acid Interacting Proteins. Sci. Rep. 2016;6:38144. doi: 10.1038/srep38144. PubMed DOI PMC

Moccia F., Platella C., Musumeci D., Batool S., Zumrut H., Bradshaw J., Mallikaratchy P., Montesarchio D. The Role of G-Quadruplex Structures of LIGS-Generated Aptamers R1.2 and R1.3 in IgM Specific Recognition. Int. J. Biol. Macromol. 2019;133:839–849. doi: 10.1016/j.ijbiomac.2019.04.141. PubMed DOI PMC

Riccardi C., Napolitano E., Platella C., Musumeci D., Melone M.A.B., Montesarchio D. Anti-VEGF DNA-Based Aptamers in Cancer Therapeutics and Diagnostics. Med. Res. Rev. 2021;41:464–506. doi: 10.1002/med.21737. PubMed DOI

Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform Structures Are a Common DNA Feature Important for Regulating Biological Processes. BMC Mol. Biol. 2011;12:33. doi: 10.1186/1471-2199-12-33. PubMed DOI PMC

Kim C. How Z-DNA/RNA-binding Proteins Shape Homeostasis, Inflammation, and Immunity. BMB Rep. 2020;53:453–457. doi: 10.5483/BMBRep.2020.53.9.141. PubMed DOI PMC

Iwai K., Ishikawa K., Hayashi H. Amino-Acid Sequence of Slightly Lysine-Rich Histone. Nature. 1970;226:1056–1058. doi: 10.1038/2261056b0. PubMed DOI

Jukes T.H., Holmquist R., Moise H. Amino Acid Composition of Proteins: Selection against the Genetic Code. Science. 1975;189:50–51. doi: 10.1126/science.237322. PubMed DOI

Aukerman M.J., Schmidt R.J., Burr B., Burr F.A. An Arginine to Lysine Substitution in the BZIP Domain of an Opaque-2 Mutant in Maize Abolishes Specific DNA-binding. Genes Dev. 1991;5:310–320. doi: 10.1101/gad.5.2.310. PubMed DOI

Lee B., Thirunavukkarasu K., Zhou L., Pastore L., Baldini A., Hecht J., Geoffrey V., Ducy P., Karsenty G. Missense Mutations Abolishing DNA-binding of the Osteoblast-Specific Transcription Factor OSF2/CBFA1 in Cleidocranial Dysplasia. Nat. Genet. 1997;16:307–310. doi: 10.1038/ng0797-307. PubMed DOI

Siomi H., Choi M., Siomi M.C., Nussbaum R.L., Dreyfuss G. Essential Role for KH Domains in RNA-binding: Impaired RNA-binding by a Mutation in the KH Domain of FMR1 That Causes Fragile X Syndrome. Cell. 1994;77:33–39. doi: 10.1016/0092-8674(94)90232-1. PubMed DOI

Cheng S., Melkonian M., Smith S.A., Brockington S., Archibald J.M., Delaux P.-M., Li F.-W., Melkonian B., Mavrodiev E.V., Sun W., et al. 10KP: A Phylodiverse Genome Sequencing Plan. GigaScience. 2018;7 doi: 10.1093/gigascience/giy013. PubMed DOI PMC

Kriventseva E.V., Kuznetsov D., Tegenfeldt F., Manni M., Dias R., Simão F.A., Zdobnov E.M. OrthoDB V10: Sampling the Diversity of Animal, Plant, Fungal, Protist, Bacterial and Viral Genomes for Evolutionary and Functional Annotations of Orthologs. Nucleic Acids Res. 2019;47:D807–D811. doi: 10.1093/nar/gky1053. PubMed DOI PMC

Vacic V., Uversky V.N., Dunker A.K., Lonardi S. Composition Profiler: A Tool for Discovery and Visualization of Amino Acid Composition Differences. BMC Bioinform. 2007;8:211. doi: 10.1186/1471-2105-8-211. PubMed DOI PMC

Sivashankari S., Shanmughavel P. Functional Annotation of Hypothetical Proteins – A Review. Bioinformation. 2006;1:335–338. doi: 10.6026/97320630001335. PubMed DOI PMC

Cai Y., Lin S.L. Support Vector Machines for Predicting RRNA-, RNA-, and DNA-Binding Proteins from Amino Acid Sequence. Biochim. Et Biophys. Acta (Bba) - Proteins Proteom. 2003;1648:127–133. doi: 10.1016/S1570-9639(03)00112-2. PubMed DOI

Kumar M., Gromiha M.M., Raghava G.P. Identification of DNA-Binding Proteins Using Support Vector Machines and Evolutionary Profiles. BMC Bioinform. 2007;8:463. doi: 10.1186/1471-2105-8-463. PubMed DOI PMC

