The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes

. 2017 Apr 04 ; 7 (1) : 631. [epub] 20170404

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28377575
Odkazy

PubMed 28377575
PubMed Central PMC5428876
DOI 10.1038/s41598-017-00632-8
PII: 10.1038/s41598-017-00632-8
Knihovny.cz E-zdroje

Mitochondrial nucleoids consist of several different groups of proteins, many of which are involved in essential cellular processes such as the replication, repair and transcription of the mitochondrial genome. The eukaryotic, ATP-dependent protease Lon is found within the central nucleoid region, though little is presently known about its role there. Aside from its association with mitochondrial nucleoids, human Lon also specifically interacts with RNA. Recently, Lon was shown to regulate TFAM, the most abundant mtDNA structural factor in human mitochondria. To determine whether Lon also regulates other mitochondrial nucleoid- or ribosome-associated proteins, we examined the in vitro digestion profiles of the Saccharomyces cerevisiae TFAM functional homologue Abf2, the yeast mtDNA maintenance protein Mgm101, and two human mitochondrial proteins, Twinkle helicase and the large ribosomal subunit protein MrpL32. Degradation of Mgm101 was also verified in vivo in yeast mitochondria. These experiments revealed that all four proteins are actively degraded by Lon, but that three of them are protected from it when bound to a nucleic acid; the Twinkle helicase is not. Such a regulatory mechanism might facilitate dynamic changes to the mitochondrial nucleoid, which are crucial for conducting mitochondrial functions and maintaining mitochondrial homeostasis.

Zobrazit více v PubMed

Gilkerson R, et al. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis. Cold Spring Harb. Perspect. Biol. 2013;5:a011080. doi: 10.1101/cshperspect.a011080. PubMed DOI PMC

Fisher RP, Clayton DA. Purification and characterization of human mitochondrial transcription factor 1. Mol. Cell. Biol. 1988;8:3496–3509. doi: 10.1128/MCB.8.8.3496. PubMed DOI PMC

Kaufman BA, et al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures. Mol. Biol. Cell. 2007;18:3225–3236. doi: 10.1091/mbc.E07-05-0404. PubMed DOI PMC

Matsushima Y, Goto Y, Kaguni LS. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM) Proc. Natl. Acad. Sci. USA. 2010;107:18410–18415. doi: 10.1073/pnas.1008924107. PubMed DOI PMC

Matsushima Y, Kaguni LS. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta. 2012;1819:1080–1087. doi: 10.1016/j.bbagrm.2011.11.008. PubMed DOI PMC

Ekstrand MI, et al. Mitochondrial transcription factor A regulates mtDNA copy number in mammals. Hum Mol Genet. 2004;13:935–944. doi: 10.1093/hmg/ddh109. PubMed DOI

Alam TI, et al. Human mitochondrial DNA is packaged with TFAM. Nucleic Acids Res. 2003;31:1640–1645. doi: 10.1093/nar/gkg251. PubMed DOI PMC

Kukat C, et al. Cross-strand binding of TFAM to a single mtDNA molecule forms the mitochondrial nucleoid. Proc. Natl. Acad. Sci. USA. 2015;112:11288–11293. doi: 10.1073/pnas.1512131112. PubMed DOI PMC

Lu B, et al. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol. Cell. 2013;49:121–132. doi: 10.1016/j.molcel.2012.10.023. PubMed DOI PMC

Chen XJ, Butow RA. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 2005;6:815–825. doi: 10.1038/nrg1708. PubMed DOI

Lu B, et al. Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J. Biol. Chem. 2007;282:17363–17374. doi: 10.1074/jbc.M611540200. PubMed DOI

Suzuki CK, Suda K, Wang N, Schatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science. 1994;264:891. doi: 10.1126/science.8178144. PubMed DOI

Bota DA, Davies KJ. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat. Cell. Biol. 2002;4:674–680. doi: 10.1038/ncb836. PubMed DOI

Wagner I, Arlt H, van Dyck L, Langer T, Neupert W. Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J. 1994;13:5135–5145. PubMed PMC

Rep M, et al. Promotion of mitochondrial membrane complex assembly by a proteolytically inactive yeast Lon. Science. 1996;274:103–106. doi: 10.1126/science.274.5284.103. PubMed DOI

Rotanova TV, et al. Slicing a protease: structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci. 2006;15:1815–1828. doi: 10.1110/ps.052069306. PubMed DOI PMC

Garcia-Nafria J, et al. Structure of the catalytic domain of the human mitochondrial Lon protease: proposed relation of oligomer formation and activity. Protein Sci. 2010;19:987–999. PubMed PMC

Kereiche S, et al. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Sci. Rep. 2016;6:33631. doi: 10.1038/srep33631. PubMed DOI PMC

Lee I, Suzuki CK. Functional mechanics of the ATP-dependent Lon protease- lessons from endogenous protein and synthetic peptide substrates. Biochim. Biophys. Acta. 2008;1784:727–735. doi: 10.1016/j.bbapap.2008.02.010. PubMed DOI PMC

