Mitochondrial Kinases and the Role of Mitochondrial Protein Phosphorylation in Health and Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-15-0375 and APVV-19-0298;VEGA 2/0075/18;GACR 1825144Y; project StruBioMol, ITMS: 305011X666
Slovak Research and Development Agency (APVV); Scientific Grant Agency of the Ministry of Education, Science, Research, and Sport of the Slovak republic (VEGA);Czech Science Foundation;Interreg V-A Slovakia-Austria program and is co-financed by the Europe
PubMed
33498615
PubMed Central
PMC7912454
DOI
10.3390/life11020082
PII: life11020082
Knihovny.cz E-zdroje
- Klíčová slova
- disease, kinases, mitochondria, phosphorylation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The major role of mitochondria is to provide cells with energy, but no less important are their roles in responding to various stress factors and the metabolic changes and pathological processes that might occur inside and outside the cells. The post-translational modification of proteins is a fast and efficient way for cells to adapt to ever changing conditions. Phosphorylation is a post-translational modification that signals these changes and propagates these signals throughout the whole cell, but it also changes the structure, function and interaction of individual proteins. In this review, we summarize the influence of kinases, the proteins responsible for phosphorylation, on mitochondrial biogenesis under various cellular conditions. We focus on their role in keeping mitochondria fully functional in healthy cells and also on the changes in mitochondrial structure and function that occur in pathological processes arising from the phosphorylation of mitochondrial proteins.
Zobrazit více v PubMed
Kruse R., Hojlund K. Mitochondrial phosphoproteomics of mammalian tissues. Mitochondrion. 2017;33:45–57. doi: 10.1016/j.mito.2016.08.004. PubMed DOI
Giorgianni F., Koirala D., Weber K.T., Beranova-Giorgianni S. Proteome analysis of subsarcolemmal cardiomyocyte mitochondria: A comparison of different analytical platforms. Int. J. Mol. Sci. 2014;15:9285–9301. doi: 10.3390/ijms15069285. PubMed DOI PMC
Padrao A.I., Vitorino R., Duarte J.A., Ferreira R., Amado F. Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective. J. Proteome Res. 2013;12:4257–4267. doi: 10.1021/pr4003917. PubMed DOI
Lucero M., Suarez A.E., Chambers J.W. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci. Ther. 2019;25:837–858. doi: 10.1111/cns.13141. PubMed DOI PMC
Pagliarini D.J., Dixon J.E. Mitochondrial modulation: Reversible phosphorylation takes center stage? Trends Biochem. Sci. 2006;31:26–34. doi: 10.1016/j.tibs.2005.11.005. PubMed DOI
Salvi M., Brunati A.M., Toninello A. Tyrosine phosphorylation in mitochondria: A new frontier in mitochondrial signaling. Free Radic. Biol. Med. 2005;38:1267–1277. doi: 10.1016/j.freeradbiomed.2005.02.006. PubMed DOI
Sorriento D., Gambardella J., Fiordelisi A., Trimarco B., Ciccarelli M., Iaccarino G., Santulli G. Mechanistic Role of Kinases in the Regulation of Mitochondrial Fitness. Adv. Exp. Med. Biol. 2017;982:521–528. doi: 10.1007/978-3-319-55330-6_26. PubMed DOI PMC
Corum D.G., Tsichlis P.N., Muise-Helmericks R.C. AKT3 controls mitochondrial biogenesis and autophagy via regulation of the major nuclear export protein CRM-1. FASEB J. 2014;28:395–407. doi: 10.1096/fj.13-235382. PubMed DOI PMC
Shaerzadeh F., Motamedi F., Khodagholi F. Inhibition of akt phosphorylation diminishes mitochondrial biogenesis regulators, tricarboxylic acid cycle activity and exacerbates recognition memory deficit in rat model of Alzheimer’s disease. Cell Mol. Neurobiol. 2014;34:1223–1233. doi: 10.1007/s10571-014-0099-9. PubMed DOI PMC
Gerbeth C., Mikropoulou D., Meisinger C. From inventory to functional mechanisms: Regulation of the mitochondrial protein import machinery by phosphorylation. FEBS J. 2013;280:4933–4942. doi: 10.1111/febs.12445. PubMed DOI
Opalinska M., Meisinger C. Mitochondrial protein import under kinase surveillance. Microb. Cell. 2014;1:51–57. doi: 10.15698/mic2014.01.127. PubMed DOI PMC
Yang K., Chen Z., Gao J., Shi W., Li L., Jiang S., Hu H., Liu Z., Xu D., Wu L. The Key Roles of GSK-3beta in Regulating Mitochondrial Activity. Cell Physiol. Biochem. 2017;44:1445–1459. doi: 10.1159/000485580. PubMed DOI
Li L., Lorenzo P.S., Bogi K., Blumberg P.M., Yuspa S.H. Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol. Cell Biol. 1999;19:8547–8558. doi: 10.1128/MCB.19.12.8547. PubMed DOI PMC
Nowak G., Bakajsova D., Clifton G.L. Protein kinase C-epsilon modulates mitochondrial function and active Na+ transport after oxidant injury in renal cells. Am. J. Physiol. Renal Physiol. 2004;286:F307–316. doi: 10.1152/ajprenal.00275.2003. PubMed DOI
Matsuda S., Kitagishi Y., Kobayashi M. Function and characteristics of PINK1 in mitochondria. Oxid Med. Cell Longev. 2013;2013:601587. doi: 10.1155/2013/601587. PubMed DOI PMC
Plun-Favreau H., Hardy J. PINK1 in mitochondrial function. Proc. Natl. Acad. Sci. USA. 2008;105:11041–11042. doi: 10.1073/pnas.0805908105. PubMed DOI PMC
Kitagishi Y., Nakano N., Ogino M., Ichimura M., Minami A., Matsuda S. PINK1 signaling in mitochondrial homeostasis and in aging (Review) Int. J. Mol. Med. 2017;39:3–8. doi: 10.3892/ijmm.2016.2827. PubMed DOI
Debattisti V., Gerencser A.A., Saotome M., Das S., Hajnoczky G. ROS Control Mitochondrial Motility through p38 and the Motor Adaptor Miro/Trak. Cell Rep. 2017;21:1667–1680. doi: 10.1016/j.celrep.2017.10.060. PubMed DOI PMC
Dhanasekaran D.N., Reddy E.P. JNK signaling in apoptosis. Oncogene. 2008;27:6245–6251. doi: 10.1038/onc.2008.301. PubMed DOI PMC
Weindel C.G., Bell S.L., Vail K.J., West K.O., Patrick K.L., Watson R.O. LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis. eLife. 2020;9 doi: 10.7554/eLife.51071. PubMed DOI PMC
Kumar S., Bharti A., Mishra N.C., Raina D., Kharbanda S., Saxena S., Kufe D. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J. Biol. Chem. 2001;276:17281–17285. doi: 10.1074/jbc.M101414200. PubMed DOI
Zhou L., Zhang Q., Zhang P., Sun L., Peng C., Yuan Z., Cheng J. c-Abl-mediated Drp1 phosphorylation promotes oxidative stress-induced mitochondrial fragmentation and neuronal cell death. Cell Death Dis. 2017;8:e3117. doi: 10.1038/cddis.2017.524. PubMed DOI PMC
Koc E.C., Miller-Lee J.L., Koc H. Fyn kinase regulates translation in mammalian mitochondria. Biochim. Biophys. Acta Gen. Subj. 2017;1861:533–540. doi: 10.1016/j.bbagen.2016.12.004. PubMed DOI PMC
Djeungoue-Petga M.A., Lurette O., Jean S., Hamel-Cote G., Martin-Jimenez R., Bou M., Cannich A., Roy P., Hebert-Chatelain E. Intramitochondrial Src kinase links mitochondrial dysfunctions and aggressiveness of breast cancer cells. Cell Death Dis. 2019;10:940. doi: 10.1038/s41419-019-2134-8. PubMed DOI PMC
Hebert-Chatelain E., Jose C., Gutierrez Cortes N., Dupuy J.W., Rocher C., Dachary-Prigent J., Letellier T. Preservation of NADH ubiquinone-oxidoreductase activity by Src kinase-mediated phosphorylation of NDUFB10. Biochim. Biophys. Acta. 2012;1817:718–725. doi: 10.1016/j.bbabio.2012.01.014. PubMed DOI
Ogura M., Yamaki J., Homma M.K., Homma Y. Mitochondrial c-Src regulates cell survival through phosphorylation of respiratory chain components. Biochem. J. 2012;447:281–289. doi: 10.1042/BJ20120509. PubMed DOI PMC
Gringeri E., Carraro A., Tibaldi E., D’Amico F.E., Mancon M., Toninello A., Pagano M.A., Vio C., Cillo U., Brunati A.M. Lyn-mediated mitochondrial tyrosine phosphorylation is required to preserve mitochondrial integrity in early liver regeneration. Biochem. J. 2009;425:401–412. doi: 10.1042/BJ20090902. PubMed DOI
Acin-Perez R., Carrascoso I., Baixauli F., Roche-Molina M., Latorre-Pellicer A., Fernandez-Silva P., Mittelbrunn M., Sanchez-Madrid F., Perez-Martos A., Lowell C.A., et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 2014;19:1020–1033. doi: 10.1016/j.cmet.2014.04.015. PubMed DOI PMC
Salvi M., Morrice N.A., Brunati A.M., Toninello A. Identification of the flavoprotein of succinate dehydrogenase and aconitase as in vitro mitochondrial substrates of Fgr tyrosine kinase. FEBS Lett. 2007;581:5579–5585. doi: 10.1016/j.febslet.2007.11.005. PubMed DOI
Tibaldi E., Brunati A.M., Massimino M.L., Stringaro A., Colone M., Agostinelli E., Arancia G., Toninello A. Src-Tyrosine kinases are major agents in mitochondrial tyrosine phosphorylation. J. Cell Biochem. 2008;104:840–849. doi: 10.1002/jcb.21670. PubMed DOI
Che T.F., Lin C.W., Wu Y.Y., Chen Y.J., Han C.L., Chang Y.L., Wu C.T., Hsiao T.H., Hong T.M., Yang P.C. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget. 2015;6:37349–37366. doi: 10.18632/oncotarget.5736. PubMed DOI PMC
Manning G., Whyte D.B., Martinez R., Hunter T., Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–1934. doi: 10.1126/science.1075762. PubMed DOI
Lim S., Smith K.R., Lim S.T., Tian R., Lu J., Tan M. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation. Cell Biosci. 2016;6:25. doi: 10.1186/s13578-016-0089-3. PubMed DOI PMC
Lin R.Y., Moss S.B., Rubin C.S. Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. J. Biol. Chem. 1995;270:27804–27811. doi: 10.1074/jbc.270.46.27804. PubMed DOI
Wiltshire C., Matsushita M., Tsukada S., Gillespie D.A., May G.H. A new c-Jun N-terminal kinase (JNK)-interacting protein, Sab (SH3BP5), associates with mitochondria. Biochem. J. 2002;367:577–585. doi: 10.1042/bj20020553. PubMed DOI PMC
Chambers J.W., Pachori A., Howard S., Iqbal S., LoGrasso P.V. Inhibition of JNK mitochondrial localization and signaling is protective against ischemia/reperfusion injury in rats. J. Biol. Chem. 2013;288:4000–4011. doi: 10.1074/jbc.M112.406777. PubMed DOI PMC
Nijboer C.H., Bonestroo H.J., Zijlstra J., Kavelaars A., Heijnen C.J. Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol. Dis. 2013;54:432–444. doi: 10.1016/j.nbd.2013.01.017. PubMed DOI
Court N.W., Kuo I., Quigley O., Bogoyevitch M.A. Phosphorylation of the mitochondrial protein Sab by stress-activated protein kinase 3. Biochem. Biophys. Res. Commun. 2004;319:130–137. doi: 10.1016/j.bbrc.2004.04.148. PubMed DOI
Affaitati A., Cardone L., de Cristofaro T., Carlucci A., Ginsberg M.D., Varrone S., Gottesman M.E., Avvedimento E.V., Feliciello A. Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J. Biol. Chem. 2003;278:4286–4294. doi: 10.1074/jbc.M209941200. PubMed DOI
Carnegie G.K., Means C.K., Scott J.D. A-kinase anchoring proteins: From protein complexes to physiology and disease. IUBMB Life. 2009;61:394–406. doi: 10.1002/iub.168. PubMed DOI PMC
Hoffman N.J., Parker B.L., Chaudhuri R., Fisher-Wellman K.H., Kleinert M., Humphrey S.J., Yang P., Holliday M., Trefely S., Fazakerley D.J., et al. Global Phosphoproteomic Analysis of Human Skeletal Muscle Reveals a Network of Exercise-Regulated Kinases and AMPK Substrates. Cell Metab. 2015;22:922–935. doi: 10.1016/j.cmet.2015.09.001. PubMed DOI PMC
Fullerton M.D., Galic S., Marcinko K., Sikkema S., Pulinilkunnil T., Chen Z.P., O’Neill H.M., Ford R.J., Palanivel R., O’Brien M., et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 2013;19:1649–1654. doi: 10.1038/nm.3372. PubMed DOI PMC
Toyama E.Q., Herzig S., Courchet J., Lewis T.L., Jr., Loson O.C., Hellberg K., Young N.P., Chen H., Polleux F., Chan D.C., et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science. 2016;351:275–281. doi: 10.1126/science.aab4138. PubMed DOI PMC
Cribbs J.T., Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 2007;8:939–944. doi: 10.1038/sj.embor.7401062. PubMed DOI PMC
Yu R., Liu T., Ning C., Tan F., Jin S.B., Lendahl U., Zhao J., Nister M. The phosphorylation status of Ser-637 in dynamin-related protein 1 (Drp1) does not determine Drp1 recruitment to mitochondria. J. Biol. Chem. 2019;294:17262–17277. doi: 10.1074/jbc.RA119.008202. PubMed DOI PMC
Tsushima K., Bugger H., Wende A.R., Soto J., Jenson G.A., Tor A.R., McGlauflin R., Kenny H.C., Zhang Y., Souvenir R., et al. Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induce Post-Translational Modifications of AKAP121, DRP1, and OPA1 That Promote Mitochondrial Fission. Circ. Res. 2018;122:58–73. doi: 10.1161/CIRCRESAHA.117.311307. PubMed DOI PMC
Yang Y., Tian Y., Hu S., Bi S., Li S., Hu Y., Kou J., Qi J., Yu B. Extract of Sheng-Mai-San Ameliorates Myocardial Ischemia-Induced Heart Failure by Modulating Ca(2+)-Calcineurin-Mediated Drp1 Signaling Pathways. Int. J. Mol. Sci. 2017;18:1825. doi: 10.3390/ijms18091825. PubMed DOI PMC
Jahani-Asl A., Huang E., Irrcher I., Rashidian J., Ishihara N., Lagace D.C., Slack R.S., Park D.S. CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death. Hum. Mol. Genet. 2015;24:4573–4583. doi: 10.1093/hmg/ddv188. PubMed DOI PMC
Kashatus J.A., Nascimento A., Myers L.J., Sher A., Byrne F.L., Hoehn K.L., Counter C.M., Kashatus D.F. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell. 2015;57:537–551. doi: 10.1016/j.molcel.2015.01.002. PubMed DOI PMC
Yan J., Liu X.H., Han M.Z., Wang Y.M., Sun X.L., Yu N., Li T., Su B., Chen Z.Y. Blockage of GSK3beta-mediated Drp1 phosphorylation provides neuroprotection in neuronal and mouse models of Alzheimer’s disease. Neurobiol. Aging. 2015;36:211–227. doi: 10.1016/j.neurobiolaging.2014.08.005. PubMed DOI
Gui C., Ren Y., Chen J., Wu X., Mao K., Li H., Yu H., Zou F., Li W. p38 MAPK-DRP1 signaling is involved in mitochondrial dysfunction and cell death in mutant A53T alpha-synuclein model of Parkinson’s disease. Toxicol. Appl. Pharmacol. 2020;388:114874. doi: 10.1016/j.taap.2019.114874. PubMed DOI
Han H., Tan J., Wang R., Wan H., He Y., Yan X., Guo J., Gao Q., Li J., Shang S., et al. PINK1 phosphorylates Drp1(S616) to regulate mitophagy-independent mitochondrial dynamics. EMBO Rep. 2020;21:e48686. doi: 10.15252/embr.201948686. PubMed DOI PMC
Pryde K.R., Smith H.L., Chau K.Y., Schapira A.H. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J. Cell Biol. 2016;213:163–171. doi: 10.1083/jcb.201509003. PubMed DOI PMC
Schlattner U., Tokarska-Schlattner M., Ramirez S., Bruckner A., Kay L., Polge C., Epand R.F., Lee R.M., Lacombe M.L., Epand R.M. Mitochondrial kinases and their molecular interaction with cardiolipin. Biochim. Biophys. Acta. 2009;1788:2032–2047. doi: 10.1016/j.bbamem.2009.04.018. PubMed DOI
Cotteret S., Chernoff J. Nucleocytoplasmic shuttling of Pak5 regulates its antiapoptotic properties. Mol. Cell Biol. 2006;26:3215–3230. doi: 10.1128/MCB.26.8.3215-3230.2006. PubMed DOI PMC
Greene A.W., Grenier K., Aguileta M.A., Muise S., Farazifard R., Haque M.E., McBride H.M., Park D.S., Fon E.A. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 2012;13:378–385. doi: 10.1038/embor.2012.14. PubMed DOI PMC
Jin Y., Murata H., Sakaguchi M., Kataoka K., Watanabe M., Nasu Y., Kumon H., Huh N.H. Partial sensitization of human bladder cancer cells to a gene-therapeutic adenovirus carrying REIC/Dkk-3 by downregulation of BRPK/PINK1. Oncol. Rep. 2012;27:695–699. doi: 10.3892/or.2011.1543. PubMed DOI
Meissner C., Lorenz H., Weihofen A., Selkoe D.J., Lemberg M.K. The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem. 2011;117:856–867. doi: 10.1111/j.1471-4159.2011.07253.x. PubMed DOI
Voigt A., Berlemann L.A., Winklhofer K.F. The mitochondrial kinase PINK1: Functions beyond mitophagy. J. Neurochem. 2016;139(Suppl. 1):232–239. doi: 10.1111/jnc.13655. PubMed DOI
Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 2012;22:320–333. doi: 10.1016/j.devcel.2011.12.014. PubMed DOI PMC
Okatsu K., Oka T., Iguchi M., Imamura K., Kosako H., Tani N., Kimura M., Go E., Koyano F., Funayama M., et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 2012;3:1016. doi: 10.1038/ncomms2016. PubMed DOI PMC
Kondapalli C., Kazlauskaite A., Zhang N., Woodroof H.I., Campbell D.G., Gourlay R., Burchell L., Walden H., Macartney T.J., Deak M., et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol. 2012;2:120080. doi: 10.1098/rsob.120080. PubMed DOI PMC
Dawson T.M., Dawson V.L. The role of parkin in familial and sporadic Parkinson’s disease. Mov. Disord. 2010;25(Suppl. 1):S32–S39. doi: 10.1002/mds.22798. PubMed DOI PMC
Ishihara-Paul L., Hulihan M.M., Kachergus J., Upmanyu R., Warren L., Amouri R., Elango R., Prinjha R.K., Soto A., Kefi M., et al. PINK1 mutations and parkinsonism. Neurology. 2008;71:896–902. doi: 10.1212/01.wnl.0000323812.40708.1f. PubMed DOI PMC
Kitada T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., Shimizu N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–608. doi: 10.1038/33416. PubMed DOI
Pilcher H. Parkin implicated in sporadic Parkinson’s disease. Lancet Neurol. 2005;4:798. doi: 10.1016/S1474-4422(05)70237-4. PubMed DOI
Greggio E., Jain S., Kingsbury A., Bandopadhyay R., Lewis P., Kaganovich A., van der Brug M.P., Beilina A., Blackinton J., Thomas K.J., et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 2006;23:329–341. doi: 10.1016/j.nbd.2006.04.001. PubMed DOI
Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aar5429. PubMed DOI PMC
Angeles D.C., Ho P., Chua L.L., Wang C., Yap Y.W., Ng C., Zhou Z., Lim K.L., Wszolek Z.K., Wang H.Y., et al. Thiol peroxidases ameliorate LRRK2 mutant-induced mitochondrial and dopaminergic neuronal degeneration in Drosophila. Hum. Mol. Genet. 2014;23:3157–3165. doi: 10.1093/hmg/ddu026. PubMed DOI PMC
Wang X., Yan M.H., Fujioka H., Liu J., Wilson-Delfosse A., Chen S.G., Perry G., Casadesus G., Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 2012;21:1931–1944. doi: 10.1093/hmg/dds003. PubMed DOI PMC
Hsieh C.H., Shaltouki A., Gonzalez A.E., Bettencourt da Cruz A., Burbulla L.F., St Lawrence E., Schule B., Krainc D., Palmer T.D., Wang X. Functional Impairment in Miro Degradation and Mitophagy Is a Shared Feature in Familial and Sporadic Parkinson’s Disease. Cell Stem Cell. 2016;19:709–724. doi: 10.1016/j.stem.2016.08.002. PubMed DOI PMC
Verma M., Callio J., Otero P.A., Sekler I., Wills Z.P., Chu C.T. Mitochondrial Calcium Dysregulation Contributes to Dendrite Degeneration Mediated by PD/LBD-Associated LRRK2 Mutants. J. Neurosci. 2017;37:11151–11165. doi: 10.1523/JNEUROSCI.3791-16.2017. PubMed DOI PMC
Pyakurel A., Savoia C., Hess D., Scorrano L. Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis. Mol. Cell. 2015;58:244–254. doi: 10.1016/j.molcel.2015.02.021. PubMed DOI PMC
Leboucher G.P., Tsai Y.C., Yang M., Shaw K.C., Zhou M., Veenstra T.D., Glickman M.H., Weissman A.M. Stress-induced phosphorylation and proteasomal degradation of mitofusin 2 facilitates mitochondrial fragmentation and apoptosis. Mol. Cell. 2012;47:547–557. doi: 10.1016/j.molcel.2012.05.041. PubMed DOI PMC
Zhou W., Chen K.H., Cao W., Zeng J., Liao H., Zhao L., Guo X. Mutation of the protein kinase A phosphorylation site influences the anti-proliferative activity of mitofusin 2. Atherosclerosis. 2010;211:216–223. doi: 10.1016/j.atherosclerosis.2010.02.012. PubMed DOI
de la Cruz Lopez K.G., Toledo Guzman M.E., Sanchez E.O., Garcia Carranca A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer. Front. Oncol. 2019;9:1373. doi: 10.3389/fonc.2019.01373. PubMed DOI PMC
Desai B.N., Myers B.R., Schreiber S.L. FKBP12-rapamycin-associated protein associates with mitochondria and senses osmotic stress via mitochondrial dysfunction. Proc. Natl. Acad. Sci. USA. 2002;99:4319–4324. doi: 10.1073/pnas.261702698. PubMed DOI PMC
Schieke S.M., Phillips D., McCoy J.P., Jr., Aponte A.M., Shen R.F., Balaban R.S., Finkel T. The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J. Biol. Chem. 2006;281:27643–27652. doi: 10.1074/jbc.M603536200. PubMed DOI
Ramanathan A., Schreiber S.L. Direct control of mitochondrial function by mTOR. Proc. Natl. Acad. Sci. USA. 2009;106:22229–22232. doi: 10.1073/pnas.0912074106. PubMed DOI PMC
Lu C.L., Qin L., Liu H.C., Candas D., Fan M., Li J.J. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect. PLoS ONE. 2015;10:e0121046. doi: 10.1371/journal.pone.0121046. PubMed DOI PMC
Roberts D.J., Tan-Sah V.P., Ding E.Y., Smith J.M., Miyamoto S. Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol. Cell. 2014;53:521–533. doi: 10.1016/j.molcel.2013.12.019. PubMed DOI PMC
Cotteret S., Jaffer Z.M., Beeser A., Chernoff J. p21-Activated kinase 5 (Pak5) localizes to mitochondria and inhibits apoptosis by phosphorylating BAD. Mol. Cell Biol. 2003;23:5526–5539. doi: 10.1128/MCB.23.16.5526-5539.2003. PubMed DOI PMC
Ma D., Bai X., Zou H., Lai Y., Jiang Y. Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl-2 and Bcl-XL. J. Biol. Chem. 2010;285:8621–8627. doi: 10.1074/jbc.M109.092353. PubMed DOI PMC
Tasken K., Aandahl E.M. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiol. Rev. 2004;84:137–167. doi: 10.1152/physrev.00021.2003. PubMed DOI
Ito Y., Mishra N.C., Yoshida K., Kharbanda S., Saxena S., Kufe D. Mitochondrial targeting of JNK/SAPK in the phorbol ester response of myeloid leukemia cells. Cell Death Differ. 2001;8:794–800. doi: 10.1038/sj.cdd.4400886. PubMed DOI
Zhu J.H., Guo F., Shelburne J., Watkins S., Chu C.T. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol. 2003;13:473–481. doi: 10.1111/j.1750-3639.2003.tb00478.x. PubMed DOI PMC
Ballard-Croft C., Kristo G., Yoshimura Y., Reid E., Keith B.J., Mentzer R.M., Jr., Lasley R.D. Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments. Am. J. Physiol. Heart Circ. Physiol. 2005;288:H1359–H1366. doi: 10.1152/ajpheart.01006.2004. PubMed DOI
Zhou C., Huang Y., Shao Y., May J., Prou D., Perier C., Dauer W., Schon E.A., Przedborski S. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc. Natl. Acad. Sci. USA. 2008;105:12022–12027. doi: 10.1073/pnas.0802814105. PubMed DOI PMC
Biskup S., Moore D.J., Celsi F., Higashi S., West A.B., Andrabi S.A., Kurkinen K., Yu S.W., Savitt J.M., Waldvogel H.J., et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann. Neurol. 2006;60:557–569. doi: 10.1002/ana.21019. PubMed DOI
Liang J., Xu Z.X., Ding Z., Lu Y., Yu Q., Werle K.D., Zhou G., Park Y.Y., Peng G., Gambello M.J., et al. Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance. Nat. Commun. 2015;6:7926. doi: 10.1038/ncomms8926. PubMed DOI
Feng Y., Ariza M.E., Goulet A.C., Shi J., Nelson M.A. Death-signal-induced relocalization of cyclin-dependent kinase 11 to mitochondria. Biochem. J. 2005;392:65–73. doi: 10.1042/BJ20050195. PubMed DOI PMC
Bordin L., Cattapan F., Clari G., Toninello A., Siliprandi N., Moret V. Spermine-mediated casein kinase II-uptake by rat liver mitochondria. Biochim. Biophys. Acta. 1994;1199:266–270. doi: 10.1016/0304-4165(94)90005-1. PubMed DOI
Clari G., Toninello A., Bordin L., Cattapan F., Piccinelli-Siliprandi D., Moret V. Spermine effect on the binding of casein kinase I to the rat liver mitochondrial structures. Biochem. Biophys. Res. Commun. 1994;205:389–395. doi: 10.1006/bbrc.1994.2677. PubMed DOI
Gordon R., Singh N., Lawana V., Ghosh A., Harischandra D.S., Jin H., Hogan C., Sarkar S., Rokad D., Panicker N., et al. Protein kinase Cdelta upregulation in microglia drives neuroinflammatory responses and dopaminergic neurodegeneration in experimental models of Parkinson’s disease. Neurobiol. Dis. 2016;93:96–114. doi: 10.1016/j.nbd.2016.04.008. PubMed DOI PMC
Nowak G., Bakajsova D. Protein kinase C-alpha interaction with F0F1-ATPase promotes F0F1-ATPase activity and reduces energy deficits in injured renal cells. J. Biol. Chem. 2015;290:7054–7066. doi: 10.1074/jbc.M114.588244. PubMed DOI PMC
Rathore R., Zheng Y.M., Li X.Q., Wang Q.S., Liu Q.H., Ginnan R., Singer H.A., Ho Y.S., Wang Y.X. Mitochondrial ROS-PKCepsilon signaling axis is uniquely involved in hypoxic increase in [Ca2+]i in pulmonary artery smooth muscle cells. Biochem. Biophys. Res. Commun. 2006;351:784–790. doi: 10.1016/j.bbrc.2006.10.116. PubMed DOI PMC
Rubio M.A., Hopper A.K. Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev. RNA. 2011;2:802–817. doi: 10.1002/wrna.93. PubMed DOI PMC
Sieber F., Duchene A.M., Marechal-Drouard L. Mitochondrial RNA import: From diversity of natural mechanisms to potential applications. Int. Rev. Cell Mol. Biol. 2011;287:145–190. doi: 10.1016/B978-0-12-386043-9.00004-9. PubMed DOI
Wiedemann N., Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annu. Rev. Biochem. 2017;86:685–714. doi: 10.1146/annurev-biochem-060815-014352. PubMed DOI
Law Y.S., Ngan L., Yan J., Kwok L.Y., Sun Y., Cheng S., Schwenkert S., Lim B.L. Multiple Kinases Can Phosphorylate the N-Terminal Sequences of Mitochondrial Proteins in Arabidopsis thaliana. Front. Plant. Sci. 2018;9:982. doi: 10.3389/fpls.2018.00982. PubMed DOI PMC
Moulin C., Caumont-Sarcos A., Ieva R. Mitochondrial presequence import: Multiple regulatory knobs fine-tune mitochondrial biogenesis and homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2019;1866:930–944. doi: 10.1016/j.bbamcr.2019.02.012. PubMed DOI
Becker T., Vogtle F.N., Stojanovski D., Meisinger C. Sorting and assembly of mitochondrial outer membrane proteins. Biochim. Biophys. Acta. 2008;1777:557–563. doi: 10.1016/j.bbabio.2008.03.017. PubMed DOI
Heazlewood J.L., Durek P., Hummel J., Selbig J., Weckwerth W., Walther D., Schulze W.X. PhosPhAt: A database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Res. 2008;36:D1015–1021. doi: 10.1093/nar/gkm812. PubMed DOI PMC
Rao S., Schmidt O., Harbauer A.B., Schonfisch B., Guiard B., Pfanner N., Meisinger C. Biogenesis of the preprotein translocase of the outer mitochondrial membrane: Protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell. 2012;23:1618–1627. doi: 10.1091/mbc.e11-11-0933. PubMed DOI PMC
Schmidt O., Harbauer A.B., Rao S., Eyrich B., Zahedi R.P., Stojanovski D., Schonfisch B., Guiard B., Sickmann A., Pfanner N., et al. Regulation of mitochondrial protein import by cytosolic kinases. Cell. 2011;144:227–239. doi: 10.1016/j.cell.2010.12.015. PubMed DOI
Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., Skrzypek E. PhosphoSitePlus, 2014: Mutations, PTMs and recalibrations. Nucleic Acids Res. 2015;43:D512–D520. doi: 10.1093/nar/gku1267. PubMed DOI PMC
Gerbeth C., Schmidt O., Rao S., Harbauer A.B., Mikropoulou D., Opalinska M., Guiard B., Pfanner N., Meisinger C. Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 2013;18:578–587. doi: 10.1016/j.cmet.2013.09.006. PubMed DOI
Chacinska A., Koehler C.M., Milenkovic D., Lithgow T., Pfanner N. Importing mitochondrial proteins: Machineries and mechanisms. Cell. 2009;138:628–644. doi: 10.1016/j.cell.2009.08.005. PubMed DOI PMC
Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007;76:723–749. doi: 10.1146/annurev.biochem.76.052705.163409. PubMed DOI