Standing K.G. Peptide and Protein de Novo Sequencing by Mass Spectrometry. Curr. Opin. Struct. Biol. 2003;13:595–601. doi: 10.1016/j.sbi.2003.09.005. PubMed DOI

Vitorino R., Guedes S., Trindade F., Correia I., Moura G., Carvalho P., Santos M.A.S., Amado F. De Novo Sequencing of Proteins by Mass Spectrometry. Expert Rev. Proteom. 2020;17:595–607. doi: 10.1080/14789450.2020.1831387. PubMed DOI

Gasteiger E., Hoogland C., Gattiker A., Wilkins M.R., Appel R.D., Bairoch A. The proteomics protocols handbook. Springer; Basel, Switzerland: 2005. Protein identification and analysis tools on the ExPASy server; pp. 571–607.

Cao D.-S., Xu Q.-S., Liang Y.-Z. Propy: A Tool to Generate Various Modes of Chou’s PseAAC. Bioinformatics. 2013;29:960–962. doi: 10.1093/bioinformatics/btt072. PubMed DOI

Vishnoi S., Garg P., Arora P. Physicochemical N-Grams Tool: A Tool for Protein Physicochemical Descriptor Generation via Chou’s 5-Step Rule. Chem. Biol. Drug Des. 2020;95:79–86. doi: 10.1111/cbdd.13617. PubMed DOI

Zuo Y., Li Y., Chen Y., Li G., Yan Z., Yang L. PseKRAAC: A Flexible Web Server for Generating Pseudo K-Tuple Reduced Amino Acids Composition. Bioinformatics. 2017;33:122–124. doi: 10.1093/bioinformatics/btw564. PubMed DOI

Hudson W.H., Ortlund E.A. The Structure, Function and Evolution of Proteins That Bind DNA and RNA. Nat. Rev.. Mol. Cell Biol. 2014;15:749–760. doi: 10.1038/nrm3884. PubMed DOI PMC

Terribilini M., Lee J.-H., Yan C., Jernigan R.L., Honavar V., Dobbs D. Prediction of RNA-binding Sites in Proteins from Amino Acid Sequence. RNA. 2006;12:1450–1462. doi: 10.1261/rna.2197306. PubMed DOI PMC

Zhang J., Ma Z., Kurgan L. Comprehensive Review and Empirical Analysis of Hallmarks of DNA-, RNA-and Protein-Binding Residues in Protein Chains. Brief. Bioinform. 2019;20:1250–1268. doi: 10.1093/bib/bbx168. PubMed DOI

Michalek J.L., Besold A.N., Michel S.L.J. Cysteine and Histidine Shuffling: Mixing and Matching Cysteine and Histidine Residues in Zinc Finger Proteins to Afford Different Folds and Function. Dalton Trans. 2011;40:12619–12632. doi: 10.1039/c1dt11071c. PubMed DOI

Laity J.H., Lee B.M., Wright P.E. Zinc Finger Proteins: New Insights into Structural and Functional Diversity. Curr. Opin. Struct. Biol. 2001;11:39–46. doi: 10.1016/S0959-440X(00)00167-6. PubMed DOI

Yesudhas D., Batool M., Anwar M.A., Panneerselvam S., Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes. 2017;8:192. doi: 10.3390/genes8080192. PubMed DOI PMC

Ahmad M., Xu D., Wang W. Type IA Topoisomerases Can Be “Magicians” for Both DNA and RNA in All Domains of Life. RNA Biol. 2017;14:854–864. doi: 10.1080/15476286.2017.1330741. PubMed DOI PMC

Aravind L., Anantharaman V., Balaji S., Babu M.M., Iyer L.M. The Many Faces of the Helix-Turn-Helix Domain: Transcription Regulation and Beyond. FEMS Microbiol Rev. 2005;29:231–262. doi: 10.1016/j.femsre.2004.12.008. PubMed DOI

Atchley W.R., Fitch W.M. A Natural Classification of the Basic Helix–Loop–Helix Class of Transcription Factors. Proc. Natl. Acad. Sci. USA. 1997;94:5172–5176. doi: 10.1073/pnas.94.10.5172. PubMed DOI PMC

Casey B.H., Kollipara R.K., Pozo K., Johnson J.E. Intrinsic DNA-binding Properties Demonstrated for Lineage-Specifying Basic Helix-Loop-Helix Transcription Factors. [(accessed on 2 January 2021)]; Available online: http://genome.cshlp.org. PubMed PMC

Hakoshima T. eLS. American Cancer Society; Atlanta, GA, USA: 2014. Leucine Zippers.