Bota DA, Ngo JK, Davies KJ. Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. Free Radic. Biol. Med. 2005;38:665–677. doi: 10.1016/j.freeradbiomed.2004.11.017. PubMed DOI

Major T, von Janowsky B, Ruppert T, Mogk A, Voos W. Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol. Cell. Biol. 2006;26:762–776. doi: 10.1128/MCB.26.3.762-776.2006. PubMed DOI PMC

Ondrovicova G, et al. Cleavage site selection within a folded substrate by the ATP-dependent lon protease. J. Biol. Chem. 2005;280:25103–25110. doi: 10.1074/jbc.M502796200. PubMed DOI

Suzuki CK, et al. ATP-dependent proteases that also chaperone protein biogenesis. Trends Biochem. Sci. 1997;22:118–123. doi: 10.1016/S0968-0004(97)01020-7. PubMed DOI

Bayot A, et al. Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J. Biol. Chem. 2010;285:11445–11457. doi: 10.1074/jbc.M109.065425. PubMed DOI PMC

Granot Z, Melamed-Book N, Bahat A, Orly J. Turnover of StAR protein: roles for the proteasome and mitochondrial proteases. Mol. Cell. Endocrinol. 2007;265–266:51–58. doi: 10.1016/j.mce.2006.12.003. PubMed DOI

Korhonen JA, Pham XH, Pellegrini M, Falkenberg M. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 2004;23:2423–2429. doi: 10.1038/sj.emboj.7600257. PubMed DOI PMC

Mbantenkhu M, et al. A short carboxyl-terminal tail is required for single-stranded DNA binding, higher-order structural organization, and stability of the mitochondrial single-stranded annealing protein Mgm101. Mol. Biol. Cell. 2013;24:1507–1518. doi: 10.1091/mbc.E13-01-0006. PubMed DOI PMC

Pevala V, et al. The structure and DNA-binding properties of Mgm101 from a yeast with a linear mitochondrial genome. Nucleic Acids Res. 2016;44:2227–2239. doi: 10.1093/nar/gkv1529. PubMed DOI PMC

Nolden M, et al. The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell. 2005;123:277–289. doi: 10.1016/j.cell.2005.08.003. PubMed DOI

Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA. 1993;90:11247–11251. doi: 10.1073/pnas.90.23.11247. PubMed DOI PMC

Wang N, Maurizi MR, Emmert-Buck L, Gottesman MM. Synthesis, processing, and localization of human Lon protease. J. Biol. Chem. 1994;269:29308–29313. PubMed

Bogenhagen DF, Rousseau D, Burke S. The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 2008;283:3665–3675. doi: 10.1074/jbc.M708444200. PubMed DOI

Rajala N, et al. Whole cell formaldehyde cross-linking simplifies purification of mitochondrial nucleoids and associated proteins involved in mitochondrial gene expression. PLoS One. 2015;10:e0116726. doi: 10.1371/journal.pone.0116726. PubMed DOI PMC

Brewer LR, et al. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys J. 2003;85:2519–2524. doi: 10.1016/S0006-3495(03)74674-8. PubMed DOI PMC

Diffley JF, Stillman B. DNA binding properties of an HMG1-related protein from yeast mitochondria. J. Biol. Chem. 1992;267:3368–3374. PubMed

Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 1979;100:95–97. doi: 10.1016/0003-2697(79)90115-5. PubMed DOI

Ambro L, et al. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities. FEBS J. 2014;281:1784–1797. doi: 10.1111/febs.12740. PubMed DOI

Liu T, et al. DNA and RNA binding by the mitochondrial lon protease is regulated by nucleotide and protein substrate. J. Biol. Chem. 2004;279:13902–13910. doi: 10.1074/jbc.M309642200. PubMed DOI

Fu GK, Markovitz DM. The human LON protease binds to mitochondrial promoters in a single-stranded, site-specific, strand-specific manner. Biochemistry. 1998;37:1905–1909. doi: 10.1021/bi970928c. PubMed DOI

Esser K, Tursun B, Ingenhoven M, Michaelis G, Pratje E. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 2002;323:835–843. doi: 10.1016/S0022-2836(02)01000-8. PubMed DOI

Bonn F, Tatsuta T, Petrungaro C, Riemer J, Langer T. Presequence-dependent folding ensures MrpL32 processing by the m-AAA protease in mitochondria. EMBO J. 2011;30:2545–2556. doi: 10.1038/emboj.2011.169. PubMed DOI PMC

Ondrovičová, G., Hlinková, V., Bauer, J. & Kutejová, E. In ATP-Dependent Proteases (ed E. Kutejová) 1–40 (2008).