Becker T., Guiard B., Thornton N., Zufall N., Stroud D.A., Wiedemann N., Pfanner N. Assembly of the mitochondrial protein import channel: Role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell. 2010;21:3106–3113. doi: 10.1091/mbc.e10-06-0518. PubMed DOI PMC
Zaman S., Lippman S.I., Zhao X., Broach J.R. How Saccharomyces responds to nutrients. Annu. Rev. Genet. 2008;42:27–81. doi: 10.1146/annurev.genet.41.110306.130206. PubMed DOI
Becker T., Pfannschmidt S., Guiard B., Stojanovski D., Milenkovic D., Kutik S., Pfanner N., Meisinger C., Wiedemann N. Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors. J. Biol. Chem. 2008;283:120–127. doi: 10.1074/jbc.M706997200. PubMed DOI
Becker T., Wenz L.S., Kruger V., Lehmann W., Muller J.M., Goroncy L., Zufall N., Lithgow T., Guiard B., Chacinska A., et al. The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. J. Cell Biol. 2011;194:387–395. doi: 10.1083/jcb.201102044. PubMed DOI PMC
Kettenbach A.N., Gerber S.A. Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: Application to general and phosphotyrosine-specific phosphoproteomics experiments. Anal. Chem. 2011;83:7635–7644. doi: 10.1021/ac201894j. PubMed DOI PMC
Mertins P., Mani D.R., Ruggles K.V., Gillette M.A., Clauser K.R., Wang P., Wang X., Qiao J.W., Cao S., Petralia F., et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature. 2016;534:55–62. doi: 10.1038/nature18003. PubMed DOI PMC
Sharma K., D’Souza R.C., Tyanova S., Schaab C., Wisniewski J.R., Cox J., Mann M. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell Rep. 2014;8:1583–1594. doi: 10.1016/j.celrep.2014.07.036. PubMed DOI
Tsai C.F., Wang Y.T., Yen H.Y., Tsou C.C., Ku W.C., Lin P.Y., Chen H.Y., Nesvizhskii A.I., Ishihama Y., Chen Y.J. Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nat. Commun. 2015;6:6622. doi: 10.1038/ncomms7622. PubMed DOI PMC
Zhou H., Di Palma S., Preisinger C., Peng M., Polat A.N., Heck A.J., Mohammed S. Toward a comprehensive characterization of a human cancer cell phosphoproteome. J. Proteome Res. 2013;12:260–271. doi: 10.1021/pr300630k. PubMed DOI
Zhou Q., Lam P.Y., Han D., Cadenas E. c-Jun N-terminal kinase regulates mitochondrial bioenergetics by modulating pyruvate dehydrogenase activity in primary cortical neurons. J. Neurochem. 2008;104:325–335. doi: 10.1111/j.1471-4159.2007.04957.x. PubMed DOI
Seifert F., Ciszak E., Korotchkina L., Golbik R., Spinka M., Dominiak P., Sidhu S., Brauer J., Patel M.S., Tittmann K. Phosphorylation of serine 264 impedes active site accessibility in the E1 component of the human pyruvate dehydrogenase multienzyme complex. Biochemistry. 2007;46:6277–6287. doi: 10.1021/bi700083z. PubMed DOI
Sugden M.C., Holness M.J. Recent advances in mechanisms regulating glucose oxidation at the level of the pyruvate dehydrogenase complex by PDKs. Am. J. Physiol. Endocrinol. Metab. 2003;284:E855–862. doi: 10.1152/ajpendo.00526.2002. PubMed DOI
Zhou Z.H., McCarthy D.B., O’Connor C.M., Reed L.J., Stoops J.K. The remarkable structural and functional organization of the eukaryotic pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA. 2001;98:14802–14807. doi: 10.1073/pnas.011597698. PubMed DOI PMC
Linn T.C., Pettit F.H., Reed L.J. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. USA. 1969;62:234–241. doi: 10.1073/pnas.62.1.234. PubMed DOI PMC
Bowker-Kinley M., Popov K.M. Evidence that pyruvate dehydrogenase kinase belongs to the ATPase/kinase superfamily. Biochem. J. 1999;344 Pt. 1:47–53. doi: 10.1042/bj3440047. PubMed DOI PMC
Bowker-Kinley M.M., Davis W.I., Wu P., Harris R.A., Popov K.M. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 1998;329 Pt. 1:191–196. doi: 10.1042/bj3290191. PubMed DOI PMC
Steussy C.N., Popov K.M., Bowker-Kinley M.M., Sloan R.B., Jr., Harris R.A., Hamilton J.A. Structure of pyruvate dehydrogenase kinase. Novel folding pattern for a serine protein kinase. J. Biol Chem. 2001;276:37443–37450. doi: 10.1074/jbc.M104285200. PubMed DOI PMC
Teague W.M., Pettit F.H., Yeaman S.J., Reed L.J. Function of phosphorylation sites on pyruvate dehydrogenase. Biochem. Biophys. Res. Commun. 1979;87:244–252. doi: 10.1016/0006-291X(79)91672-3. PubMed DOI
Korotchkina L.G., Patel M.S. Site specificity of four pyruvate dehydrogenase kinase isoenzymes toward the three phosphorylation sites of human pyruvate dehydrogenase. J. Biol. Chem. 2001;276:37223–37229. doi: 10.1074/jbc.M103069200. PubMed DOI
Korotchkina L.G., Patel M.S. Probing the mechanism of inactivation of human pyruvate dehydrogenase by phosphorylation of three sites. J. Biol. Chem. 2001;276:5731–5738. doi: 10.1074/jbc.M007558200. PubMed DOI
Kolobova E., Tuganova A., Boulatnikov I., Popov K.M. Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem. J. 2001;358:69–77. doi: 10.1042/bj3580069. PubMed DOI PMC
Kerbey A.L., Randle P.J., Cooper R.H., Whitehouse S., Pask H.T., Denton R.M. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: Role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem. J. 1976;154:327–348. doi: 10.1042/bj1540327. PubMed DOI PMC
Nakai N., Sato Y., Oshida Y., Yoshimura A., Fujitsuka N., Sugiyama S., Shimomura Y. Effects of aging on the activities of pyruvate dehydrogenase complex and its kinase in rat heart. Life Sci. 1997;60:2309–2314. doi: 10.1016/S0024-3205(97)00286-5. PubMed DOI
Zhou Q., Lam P.Y., Han D., Cadenas E. Activation of c-Jun-N-terminal kinase and decline of mitochondrial pyruvate dehydrogenase activity during brain aging. FEBS Lett. 2009;583:1132–1140. doi: 10.1016/j.febslet.2009.02.043. PubMed DOI PMC
Peng J., Andersen J.K. The role of c-Jun N-terminal kinase (JNK) in Parkinson’s disease. IUBMB Life. 2003;55:267–271. doi: 10.1080/1521654031000121666. PubMed DOI
Zhu X., Raina A.K., Rottkamp C.A., Aliev G., Perry G., Boux H., Smith M.A. Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer’s disease. J. Neurochem. 2001;76:435–441. doi: 10.1046/j.1471-4159.2001.00046.x. PubMed DOI
Li X., Jiang Y., Meisenhelder J., Yang W., Hawke D.H., Zheng Y., Xia Y., Aldape K., He J., Hunter T., et al. Mitochondria-Translocated PGK1 Functions as a Protein Kinase to Coordinate Glycolysis and the TCA Cycle in Tumorigenesis. Mol. Cell. 2016;61:705–719. doi: 10.1016/j.molcel.2016.02.009. PubMed DOI PMC
Warburg O. On respiratory impairment in cancer cells. Science. 1956;124:269–270. PubMed
Yang W., Lu Z. Regulation and function of pyruvate kinase M2 in cancer. Cancer Lett. 2013;339:153–158. doi: 10.1016/j.canlet.2013.06.008. PubMed DOI PMC
Yang W., Lu Z. Pyruvate kinase M2 at a glance. J. Cell Sci. 2015;128:1655–1660. doi: 10.1242/jcs.166629. PubMed DOI PMC
Bernstein B.E., Hol W.G. Crystal structures of substrates and products bound to the phosphoglycerate kinase active site reveal the catalytic mechanism. Biochemistry. 1998;37:4429–4436. doi: 10.1021/bi9724117. PubMed DOI
Zhang D., Tai L.K., Wong L.L., Chiu L.L., Sethi S.K., Koay E.S. Proteomic study reveals that proteins involved in metabolic and detoxification pathways are highly expressed in HER-2/neu-positive breast cancer. Mol. Cell Proteom. 2005;4:1686–1696. doi: 10.1074/mcp.M400221-MCP200. PubMed DOI
Hwang T.L., Liang Y., Chien K.Y., Yu J.S. Overexpression and elevated serum levels of phosphoglycerate kinase 1 in pancreatic ductal adenocarcinoma. Proteomics. 2006;6:2259–2272. doi: 10.1002/pmic.200500345. PubMed DOI
Duan Z., Lamendola D.E., Yusuf R.Z., Penson R.T., Preffer F.I., Seiden M.V. Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotype. Anticancer Res. 2002;22:1933–1941. PubMed
Ahmad S.S., Glatzle J., Bajaeifer K., Buhler S., Lehmann T., Konigsrainer I., Vollmer J.P., Sipos B., Ahmad S.S., Northoff H., et al. Phosphoglycerate kinase 1 as a promoter of metastasis in colon cancer. Int. J. Oncol. 2013;43:586–590. doi: 10.3892/ijo.2013.1971. PubMed DOI
Ai J., Huang H., Lv X., Tang Z., Chen M., Chen T., Duan W., Sun H., Li Q., Tan R., et al. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell Physiol. Biochem. 2011;27:207–216. doi: 10.1159/000327946. PubMed DOI
Zieker D., Konigsrainer I., Tritschler I., Loffler M., Beckert S., Traub F., Nieselt K., Buhler S., Weller M., Gaedcke J., et al. Phosphoglycerate kinase 1 a promoting enzyme for peritoneal dissemination in gastric cancer. Int. J. Cancer. 2010;126:1513–1520. doi: 10.1002/ijc.24835. PubMed DOI PMC
Hoshi M., Takashima A., Noguchi K., Murayama M., Sato M., Kondo S., Saitoh Y., Ishiguro K., Hoshino T., Imahori K. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc. Natl. Acad. Sci. USA. 1996;93:2719–2723. doi: 10.1073/pnas.93.7.2719. PubMed DOI PMC
Song J.S., Yang S.D. Tau protein kinase I/GSK-3 beta/kinase FA in heparin phosphorylates tau on Ser199, Thr231, Ser235, Ser262, Ser369, and Ser400 sites phosphorylated in Alzheimer disease brain. J. Protein Chem. 1995;14:95–105. doi: 10.1007/BF01888367. PubMed DOI
Bykova N.V., Stensballe A., Egsgaard H., Jensen O.N., Moller I.M. Phosphorylation of formate dehydrogenase in potato tuber mitochondria. J. Biol. Chem. 2003;278:26021–26030. doi: 10.1074/jbc.M300245200. PubMed DOI
Chen X.J., Butow R.A. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 2005;6:815–825. doi: 10.1038/nrg1708. PubMed DOI
Shadel G.S. Mitochondrial DNA, aconitase ‘wraps’ it up. Trends Biochem. Sci. 2005;30:294–296. doi: 10.1016/j.tibs.2005.04.007. PubMed DOI
Lewandrowski U., Sickmann A., Cesaro L., Brunati A.M., Toninello A., Salvi M. Identification of new tyrosine phosphorylated proteins in rat brain mitochondria. FEBS Lett. 2008;582:1104–1110. doi: 10.1016/j.febslet.2008.02.077. PubMed DOI
Guo X., Niemi N.M., Hutchins P.D., Condon S.G.F., Jochem A., Ulbrich A., Higbee A.J., Russell J.D., Senes A., Coon J.J., et al. Ptc7p Dephosphorylates Select Mitochondrial Proteins to Enhance Metabolic Function. Cell Rep. 2017;18:307–313. doi: 10.1016/j.celrep.2016.12.049. PubMed DOI PMC
Hofer A., Wenz T. Post-translational modification of mitochondria as a novel mode of regulation. Exp. Gerontol. 2014;56:202–220. doi: 10.1016/j.exger.2014.03.006. PubMed DOI
Duarte A., Castillo A.F., Podesta E.J., Poderoso C. Mitochondrial fusion and ERK activity regulate steroidogenic acute regulatory protein localization in mitochondria. PLoS ONE. 2014;9:e100387. doi: 10.1371/journal.pone.0100387. PubMed DOI PMC
Bose H.S., Lingappa V.R., Miller W.L. Rapid regulation of steroidogenesis by mitochondrial protein import. Nature. 2002;417:87–91. doi: 10.1038/417087a. PubMed DOI
Castillo A.F., Orlando U., Helfenberger K.E., Poderoso C., Podesta E.J. The role of mitochondrial fusion and StAR phosphorylation in the regulation of StAR activity and steroidogenesis. Mol. Cell Endocrinol. 2015;408:73–79. doi: 10.1016/j.mce.2014.12.011. PubMed DOI
Arakane F., King S.R., Du Y., Kallen C.B., Walsh L.P., Watari H., Stocco D.M., Strauss J.F., 3rd Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J. Biol. Chem. 1997;272:32656–32662. doi: 10.1074/jbc.272.51.32656. PubMed DOI
Fleury A., Mathieu A.P., Ducharme L., Hales D.B., LeHoux J.G. Phosphorylation and function of the hamster adrenal steroidogenic acute regulatory protein (StAR) J. Steroid Biochem. Mol. Biol. 2004;91:259–271. doi: 10.1016/j.jsbmb.2004.04.010. PubMed DOI
Granot Z., Kobiler O., Melamed-Book N., Eimerl S., Bahat A., Lu B., Braun S., Maurizi M.R., Suzuki C.K., Oppenheim A.B., et al. Turnover of mitochondrial steroidogenic acute regulatory (StAR) protein by Lon protease: The unexpected effect of proteasome inhibitors. Mol. Endocrinol. 2007;21:2164–2177. doi: 10.1210/me.2005-0458. PubMed DOI
van den Heuvel L., Smeitink J. The oxidative phosphorylation (OXPHOS) system: Nuclear genes and human genetic diseases. Bioessays. 2001;23:518–525. doi: 10.1002/bies.1071. PubMed DOI
Nosek J., Fukuhara H. NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J. Bacteriol. 1994;176:5622–5630. doi: 10.1128/JB.176.18.5622-5630.1994. PubMed DOI PMC
Chen R., Fearnley I.M., Peak-Chew S.Y., Walker J.E. The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 2004;279:26036–26045. doi: 10.1074/jbc.M402710200. PubMed DOI
Papa S., De Rasmo D., Scacco S., Signorile A., Technikova-Dobrova Z., Palmisano G., Sardanelli A.M., Papa F., Panelli D., Scaringi R., et al. Mammalian complex I: A regulable and vulnerable pacemaker in mitochondrial respiratory function. Biochim. Biophys. Acta. 2008;1777:719–728. doi: 10.1016/j.bbabio.2008.04.005. PubMed DOI
Gowthami N., Sunitha B., Kumar M., Keshava Prasad T.S., Gayathri N., Padmanabhan B., Srinivas Bharath M.M. Mapping the protein phosphorylation sites in human mitochondrial complex I (NADH: Ubiquinone oxidoreductase): A bioinformatics study with implications for brain aging and neurodegeneration. J. Chem. Neuroanat. 2019;95:13–28. doi: 10.1016/j.jchemneu.2018.02.004. PubMed DOI
Scacco S., Vergari R., Scarpulla R.C., Technikova-Dobrova Z., Sardanelli A., Lambo R., Lorusso V., Papa S. cAMP-dependent phosphorylation of the nuclear encoded 18-kDa (IP) subunit of respiratory complex I and activation of the complex in serum-starved mouse fibroblast cultures. J. Biol. Chem. 2000;275:17578–17582. doi: 10.1074/jbc.M001174200. PubMed DOI
De Rasmo D., Palmisano G., Scacco S., Technikova-Dobrova Z., Panelli D., Cocco T., Sardanelli A.M., Gnoni A., Micelli L., Trani A., et al. Phosphorylation pattern of the NDUFS4 subunit of complex I of the mammalian respiratory chain. Mitochondrion. 2010;10:464–471. doi: 10.1016/j.mito.2010.04.005. PubMed DOI
Papa S., Sardanelli A.M., Cocco T., Speranza F., Scacco S.C., Technikova-Dobrova Z. The nuclear-encoded 18 kDa (IP) AQDQ subunit of bovine heart complex I is phosphorylated by the mitochondrial cAMP-dependent protein kinase. FEBS Lett. 1996;379:299–301. doi: 10.1016/0014-5793(95)01532-9. PubMed DOI
Papa S., Scacco S., Sardanelli A.M., Vergari R., Papa F., Budde S., van den Heuvel L., Smeitink J. Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome. FEBS Lett. 2001;489:259–262. doi: 10.1016/S0014-5793(00)02334-6. PubMed DOI
van den Heuvel L., Ruitenbeek W., Smeets R., Gelman-Kohan Z., Elpeleg O., Loeffen J., Trijbels F., Mariman E., de Bruijn D., Smeitink J. Demonstration of a new pathogenic mutation in human complex I deficiency: A 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit. Am. J. Hum. Genet. 1998;62:262–268. doi: 10.1086/301716. PubMed DOI PMC
De Rasmo D., Signorile A., Larizza M., Pacelli C., Cocco T., Papa S. Activation of the cAMP cascade in human fibroblast cultures rescues the activity of oxidatively damaged complex I. Free Radic. Biol. Med. 2012;52:757–764. doi: 10.1016/j.freeradbiomed.2011.11.030. PubMed DOI
Piccoli C., Scacco S., Bellomo F., Signorile A., Iuso A., Boffoli D., Scrima R., Capitanio N., Papa S. cAMP controls oxygen metabolism in mammalian cells. FEBS Lett. 2006;580:4539–4543. doi: 10.1016/j.febslet.2006.06.085. PubMed DOI
De Rasmo D., Panelli D., Sardanelli A.M., Papa S. cAMP-dependent protein kinase regulates the mitochondrial import of the nuclear encoded NDUFS4 subunit of complex I. Cell Signal. 2008;20:989–997. doi: 10.1016/j.cellsig.2008.01.017. PubMed DOI
Morais V.A., Haddad D., Craessaerts K., De Bock P.J., Swerts J., Vilain S., Aerts L., Overbergh L., Grunewald A., Seibler P., et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science. 2014;344:203–207. doi: 10.1126/science.1249161. PubMed DOI
Morais V.A., Verstreken P., Roethig A., Smet J., Snellinx A., Vanbrabant M., Haddad D., Frezza C., Mandemakers W., Vogt-Weisenhorn D., et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 2009;1:99–111. doi: 10.1002/emmm.200900006. PubMed DOI PMC
Wang Z., Fan M., Candas D., Zhang T.Q., Qin L., Eldridge A., Wachsmann-Hogiu S., Ahmed K.M., Chromy B.A., Nantajit D., et al. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev. Cell. 2014;29:217–232. doi: 10.1016/j.devcel.2014.03.012. PubMed DOI PMC
Ogura M., Inoue T., Yamaki J., Homma M.K., Kurosaki T., Homma Y. Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice. Eur. J. Immunol. 2017;47:406–418. doi: 10.1002/eji.201646342. PubMed DOI
Zhao X., Leon I.R., Bak S., Mogensen M., Wrzesinski K., Hojlund K., Jensen O.N. Phosphoproteome analysis of functional mitochondria isolated from resting human muscle reveals extensive phosphorylation of inner membrane protein complexes and enzymes. Mol. Cell Proteom. 2011;10:M110–000299. doi: 10.1074/mcp.M110.000299. PubMed DOI PMC
Arachiche A., Augereau O., Decossas M., Pertuiset C., Gontier E., Letellier T., Dachary-Prigent J. Localization of PTP-1B, SHP-2, and Src exclusively in rat brain mitochondria and functional consequences. J. Biol. Chem. 2008;283:24406–24411. doi: 10.1074/jbc.M709217200. PubMed DOI PMC
Mahapatra G., Varughese A., Ji Q., Lee I., Liu J., Vaishnav A., Sinkler C., Kapralov A.A., Moraes C.T., Sanderson T.H., et al. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: Implications for Amp Kinase. J. Biol. Chem. 2017;292:64–79. doi: 10.1074/jbc.M116.744664. PubMed DOI PMC
Pecina P., Borisenko G.G., Belikova N.A., Tyurina Y.Y., Pecinova A., Lee I., Samhan-Arias A.K., Przyklenk K., Kagan V.E., Huttemann M. Phosphomimetic substitution of cytochrome C tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation. Biochemistry. 2010;49:6705–6714. doi: 10.1021/bi100486s. PubMed DOI
Wan J., Kalpage H.A., Vaishnav A., Liu J., Lee I., Mahapatra G., Turner A.A., Zurek M.P., Ji Q., Moraes C.T., et al. Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation. Sci. Rep. 2019;9:15815. doi: 10.1038/s41598-019-52101-z. PubMed DOI PMC
Moreno-Beltran B., Guerra-Castellano A., Diaz-Quintana A., Del Conte R., Garcia-Maurino S.M., Diaz-Moreno S., Gonzalez-Arzola K., Santos-Ocana C., Velazquez-Campoy A., De la Rosa M.A., et al. Structural basis of mitochondrial dysfunction in response to cytochrome c phosphorylation at tyrosine 48. Proc. Natl. Acad. Sci. USA. 2017;114:E3041–E3050. doi: 10.1073/pnas.1618008114. PubMed DOI PMC
Kalpage H.A., Wan J., Morse P.T., Lee I., Huttemann M. Brain-Specific Serine-47 Modification of Cytochrome c Regulates Cytochrome c Oxidase Activity Attenuating ROS Production and Cell Death: Implications for Ischemia/Reperfusion Injury and Akt Signaling. Cells. 2020;9:1843. doi: 10.3390/cells9081843. PubMed DOI PMC
Taanman J.W. Human cytochrome c oxidase: Structure, function, and deficiency. J. Bioenerg. Biomembr. 1997;29:151–163. doi: 10.1023/A:1022638013825. PubMed DOI
Lee I., Salomon A.R., Ficarro S., Mathes I., Lottspeich F., Grossman L.I., Huttemann M. cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J. Biol. Chem. 2005;280:6094–6100. doi: 10.1074/jbc.M411335200. PubMed DOI
Samavati L., Lee I., Mathes I., Lottspeich F., Huttemann M. Tumor necrosis factor alpha inhibits oxidative phosphorylation through tyrosine phosphorylation at subunit I of cytochrome c oxidase. J. Biol. Chem. 2008;283:21134–21144. doi: 10.1074/jbc.M801954200. PubMed DOI PMC
Prabu S.K., Anandatheerthavarada H.K., Raza H., Srinivasan S., Spear J.F., Avadhani N.G. Protein kinase A-mediated phosphorylation modulates cytochrome c oxidase function and augments hypoxia and myocardial ischemia-related injury. J. Biol. Chem. 2006;281:2061–2070. doi: 10.1074/jbc.M507741200. PubMed DOI PMC
Srinivasan S., Spear J., Chandran K., Joseph J., Kalyanaraman B., Avadhani N.G. Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction. PLoS ONE. 2013;8:e77129. doi: 10.1371/journal.pone.0077129. PubMed DOI PMC
Kunova N., Ondrovicova G., Bauer J.A., Bellova J., Ambro L., Martinakova L., Kotrasova V., Kutejova E., Pevala V. The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci. Rep. 2017;7:631. doi: 10.1038/s41598-017-00632-8. PubMed DOI PMC