Miller M. The Importance of Being Flexible: The Case of Basic Region Leucine Zipper Transcriptional Regulators. Curr. Protein Pept. Sci. 2009;10:244–269. doi: 10.2174/138920309788452164. PubMed DOI PMC

Yagi R., Miyazaki T., Oyoshi T. G-Quadruplex Binding Ability of TLS/FUS Depends on the β-Spiral Structure of the RGG Domain. Nucleic Acids Res. 2018;46:5894–5901. doi: 10.1093/nar/gky391. PubMed DOI PMC

Ishiguro A., Kimura N., Noma T., Shimo-Kon R., Ishihama A., Kon T. Molecular Dissection of ALS-Linked TDP-43 – Involvement of the Gly-Rich Domain in Interaction with G-Quadruplex MRNA. FEBS Lett. 2020;594:2254–2265. doi: 10.1002/1873-3468.13800. PubMed DOI

Takahama K., Oyoshi T. Specific Binding of Modified RGG Domain in TLS/FUS to G-Quadruplex RNA: Tyrosines in RGG Domain Recognize 2′-OH of the Riboses of Loops in G-Quadruplex. J. Am. Chem. Soc. 2013;135:18016–18019. doi: 10.1021/ja4086929. PubMed DOI

Bartas M., Červeň J., Pečinka P. Identification of Distinct Amino Acid Composition of Z-DNA/RNA and Triplex-Binding Proteins. Mol. Bio. 53:97–106. PubMed

Ribeiro de Almeida C., Dhir S., Dhir A., Moghaddam A.E., Sattentau Q., Meinhart A., Proudfoot N.J. RNA Helicase DDX1 Converts RNA G-Quadruplex Structures into R-Loops to Promote IgH Class Switch Recombination. Mol. Cell. 2018;70:650–662.e8. doi: 10.1016/j.molcel.2018.04.001. PubMed DOI PMC

Cai B.-H., Chao C.-F., Huang H.-C., Lee H.-Y., Kannagi R., Chen J.-Y. Roles of P53 Family Structure and Function in Non-Canonical Response Element Binding and Activation. Int. J. Mol. Sci. 2019;20:3681. doi: 10.3390/ijms20153681. PubMed DOI PMC

Bossone S.A., Asselin C., Patel A.J., Marcu K.B. MAZ, a Zinc Finger Protein, Binds to c-MYC and C2 Gene Sequences Regulating Transcriptional Initiation and Termination. Proc. Natl. Acad. Sci. USA. 1992;89:7452–7456. doi: 10.1073/pnas.89.16.7452. PubMed DOI PMC

Cogoi S., Zorzet S., Rapozzi V., Géci I., Pedersen E.B., Xodo L.E. MAZ-Binding G4-Decoy with Locked Nucleic Acid and Twisted Intercalating Nucleic Acid Modifications Suppresses KRAS in Pancreatic Cancer Cells and Delays Tumor Growth in Mice. Nucleic Acids Res. 2013;41:4049–4064. doi: 10.1093/nar/gkt127. PubMed DOI PMC

Dominguez D., Freese P., Alexis M.S., Su A., Hochman M., Palden T., Bazile C., Lambert N.J., Van Nostrand E.L., Pratt G.A., et al. Sequence, Structure, and Context Preferences of Human RNA-binding Proteins. Mol. Cell. 2018;70:854–867. doi: 10.1016/j.molcel.2018.05.001. PubMed DOI PMC

Laptenko O., Tong D.R., Manfredi J., Prives C. The Tail That Wags the Dog: How the Disordered C-Terminal Domain Controls the Transcriptional Activities of the P53 Tumor-Suppressor Protein. Trends Biochem. Sci. 2016;41:1022–1034. doi: 10.1016/j.tibs.2016.08.011. PubMed DOI PMC

Petr M., Helma R., Polášková A., Krejčí A., Dvořáková Z., Kejnovská I., Navrátilová L., Adámik M., Vorlíčková M., Brázdová M. Wild-Type P53 Binds to MYC Promoter G-Quadruplex. Biosci. Rep. 2016;36 doi: 10.1042/BSR20160232. PubMed DOI PMC

Inukai S., Kock K.H., Bulyk M.L. Transcription Factor–DNA-binding: Beyond Binding Site Motifs. Curr. Opin. Genet. Dev. 2017;43:110–119. doi: 10.1016/j.gde.2017.02.007. PubMed DOI PMC

Wang C., Uversky V.N., Kurgan L. Disordered Nucleiome: Abundance of Intrinsic Disorder in the DNA- and RNA-Binding Proteins in 1121 Species from Eukaryota, Bacteria and Archaea. Proteomics. 2016;16:1486–1498. doi: 10.1002/pmic.201500177. PubMed DOI

