The N-terminal domain plays a crucial role in the structure of a full-length human mitochondrial Lon protease

. 2016 Sep 16 ; 6 () : 33631. [epub] 20160916

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27632940

Lon is an essential, multitasking AAA(+) protease regulating many cellular processes in species across all kingdoms of life. Altered expression levels of the human mitochondrial Lon protease (hLon) are linked to serious diseases including myopathies, paraplegia, and cancer. Here, we present the first 3D structure of full-length hLon using cryo-electron microscopy. hLon has a unique three-dimensional structure, in which the proteolytic and ATP-binding domains (AP-domain) form a hexameric chamber, while the N-terminal domain is arranged as a trimer of dimers. These two domains are linked by a narrow trimeric channel composed likely of coiled-coil helices. In the presence of AMP-PNP, the AP-domain has a closed-ring conformation and its N-terminal entry gate appears closed, but in ADP binding, it switches to a lock-washer conformation and its N-terminal gate opens, which is accompanied by a rearrangement of the N-terminal domain. We have also found that both the enzymatic activities and the 3D structure of a hLon mutant lacking the first 156 amino acids are severely disturbed, showing that hLon's N-terminal domains are crucial for the overall structure of the hLon, maintaining a conformation allowing its proper functioning.

Zobrazit více v PubMed

Rotanova T. V. et al.. Slicing a protease: Structural features of the ATP-dependent Lon proteases gleaned from investigations of isolated domains. Protein Sci. 15, 1815–1828 (2006). PubMed PMC

Lee I. & Suzuki C. K. Functional mechanics of the ATP-dependent Lon protease-lessons from endogenous protein and synthetic peptide substrates. Biochim. Biophys. Acta Proteins Proteomics 1784, 727–735 (2008). PubMed PMC

Ambro L., Pevala V., Bauer J. & Kutejova E. The influence of ATP-dependent proteases on a variety of nucleoid-associated processes. J. Struct. Biol. 179, 181–192 (2012). PubMed

Fukuda R. et al.. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111–122 (2007). PubMed

Venkatesh S., Lee J., Singh K., Lee I. & Suzuki C. K. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim. Biophys. Acta - Mol. Cell. Res. 1823, 56–66 (2012). PubMed PMC

Cheng C. W. et al.. Overexpression of Lon contributes to survival and aggressive phenotype of cancer cells through mitochondrial complex I-mediated generation of reactive oxygen species. Cell Death Dis. 4, e681 (2013). PubMed PMC

Quiros P. M. et al.. ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep. 8, 542–556 (2014). PubMed

Bernstein S. H. et al.. The mitochondrial ATP-dependent Lon protease: a novel target in lymphoma death mediated by the synthetic triterpenoid CDDO and its derivatives. Blood 119, 3321–3329 (2012). PubMed PMC

Pinti M. et al.. Mitochondrial Lon protease at the crossroads of oxidative stress, ageing and cancer. Cell. Mol. Life. Sci. 72, 4807–4824 (2015). PubMed PMC

Patterson-Ward J., Huang J. & Lee I. Detection and characterization of two ATP-dependent conformational changes in proteolytically inactive Escherichia coli Lon mutants by stopped flow kinetic techniques. Biochemistry 46, 13593–13605 (2007). PubMed PMC

Patterson J. et al.. Correlation of an adenine-specific conformational change with the ATP-dependent peptidase activity of Escherichia coli Lon. Biochemistry 43, 7432–7442 (2004). PubMed

Menon A. S. & Goldberg A. L. Protein substrates activate the ATP-dependent protease La by promoting nucleotide binding and release of bound ADP. J. Biol. Chem. 262, 14929–14934 (1987). PubMed

Waxman L. & Goldberg A. L. Selectivity of intracellular proteolysis: protein substrates activate the ATP-dependent protease (La). Science 232, 500–503 (1986). PubMed

Gur E. & Sauer R. T. Degrons in protein substrates program the speed and operating efficiency of the AAA+ Lon proteolytic machine. Proc. Natl. Acad. Sci. USA 106, 18503–18508 (2009). PubMed PMC

Wohlever M. L., Baker T. A. & Sauer R. T. Roles of the N domain of the AAA plus Lon protease in substrate recognition, allosteric regulation and chaperone activity. Mol. Microbiol. 91, 66–78 (2014). PubMed PMC

Su S. C. et al.. Structural Basis for the Magnesium-Dependent Activation and Hexamerization of the Lon AAA+ Protease. Structure 24, 676–686 (2016). PubMed

Langklotz S., Baumann U. & Narberhaus F. Structure and function of the bacterial AAA protease FtsH. Biochim. Biophys. Acta 1823, 40–48 (2012). PubMed

Lee S. et al.. Electron Cryomicroscopy Structure of a Membrane-anchored Mitochondrial AAA Protease. J. Biol. Chem. 286, 4404–4411 (2011). PubMed PMC

Sauer R. T. & Baker T. A. AAA+ Proteases: ATP-Fueled Machines of Protein Destruction. Annu. Rev. Biochem. 80, 587–612 (2011). PubMed

Duman R. E. & Lowe J. Crystal Structures of Bacillus subtilis Lon Protease. J. Mol. Biol. 401, 653–670 (2010). PubMed

Li M. et al.. Structure of the N-terminal fragment of Escherichia coli Lon protease. Acta Crystallogr. D 66, 865–873 (2010). PubMed PMC

Garcia-Nafria J. et al.. Structure of the catalytic domain of the human mitochondrial Lon protease: Proposed relation of oligomer formation and activity. Protein Sci. 19, 987–999 (2010). PubMed PMC

Botos I. et al.. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. J. Struct. Biol. 146, 113–122 (2004). PubMed

Botos I. et al.. The catalytic domain of Escherichia coli Lon protease has a unique fold and a Ser-Lys dyad in the active site. J. Biol. Chem. 279, 8140–8148 (2004). PubMed

Lin C. C. et al.. Structural Insights into the Allosteric Operation of the Lon AAA+ Protease. Structure (2016). PubMed

Cheng I. et al.. Identification of a region in the N-terminus of Escherichia coli Lon that affects ATPase, substrate translocation and proteolytic activity. J. Mol. Biol. 418, 208–225 (2012). PubMed

Adam C. et al.. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. Plos One 7, e38138 (2012). PubMed PMC

Stahlberg H. et al.. Mitochondrial Lon of Saccharomyces cerevisiae is a ring-shaped protease with seven flexible subunits. Proc. Natl. Acad. Sci. USA 96, 6787–6790 (1999). PubMed PMC

Park S. C. et al.. Oligomeric structure of the ATP-dependent protease La (Lon) of Escherichia coli. Mol. Cells 21, 129–134 (2006). PubMed

Vieux E. F., Wohlever M. L., Chen J. Z., Sauer R. T. & Baker T. A. Distinct quaternary structures of the AAA plus Lon protease control substrate degradation. Proc. Natl. Acad. Sci. USA 110, E2002–E2008 (2013). PubMed PMC

Kereiche S. et al.. Three-Dimensional Reconstruction of the S885A Mutant of Human Mitochondrial Lon Protease. Folia Biol. (Praha) 60 Suppl 1, 62–65 (2014). PubMed

Vostrukhina M. et al.. The structure of Aquifex aeolicus FtsH in the ADP-bound state reveals a C2-symmetric hexamer. Acta Crystallogr. D 71, 1307–1318 (2015). PubMed

Martin A., Baker T. A. & Sauer R. T. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nat. Struct. Mol. Biol. 15, 1147–1151 (2008). PubMed PMC

Bar-Nun S. & Glickman M. H. Proteasomal AAA-ATPases: structure and function. Biochim. Biophys. Acta 1823, 67–82 (2012). PubMed

Cha S. S. et al.. Crystal structure of Lon protease: molecular architecture of gated entry to a sequestered degradation chamber. EMBO J. 29, 3520–3530 (2010). PubMed PMC

Lupas A., Vandyke M. & Stock J. Predicting Coiled Coils from Protein Sequences. Science 252, 1162–1164 (1991). PubMed

Vineyard D., Patterson-Ward J. & Lee I. Single-turnover kinetic experiments confirm the existence of high- and low-affinity ATPase sites in Escherichia coli Lon protease. Biochemistry 45, 4602–4610 (2006). PubMed PMC

Stinson B. M., Baytshtok V., Schmitz K. R., Baker T. A. & Sauer R. T. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Nat. Struct. Mol. Biol. 22, 411–416 (2015). PubMed PMC

Beck F. et al.. Near-atomic resolution structural model of the yeast 26S proteasome. Proc. Natl. Acad. Sci. USA 109, 14870–14875 (2012). PubMed PMC

Gersch M. et al.. AAA+ chaperones and acyldepsipeptides activate the ClpP protease via conformational control. Nat. Commun. 6 (2015). PubMed

Lee B. G. et al.. Structures of ClpP in complex with acyldepsipeptide antibiotics reveal its activation mechanism. Nat. Struct. Mol. Biol. 17, 471–478 (2010). PubMed

Zhao M. L. et al.. Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61–67 (2015). PubMed PMC

Sledz P. et al.. Structure of the 26S proteasome with ATP-gamma S bound provides insights into the mechanism of nucleotide-dependent substrate translocation. Proc. Natl. Acad. Sci. USA 110, 7264–7269 (2013). PubMed PMC

Slabinski L. et al.. XtalPred: a web server for prediction of protein crystallizability. Bioinformatics 23, 3403–3405 (2007). PubMed

Iosefson O., Nager A. R., Baker T. A. & Sauer R. T. Coordinated gripping of substrate by subunits of a AAA+ proteolytic machine. Nat. Chem. Biol. 11, 201–206 (2015). PubMed PMC

Ambro L. et al.. Mutations to a glycine loop in the catalytic site of human Lon changes its protease, peptidase and ATPase activities. FEBS J. 281, 1784–1797 (2014). PubMed

Berrow N. S. et al.. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 35, e45 (2007). PubMed PMC

Ruskin R. S., Yu Z. & Grigorieff N. Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol. 184, 385–393 (2013). PubMed PMC

Li X. et al.. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584–590 (2013). PubMed PMC

Mindell J. A. & Grigorieff N. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142, 334–347 (2003). PubMed

Zhang K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016). PubMed PMC

Ludtke S. J. et al.. EMAN2: An extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007). PubMed

Scheres S. H. W. RELION: Implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012). PubMed PMC

Kucukelbir A., Sigworth F. J. & Tagare H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014). PubMed PMC

Chacon P. & Wriggers W. Multi-resolution contour-based fitting of macromolecular structures. J. Mol. Biol. 317, 375–384 (2002). PubMed

Wriggers W. Conventions and workflows for using Situs. Acta Crystallogr. D 68, 344–351 (2012). PubMed PMC

Birmanns S., Rusu M. & Wriggers W. Using Sculptor and Situs for simultaneous assembly of atomic components into low-resolution shapes. J. Struct. Biol. 173, 428–435 (2011). PubMed PMC

Schneider C. A., Rasband W. S. & Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...