Kucej M, Kucejova B, Subramanian R, Chen XJ, Butow RA. Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J. Cell Sci. 2008;121:1861–1868. doi: 10.1242/jcs.028605. PubMed DOI PMC

Newman SM, Zelenaya-Troitskaya O, Perlman PS, Butow RA. Analysis of mitochondrial DNA nucleoids in wild-type and a mutant strain of Saccharomyces cerevisiae that lacks the mitochondrial HMG box protein Abf2p. Nucleic Acids Res. 1996;24:386–393. doi: 10.1093/nar/24.2.386. PubMed DOI PMC

O’Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins. Mol. Cell. Biol. 2002;22:4086–4093. doi: 10.1128/MCB.22.12.4086-4093.2002. PubMed DOI PMC

Kao LR, Megraw TL, Chae CB. Essential role of the HMG domain in the function of yeast mitochondrial histone HM: functional complementation of HM by the nuclear nonhistone protein NHP6A. Proc. Natl. Acad. Sci. USA. 1993;90:5598–5602. doi: 10.1073/pnas.90.12.5598. PubMed DOI PMC

Parisi MA, Xu B, Clayton DA. A human mitochondrial transcriptional activator can functionally replace a yeast mitochondrial HMG-box protein both in vivo and in vitro. Mol. Cell. Biol. 1993;13:1951–1961. doi: 10.1128/MCB.13.3.1951. PubMed DOI PMC

Gur E, Sauer RT. Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine. Proc. Natl. Acad. Sci. USA. 2009;106:18503–18508. doi: 10.1073/pnas.0910392106. PubMed DOI PMC

Rubio-Cosials A, et al. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat. Struct. Mol. Biol. 2011;18:1281–1289. doi: 10.1038/nsmb.2160. PubMed DOI

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10:845–858. doi: 10.1038/nprot.2015.053. PubMed DOI PMC

Amunts A, Brown A, Toots J, Scheres SH, Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science. 2015;348:95–98. doi: 10.1126/science.aaa1193. PubMed DOI PMC

Hayward DC, Dosztanyi Z, Clark-Walker GD. The N-terminal intrinsically disordered domain of Mgm101p is localized to the mitochondrial nucleoid. PLoS One. 2013;8:e56465. doi: 10.1371/journal.pone.0056465. PubMed DOI PMC

Mbantenkhu M, et al. Mgm101 is a Rad52-related protein required for mitochondrial DNA recombination. J. Biol. Chem. 2011;286:42360–42370. doi: 10.1074/jbc.M111.307512. PubMed DOI PMC

McKinney EA, Oliveira MT. Replicating animal mitochondrial DNA. Genet. Mol. Biol. 2013;36:308–315. doi: 10.1590/S1415-47572013000300002. PubMed DOI PMC

Fernandez-Millan P, et al. The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Res. 2015;43:4284–4295. doi: 10.1093/nar/gkv189. PubMed DOI PMC

Trakselis, M. A. Structural Mechanisms of Hexameric Helicase Loading, Assembly, and Unwinding. F1000Res5 (2016). PubMed PMC

Lo YH, et al. The crystal structure of a replicative hexameric helicase DnaC and its complex with single-stranded DNA. Nucleic Acids Res. 2009;37:804–814. doi: 10.1093/nar/gkn999. PubMed DOI PMC

Berrow NS, et al. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 2007;35:e45. doi: 10.1093/nar/gkm047. PubMed DOI PMC

van Dijl JM, et al. The ATPase and protease domains of yeast mitochondrial Lon: roles in proteolysis and respiration-dependent growth. Proc. Natl. Acad. Sci. USA. 1998;95:10584–10589. doi: 10.1073/pnas.95.18.10584. PubMed DOI PMC

Suzuki CK, Kutejova E, Suda K. Analysis and purification of ATP-dependent mitochondrial lon protease of Saccharomyces cerevisiae. Methods Enzymol. 1995;260:486–494. doi: 10.1016/0076-6879(95)60160-0. PubMed DOI

Kutejova E, Durcova G, Surovkova E, Kuzela S. Yeast mitochondrial ATP-dependent protease: purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett. 1993;329:47–50. doi: 10.1016/0014-5793(93)80190-6. PubMed DOI

Matulova P, et al. Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates. J. Biol. Chem. 2009;284:7733–7745. doi: 10.1074/jbc.M806192200. PubMed DOI PMC

R Core Team R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016).

Mumberg D, Muller R, Funk M. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 1994;22:5767–5768. doi: 10.1093/nar/22.25.5767. PubMed DOI PMC

Simon JR. Transformation of intact yeast cells by electroporation. Methods Enzymol. 1993;217:478–483. doi: 10.1016/0076-6879(93)17085-J. PubMed DOI

Pevala V, Kolarov J, Polcic P. Alterations in mitochondrial morphology of Schizosaccharomyces pombe induced by cell-death promoting agents. Folia Microbiol. (Praha) 2007;52:381–390. doi: 10.1007/BF02932093. PubMed DOI

Dubaquie Y, Looser R, Rospert S. Purification of yeast mitochondrial Hsp60. Methods Mol. Biol. 2000;140:139–143. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...