Polyphosphate and tyrosine phosphorylation in the N-terminal domain of the human mitochondrial Lon protease disrupts its functions
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
894 Grant No. 1825144Y
Grantová Agentura České Republiky
894 Grant No. 1825144Y
Grantová Agentura České Republiky
894 Grant No. 1825144Y
Grantová Agentura České Republiky
StruBioMol, ITMS: 305011X666
Interreg
StruBioMol, ITMS: 305011X666
Interreg
StruBioMol, ITMS: 305011X666
Interreg
StruBioMol, ITMS: 305011X666
Interreg
StruBioMol, ITMS: 305011X666
Interreg
UP CIISB (No. CZ.02.1.01/0.0/0.0/18_046/0015974)
European Regional Development Fund, European Union
UP CIISB (No. CZ.02.1.01/0.0/0.0/18_046/0015974)
European Regional Development Fund, European Union
BIOMEDIRES - II. stage, ITMS: 313011W428
European Regional Development Fund
APVV-15-0375, APVV-19-0298
Agentúra na Podporu Výskumu a Vývoja
APVV-15-0375, APVV-19-0298
Agentúra na Podporu Výskumu a Vývoja
2/0069/23
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2/0069/23
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
38688959
PubMed Central
PMC11061198
DOI
10.1038/s41598-024-60030-9
PII: 10.1038/s41598-024-60030-9
Knihovny.cz E-zdroje
- MeSH
- elektronová kryomikroskopie MeSH
- fosforylace MeSH
- lidé MeSH
- mitochondrie * metabolismus MeSH
- polyfosfáty * metabolismus MeSH
- proteasa La * metabolismus MeSH
- proteinové domény MeSH
- tyrosin * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polyfosfáty * MeSH
- proteasa La * MeSH
- tyrosin * MeSH
Phosphorylation plays a crucial role in the regulation of many fundamental cellular processes. Phosphorylation levels are increased in many cancer cells where they may promote changes in mitochondrial homeostasis. Proteomic studies on various types of cancer identified 17 phosphorylation sites within the human ATP-dependent protease Lon, which degrades misfolded, unassembled and oxidatively damaged proteins in mitochondria. Most of these sites were found in Lon's N-terminal (NTD) and ATPase domains, though little is known about the effects on their function. By combining the biochemical and cryo-electron microscopy studies, we show the effect of Tyr186 and Tyr394 phosphorylations in Lon's NTD, which greatly reduce all Lon activities without affecting its ability to bind substrates or perturbing its tertiary structure. A substantial reduction in Lon's activities is also observed in the presence of polyphosphate, whose amount significantly increases in cancer cells. Our study thus provides an insight into the possible fine-tuning of Lon activities in human diseases, which highlights Lon's importance in maintaining proteostasis in mitochondria.
CEITEC Masaryk University in Brno Brno Czech Republic
Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Kruse R, Hojlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion. 2017;33:45–57. doi: 10.1016/j.mito.2016.08.004. PubMed DOI
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci. Ther. 2019;25:837–858. doi: 10.1111/cns.13141. PubMed DOI PMC
Pinti M, et al. Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim. Biophys. Acta. 1857;1300–1306:2016. doi: 10.1016/j.bbabio.2016.03.025. PubMed DOI
Gibellini L, et al. The biology of Lonp1: More than a mitochondrial protease. Int. Rev. Cell Mol. Biol. 2020;354:1–61. doi: 10.1016/bs.ircmb.2020.02.005. PubMed DOI
Matsushima Y, Goto Y, Kaguni LS. Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM) Proc. Natl. Acad. Sci. U S A. 2010;107:18410–18415. doi: 10.1073/pnas.1008924107. PubMed DOI PMC
Pinti M, et al. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell Mol. Life Sci. 2015;72:4807–4824. doi: 10.1007/s00018-015-2039-3. PubMed DOI PMC
Ngo JK, Davies KJ. Mitochondrial Lon protease is a human stress protein. Free Radic. Biol. Med. 2009;46:1042–1048. doi: 10.1016/j.freeradbiomed.2008.12.024. PubMed DOI PMC
Pinti M, et al. Functional characterization of the promoter of the human Lon protease gene. Mitochondrion. 2011;11:200–206. doi: 10.1016/j.mito.2010.09.010. PubMed DOI
Ghosh JC, et al. Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene. 2019;38:6926–6939. doi: 10.1038/s41388-019-0939-7. PubMed DOI PMC
Wlodawer A, Sekula B, Gustchina A, Rotanova TV. Structure and the mode of activity of lon proteases from diverse organisms. J. Mol. Biol. 2022;434:167504. doi: 10.1016/j.jmb.2022.167504. PubMed DOI PMC
Botos I, et al. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 2004;279:8140–8148. doi: 10.1074/jbc.M312243200. PubMed DOI
Baker TA, Sauer RT. ATP-dependent proteases of bacteria: Recognition logic and operating principles. Trends Biochem. Sci. 2006;31:647–653. doi: 10.1016/j.tibs.2006.10.006. PubMed DOI PMC
Cheng I, et al. Identification of a region in the N-terminus of Escherichia coli Lon that affects ATPase, substrate translocation and proteolytic activity. J. Mol. Biol. 2012;418:208–225. doi: 10.1016/j.jmb.2012.02.039. PubMed DOI
Shin M, et al. Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Nat. Commun. 2021;12:3239. doi: 10.1038/s41467-021-23495-0. PubMed DOI PMC
Kereiche S, et al. The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease. Sci. Rep. 2016;6:33631. doi: 10.1038/srep33631. PubMed DOI PMC
Mohammed I, et al. Catalytic cycling of human mitochondrial Lon protease. Structure. 2022;30:1254–1268. doi: 10.1016/j.str.2022.06.006. PubMed DOI
Gesé GV, et al. A dual allosteric pathway drives human mitochondrial Lon. bioRxiv. 2021 doi: 10.1101/2021.06.09.447696. DOI
Tzeng SR, et al. Molecular insights into substrate recognition and discrimination by the N-terminal domain of Lon AAA+ protease. Elife. 2021;10:e64056. doi: 10.7554/eLife.64056. PubMed DOI PMC
Hornbeck PV, et al. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–520. doi: 10.1093/nar/gku1267. PubMed DOI PMC
Li J, et al. A chemical and phosphoproteomic characterization of dasatinib action in lung cancer. Nat. Chem. Biol. 2010;6:291–299. doi: 10.1038/nchembio.332. PubMed DOI PMC
Bai Y, et al. Phosphoproteomics identifies driver tyrosine kinases in sarcoma cell lines and tumors. Cancer Res. 2012;72:2501–2511. doi: 10.1158/0008-5472.CAN-11-3015. PubMed DOI PMC
Chae YC, et al. Mitochondrial Akt regulation of hypoxic tumor reprogramming. Cancer Cell. 2016;30:257–272. doi: 10.1016/j.ccell.2016.07.004. PubMed DOI PMC
Boyineni J, et al. Inorganic polyphosphate as an energy source in tumorigenesis. Oncotarget. 2020;11:4613–4624. doi: 10.18632/oncotarget.27838. PubMed DOI PMC
Kuroda A. A polyphosphate-lon protease complex in the adaptation of Escherichia coli to amino acid starvation. Biosci. Biotechnol. Biochem. 2006;70:325–331. doi: 10.1271/bbb.70.325. PubMed DOI
Lu B. Mitochondrial Lon protease and cancer. Adv. Exp. Med. Biol. 2017;1038:173–182. doi: 10.1007/978-981-10-6674-0_12. PubMed DOI
Rogerson DT, et al. Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. Nat. Chem. Biol. 2015;11:496–503. doi: 10.1038/nchembio.1823. PubMed DOI PMC
Xie J, Supekova L, Schultz PG. A genetically encoded metabolically stable analogue of phosphotyrosine in Escherichia coli. ACS Chem. Biol. 2007;2:474–478. doi: 10.1021/cb700083w. PubMed DOI
Kunova N, et al. The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci. Rep. 2017;7:631. doi: 10.1038/s41598-017-00632-8. PubMed DOI PMC
Schneider CA, Rasband WS, Eliceiri KW. NIH image to IMAGEJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 1979;100:95–97. doi: 10.1016/0003-2697(79)90115-5. PubMed DOI
Kumble KD, Kornberg A. Inorganic polyphosphate in mammalian cells and tissues. J. Biol. Chem. 1995;270:5818–5822. doi: 10.1074/jbc.270.11.5818. PubMed DOI
Menon AS, Goldberg AL. Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. Biol. Chem. 1987;262:14929–14934. doi: 10.1016/S0021-9258(18)48117-3. PubMed DOI
Gibellini L, et al. Silencing of mitochondrial Lon protease deeply impairs mitochondrial proteome and function in colon cancer cells. FASEB J. 2014;28:5122–5135. doi: 10.1096/fj.14-255869. PubMed DOI