Watson M., Stott K. Disordered Domains in Chromatin-Binding Proteins. Essays Biochem. 2019;63:147–156. doi: 10.1042/EBC20180068. PubMed DOI

Turner A.L., Watson M., Wilkins O.G., Cato L., Travers A., Thomas J.O., Stott K. Highly Disordered Histone H1−DNA Model Complexes and Their Condensates. Proc. Natl. Acad. Sci. USA. 2018;115:11964–11969. doi: 10.1073/pnas.1805943115. PubMed DOI PMC

Serrano P., Aubol B.E., Keshwani M.M., Forli S., Ma C.-T., Dutta S.K., Geralt M., Wüthrich K., Adams J.A. Directional Phosphorylation and Nuclear Transport of the Splicing Factor SRSF1 Is Regulated by an RNA Recognition Motif. J. Mol. Biol. 2016;428:2430–2445. doi: 10.1016/j.jmb.2016.04.009. PubMed DOI PMC

Von Hacht A.V., Seifert O., Menger M., Schütze T., Arora A., Konthur Z., Neubauer P., Wagner A., Weise C., Kurreck J. Identification and Characterization of RNA Guanine-Quadruplex Binding Proteins. Nucleic Acids Res. 2014;42:6630–6644. doi: 10.1093/nar/gku290. PubMed DOI PMC

Huang Z.-L., Dai J., Luo W.-H., Wang X.-G., Tan J.-H., Chen S.-B., Huang Z.-S. Identification of G-Quadruplex-Binding Protein from the Exploration of RGG Motif/G-Quadruplex Interactions. J. Am. Chem. Soc. 2018;140:17945–17955. doi: 10.1021/jacs.8b09329. PubMed DOI

Rigo R., Palumbo M., Sissi C. G-Quadruplexes in Human Promoters: A Challenge for Therapeutic Applications. Biochim. Et Biophys. Acta (Bba)-Gen. Subj. 2017;1861:1399–1413. doi: 10.1016/j.bbagen.2016.12.024. PubMed DOI

Poggi L., Richard G.-F. Alternative DNA Structures In Vivo: Molecular Evidence and Remaining Questions. Microbiol. Mol. Biol. Rev. 2020;85 doi: 10.1128/MMBR.00110-20. PubMed DOI PMC

Sissi C., Gatto B., Palumbo M. The Evolving World of Protein-G-Quadruplex Recognition: A Medicinal Chemist’s Perspective. Biochimie. 2011;93:1219–1230. doi: 10.1016/j.biochi.2011.04.018. PubMed DOI PMC

Brázda V., Coufal J. Recognition of Local DNA Structures by P53 Protein. Int. J. Mol. Sci. 2017;18:375. doi: 10.3390/ijms18020375. PubMed DOI PMC

Sun Z.-Y., Wang X.-N., Cheng S.-Q., Su X.-X., Ou T.-M. Developing Novel G-Quadruplex Ligands: From Interaction with Nucleic Acids to Interfering with Nucleic Acid–Protein Interaction. Molecules. 2019;24:396. doi: 10.3390/molecules24030396. PubMed DOI PMC

Kharel P., Becker G., Tsvetkov V., Ivanov P. Properties and Biological Impact of RNA G-Quadruplexes: From Order to Turmoil and Back. Nucleic Acids Res. 2020;48:12534–12555. doi: 10.1093/nar/gkaa1126. PubMed DOI PMC

Lee T., Pelletier J. The Biology of DHX9 and Its Potential as a Therapeutic Target. Oncotarget. 2016;7:42716–42739. doi: 10.18632/oncotarget.8446. PubMed DOI PMC

Turcotte M.-A., Garant J.-M., Cossette-Roberge H., Perreault J.-P. Guanine Nucleotide-Binding Protein-Like 1 (GNL1) Binds RNA G-Quadruplex Structures in Genes Associated with Parkinson’s Disease. RNA Biol. 2020:1–15. doi: 10.1080/15476286.2020.1847866. PubMed DOI PMC

Bolduc F., Turcotte M.-A., Perreault J.-P. The Small Nuclear Ribonucleoprotein Polypeptide A (SNRPA) Binds to the G-Quadruplex of the BAG-1 5′UTR. Biochimie. 2020;176:122–127. doi: 10.1016/j.biochi.2020.06.013. PubMed DOI

Clemo N.K., Collard T.J., Southern S.L., Edwards K.D., Moorghen M., Packham G., Hague A., Paraskeva C., Williams A.C. BAG-1 Is up-Regulated in Colorectal Tumour Progression and Promotes Colorectal Tumour Cell Survival through Increased NF-ΚB Activity. Carcinogenesis. 2008;29:849–857. doi: 10.1093/carcin/bgn004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace