The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27632940
PubMed Central
PMC5025710
DOI
10.1038/srep33631
PII: srep33631
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát metabolismus MeSH
- adenylylimidodifosfát metabolismus MeSH
- Bacillus subtilis enzymologie MeSH
- lidé MeSH
- mitochondrie enzymologie MeSH
- mutantní proteiny chemie metabolismus ultrastruktura MeSH
- počítačové zpracování obrazu MeSH
- proteasa La chemie ultrastruktura MeSH
- proteinové domény MeSH
- proteolýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfát MeSH
- adenylylimidodifosfát MeSH
- mutantní proteiny MeSH
- proteasa La MeSH
Lon is an essential, multitasking AAA(+) protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon's N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning.
Biomedicine Center of the Academy of Sciences and Charles University in Vestec Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Université de Grenoble Alpes CNRS UMR 5309 38042 Grenoble Cedex 9 France
Zobrazit více v PubMed
Rotanova T. V. et al.. Slicing a protease: Structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci. 15, 1815–1828 (2006). PubMed PMC
Lee I. & Suzuki C. K. Functional mechanics of the ATP-dependent Lon protease-lessons from endogenous protein and synthetic peptide substrates. Biochim. Biophys. Acta Proteins Proteomics 1784, 727–735 (2008). PubMed PMC
Ambro L., Pevala V., Bauer J. & Kutejova E. The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J. Struct. Biol. 179, 181–192 (2012). PubMed
Fukuda R. et al.. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007). PubMed
Venkatesh S., Lee J., Singh K., Lee I. & Suzuki C. K. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim. Biophys. Acta - Mol. Cell. Res. 1823, 56–66 (2012). PubMed PMC
Cheng C. W. et al.. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis. 4, e681 (2013). PubMed PMC
Quiros P. M. et al.. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep. 8, 542–556 (2014). PubMed
Bernstein S. H. et al.. The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119, 3321–3329 (2012). PubMed PMC
Pinti M. et al.. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell. Mol. Life. Sci. 72, 4807–4824 (2015). PubMed PMC
Patterson-Ward J., Huang J. & Lee I. Detection and characterization of two ATP-dependent conformational changes in proteolytically inactive Escherichia coli Lon mutants by stopped flow kinetic techniques. Biochemistry 46, 13593–13605 (2007). PubMed PMC
Patterson J. et al.. Correlation of an adenine-specific conformational change with the ATP-dependent peptidase activity of Escherichia coli Lon. Biochemistry 43, 7432–7442 (2004). PubMed
Menon A. S. & Goldberg A. L. Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. Biol. Chem. 262, 14929–14934 (1987). PubMed
Waxman L. & Goldberg A. L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science 232, 500–503 (1986). PubMed
Gur E. & Sauer R. T. Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine. Proc. Natl. Acad. Sci. USA 106, 18503–18508 (2009). PubMed PMC
Wohlever M. L., Baker T. A. & Sauer R. T. Roles of the N domain of the AAA plus Lon protease in substrate recognition, allosteric regulation and chaperone activity. Mol. Microbiol. 91, 66–78 (2014). PubMed PMC
Su S. C. et al.. Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease. Structure 24, 676–686 (2016). PubMed
Langklotz S., Baumann U. & Narberhaus F. Structure and function of the bacterial AAA protease FtsH. Biochim. Biophys. Acta 1823, 40–48 (2012). PubMed
Lee S. et al.. Electron Cryomicroscopy Structure of a Membrane-anchored Mitochondrial AAA Protease. J. Biol. Chem. 286, 4404–4411 (2011). PubMed PMC
Sauer R. T. & Baker T. A. AAA+ Proteases: ATP-Fueled Machines of Protein Destruction. Annu. Rev. Biochem. 80, 587–612 (2011). PubMed
Duman R. E. & Lowe J. Crystal Structures of Bacillus subtilis Lon Protease. J. Mol. Biol. 401, 653–670 (2010). PubMed
Li M. et al.. Structure of the N-terminal fragment of Escherichia coli Lon protease. Acta Crystallogr. D 66, 865–873 (2010). PubMed PMC
Garcia-Nafria J. et al.. Structure of the catalytic domain of the human mitochondrial Lon protease: Proposed relation of oligomer formation and activity. Protein Sci. 19, 987–999 (2010). PubMed PMC
Botos I. et al.. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J. Struct. Biol. 146, 113–122 (2004). PubMed
Botos I. et al.. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140–8148 (2004). PubMed
Lin C. C. et al.. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease. Structure (2016). PubMed
Cheng I. et al.. Identification of a region in the N-terminus of Escherichia coli Lon that affects ATPase, substrate translocation and proteolytic activity. J. Mol. Biol. 418, 208–225 (2012). PubMed
Adam C. et al.. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. Plos One 7, e38138 (2012). PubMed PMC
Stahlberg H. et al.. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96, 6787–6790 (1999). PubMed PMC
Park S. C. et al.. Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol. Cells 21, 129–134 (2006). PubMed
Vieux E. F., Wohlever M. L., Chen J. Z., Sauer R. T. & Baker T. A. Distinct quaternary structures of the AAA plus Lon protease control substrate degradation. Proc. Natl. Acad. Sci. USA 110, E2002–E2008 (2013). PubMed PMC
Kereiche S. et al.. Three-Dimensional Reconstruction of the S885A Mutant of Human Mitochondrial Lon Protease. Folia Biol. (Praha) 60 Suppl 1, 62–65 (2014). PubMed
Vostrukhina M. et al.. The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer. Acta Crystallogr. D 71, 1307–1318 (2015). PubMed
Martin A., Baker T. A. & Sauer R. T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008). PubMed PMC
Bar-Nun S. & Glickman M. H. Proteasomal AAA-ATPases: structure and function. Biochim. Biophys. Acta 1823, 67–82 (2012). PubMed
Cha S. S. et al.. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 29, 3520–3530 (2010). PubMed PMC
Lupas A., Vandyke M. & Stock J. Predicting Coiled Coils from Protein Sequences. Science 252, 1162–1164 (1991). PubMed
Vineyard D., Patterson-Ward J. & Lee I. Single-turnover kinetic experiments confirm the existence of high- and low-affinity ATPase sites in Escherichia coli Lon protease. Biochemistry 45, 4602–4610 (2006). PubMed PMC
Stinson B. M., Baytshtok V., Schmitz K. R., Baker T. A. & Sauer R. T. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat. Struct. Mol. Biol. 22, 411–416 (2015). PubMed PMC
Beck F. et al.. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. USA 109, 14870–14875 (2012). PubMed PMC
Gersch M. et al.. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat. Commun. 6 (2015). PubMed
Lee B. G. et al.. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat. Struct. Mol. Biol. 17, 471–478 (2010). PubMed
Zhao M. L. et al.. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015). PubMed PMC
Sledz P. et al.. Structure of the 26S proteasome with ATP-gamma S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. USA 110, 7264–7269 (2013). PubMed PMC
Slabinski L. et al.. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2007). PubMed
Iosefson O., Nager A. R., Baker T. A. & Sauer R. T. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat. Chem. Biol. 11, 201–206 (2015). PubMed PMC
Ambro L. et al.. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities. FEBS J. 281, 1784–1797 (2014). PubMed
Berrow N. S. et al.. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007). PubMed PMC
Ruskin R. S., Yu Z. & Grigorieff N. Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol. 184, 385–393 (2013). PubMed PMC
Li X. et al.. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013). PubMed PMC
Mindell J. A. & Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). PubMed
Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). PubMed PMC
Ludtke S. J. et al.. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). PubMed
Scheres S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC
Kucukelbir A., Sigworth F. J. & Tagare H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). PubMed PMC
Chacon P. & Wriggers W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002). PubMed
Wriggers W. Conventions and workflows for using Situs. Acta Crystallogr. D 68, 344–351 (2012). PubMed PMC
Birmanns S., Rusu M. & Wriggers W. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J. Struct. Biol. 173, 428–435 (2011). PubMed PMC
Schneider C. A., Rasband W. S. & Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed PMC