Suzuki CK, Suda K, Wang N, Schatz G. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science. 1994;264:891. doi: 10.1126/science.8178144. PubMed DOI
Bernstein SH, et al. The mitochondrial ATP-dependent Lon protease: A novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood. 2012;119:3321–3329. doi: 10.1182/blood-2011-02-340075. PubMed DOI PMC
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007;372:774–797. doi: 10.1016/j.jmb.2007.05.022. PubMed DOI
Kulakovskaya EV, Zemskova MY, Kulakovskaya TV. Inorganic polyphosphate and cancer. Biochemistry (Mosc) 2018;83:961–968. doi: 10.1134/S0006297918080072. PubMed DOI
Pavlov E, et al. Inorganic polyphosphate and energy metabolism in mammalian cells. J. Biol. Chem. 2010;285:9420–9428. doi: 10.1074/jbc.M109.013011. PubMed DOI PMC
Gray MJ. Inorganic polyphosphate accumulation in Escherichia coli is regulated by DksA but not by (p)ppGpp. J. Bacteriol. 2019;201:10–1128. doi: 10.1128/JB.00664-18. PubMed DOI PMC
Gray MJ, Jakob U. Oxidative stress protection by polyphosphate–new roles for an old player. Curr. Opin. Microbiol. 2015;24:1–6. doi: 10.1016/j.mib.2014.12.004. PubMed DOI PMC
Rao NN, Gomez-Garcia MR, Kornberg A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009;78:605–647. doi: 10.1146/annurev.biochem.77.083007.093039. PubMed DOI
Rao NN, Liu S, Kornberg A. Inorganic polyphosphate in Escherichia coli: The phosphate regulon and the stringent response. J. Bacteriol. 1998;180:2186–2193. doi: 10.1128/JB.180.8.2186-2193.1998. PubMed DOI PMC
Kuroda A, et al. Role of inorganic polyphosphate in promoting ribosomal protein degradation by the Lon protease in E. coli. Science. 2001;293:705–708. doi: 10.1126/science.1061315. PubMed DOI
Grasso D, Zampieri LX, Capeloa T, Van de Velde JA, Sonveaux P. Mitochondria in cancer. Cell Stress. 2020;4:114–146. doi: 10.15698/cst2020.06.221. PubMed DOI PMC
Ishikawa K, et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320:661–664. doi: 10.1126/science.1156906. PubMed DOI
Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine. 2020;59:102943. doi: 10.1016/j.ebiom.2020.102943. PubMed DOI PMC
Young TS, Ahmad I, Yin JA, Schultz PG. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 2010;395:361–374. doi: 10.1016/j.jmb.2009.10.030. PubMed DOI
Ambro L, et al. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities. FEBS J. 2014;281:1784–1797. doi: 10.1111/febs.12740. PubMed DOI
van Dijl JM, et al. The ATPase and protease domains of yeast mitochondrial Lon: Roles in proteolysis and respiration-dependent growth. Proc. Natl. Acad. Sci. U S A. 1998;95:10584–10589. doi: 10.1073/pnas.95.18.10584. PubMed DOI PMC
Michalski A, et al. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol. Cell Proteom. 2012;11:O111. doi: 10.1074/mcp.O111.013698. PubMed DOI PMC
Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI
Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K. Improved visualization of protein consensus sequences by iceLogo. Nat. Methods. 2009;6:786–787. doi: 10.1038/nmeth1109-786. PubMed DOI
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI
Punjani A, Rubinstein JL, Fleet DJ, Brubaker MA. cryoSPARC: Algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods. 2017;14:290–296. doi: 10.1038/nmeth.4169. PubMed DOI
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010;66:22–25. doi: 10.1107/S0907444909042589. PubMed DOI
Afonine PV, et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D Struct. Biol. 2018;74:531–544. doi: 10.1107/S2059798318006551. PubMed DOI PMC
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC
Liebschner D, et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 2019;75:861–877. doi: 10.1107/S2059798319011471. PubMed DOI PMC
Williams CJ, et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. doi: 10.1002/pro.3330. PubMed DOI PMC
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc. Natl. Acad. Sci. U S A. 2001;98:10037–10041. doi: 10.1073/pnas.181342398. PubMed DOI PMC
Schrödinger, L. The PyMOL molecular graphics system, Version 2.5.0.