Sepuri N.B.V., Angireddy R., Srinivasan S., Guha M., Spear J., Lu B., Anandatheerthavarada H.K., Suzuki C.K., Avadhani N.G. Mitochondrial LON protease-dependent degradation of cytochrome c oxidase subunits under hypoxia and myocardial ischemia. Biochim. Biophys. Acta Bioenerg. 2017;1858:519–528. doi: 10.1016/j.bbabio.2017.04.003. PubMed DOI PMC
Acin-Perez R., Gatti D.L., Bai Y., Manfredi G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: Coupled mechanisms of energy metabolism regulation. Cell Metab. 2011;13:712–719. doi: 10.1016/j.cmet.2011.03.024. PubMed DOI PMC
Barnett M., Lin D., Akoyev V., Willard L., Takemoto D. Protein kinase C epsilon activates lens mitochondrial cytochrome c oxidase subunit IV during hypoxia. Exp. Eye Res. 2008;86:226–234. doi: 10.1016/j.exer.2007.10.012. PubMed DOI PMC
Ogbi M., Johnson J.A. Protein kinase Cepsilon interacts with cytochrome c oxidase subunit IV and enhances cytochrome c oxidase activity in neonatal cardiac myocyte preconditioning. Biochem. J. 2006;393:191–199. doi: 10.1042/BJ20050757. PubMed DOI PMC
Struglics A., Fredlund K.M., Moller I.M., Allen J.F. Two subunits of the F0F1-ATPase are phosphorylated in the inner mitochondrial membrane. Biochem. Biophys. Res. Commun. 1998;243:664–668. doi: 10.1006/bbrc.1998.8151. PubMed DOI
Hojlund K., Wrzesinski K., Larsen P.M., Fey S.J., Roepstorff P., Handberg A., Dela F., Vinten J., McCormack J.G., Reynet C., et al. Proteome analysis reveals phosphorylation of ATP synthase beta -subunit in human skeletal muscle and proteins with potential roles in type 2 diabetes. J. Biol. Chem. 2003;278:10436–10442. doi: 10.1074/jbc.M212881200. PubMed DOI
Hojlund K., Yi Z., Lefort N., Langlais P., Bowen B., Levin K., Beck-Nielsen H., Mandarino L.J. Human ATP synthase beta is phosphorylated at multiple sites and shows abnormal phosphorylation at specific sites in insulin-resistant muscle. Diabetologia. 2010;53:541–551. doi: 10.1007/s00125-009-1624-0. PubMed DOI
Yang J.Y., Deng W., Chen Y., Fan W., Baldwin K.M., Jope R.S., Wallace D.C., Wang P.H. Impaired translocation and activation of mitochondrial Akt1 mitigated mitochondrial oxidative phosphorylation Complex V activity in diabetic myocardium. J. Mol. Cell Cardiol. 2013;59:167–175. doi: 10.1016/j.yjmcc.2013.02.016. PubMed DOI PMC
Garcia-Bermudez J., Sanchez-Arago M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., Cuezva J.M. PKA Phosphorylates the ATPase Inhibitory Factor 1 and Inactivates Its Capacity to Bind and Inhibit the Mitochondrial H(+)-ATP Synthase. Cell Rep. 2015;12:2143–2155. doi: 10.1016/j.celrep.2015.08.052. PubMed DOI
Pullman M.E., Monroy G.C. A Naturally Occurring Inhibitor of Mitochondrial Adenosine Triphosphatase. J. Biol. Chem. 1963;238:3762–3769. doi: 10.1016/S0021-9258(19)75338-1. PubMed DOI
Garcia-Aguilar A., Cuezva J.M. A Review of the Inhibition of the Mitochondrial ATP Synthase by IF1 in vivo: Reprogramming Energy Metabolism and Inducing Mitohormesis. Front. Physiol. 2018;9:1322. doi: 10.3389/fphys.2018.01322. PubMed DOI PMC
Castellanos E., Lanning N.J. Phosphorylation of OXPHOS Machinery Subunits: Functional Implications in Cell Biology and Disease. Yale J. Biol. Med. 2019;92:523–531. PubMed PMC
Rousset S., Alves-Guerra M.C., Mozo J., Miroux B., Cassard-Doulcier A.M., Bouillaud F., Ricquier D. The biology of mitochondrial uncoupling proteins. Diabetes. 2004;53(Suppl. 1):S130–S135. doi: 10.2337/diabetes.53.2007.S130. PubMed DOI
Lee J.H., Park A., Oh K.J., Lee S.C., Kim W.K., Bae K.H. The Role of Adipose Tissue Mitochondria: Regulation of Mitochondrial Function for the Treatment of Metabolic Diseases. Int. J. Mol. Sci. 2019;20:4924. doi: 10.3390/ijms20194924. PubMed DOI PMC
Ricquier D. Uncoupling protein 1 of brown adipocytes, the only uncoupler: A historical perspective. Front. Endocrinol. 2011;2:85. doi: 10.3389/fendo.2011.00085. PubMed DOI PMC
Jezek P., Jaburek M., Porter R.K. Uncoupling mechanism and redox regulation of mitochondrial uncoupling protein 1 (UCP1) Biochim. Biophys. Acta Bioenerg. 2019;1860:259–269. doi: 10.1016/j.bbabio.2018.11.007. PubMed DOI
Nicholls D.G., Locke R.M. Thermogenic mechanisms in brown fat. Physiol. Rev. 1984;64:1–64. doi: 10.1152/physrev.1984.64.1.1. PubMed DOI
Macher G., Koehler M., Rupprecht A., Kreiter J., Hinterdorfer P., Pohl E.E. Inhibition of mitochondrial UCP1 and UCP3 by purine nucleotides and phosphate. Biochim. Biophys. Acta Biomembr. 2018;1860:664–672. doi: 10.1016/j.bbamem.2017.12.001. PubMed DOI PMC
Bast-Habersbrunner A., Fromme T. Purine Nucleotides in the Regulation of Brown Adipose Tissue Activity. Front. Endocrinol. 2020;11:118. doi: 10.3389/fendo.2020.00118. PubMed DOI PMC
Villarroya F., Peyrou M., Giralt M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie. 2017;134:86–92. doi: 10.1016/j.biochi.2016.09.017. PubMed DOI
Cao W., Daniel K.W., Robidoux J., Puigserver P., Medvedev A.V., Bai X., Floering L.M., Spiegelman B.M., Collins S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell Biol. 2004;24:3057–3067. doi: 10.1128/MCB.24.7.3057-3067.2004. PubMed DOI PMC
Shinoda K., Ohyama K., Hasegawa Y., Chang H.Y., Ogura M., Sato A., Hong H., Hosono T., Sharp L.Z., Scheel D.W., et al. Phosphoproteomics Identifies CK2 as a Negative Regulator of Beige Adipocyte Thermogenesis and Energy Expenditure. Cell Metab. 2015;22:997–1008. doi: 10.1016/j.cmet.2015.09.029. PubMed DOI PMC
Carroll A.M., Porter R.K., Morrice N.A. Identification of serine phosphorylation in mitochondrial uncoupling protein 1. Biochim. Biophys. Acta. 2008;1777:1060–1065. doi: 10.1016/j.bbabio.2008.04.030. PubMed DOI
Anand R., Langer T., Baker M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta. 2013;1833:195–204. doi: 10.1016/j.bbamcr.2012.06.025. PubMed DOI
Baker B.M., Haynes C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011;36:254–261. doi: 10.1016/j.tibs.2011.01.004. PubMed DOI
Baker M.J., Tatsuta T., Langer T. Quality control of mitochondrial proteostasis. Cold Spring Harb. Perspect Biol. 2011;3 doi: 10.1101/cshperspect.a007559. PubMed DOI PMC
Bender T., Lewrenz I., Franken S., Baitzel C., Voos W. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease. Mol. Biol. Cell. 2011;22:541–554. doi: 10.1091/mbc.e10-08-0718. PubMed DOI PMC
Lund A.A., Rhoads D.M., Lund A.L., Cerny R.L., Elthon T.E. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol. Chem. 2001;276:29924–29929. doi: 10.1074/jbc.M103373200. PubMed DOI
Downs C.A., Heckathorn S.A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 1998;430:246–250. doi: 10.1016/S0014-5793(98)00669-3. PubMed DOI
Lund A.A., Blum P.H., Bhattramakki D., Elthon T.E. Heat-stress response of maize mitochondria. Plant. Physiol. 1998;116:1097–1110. doi: 10.1104/pp.116.3.1097. PubMed DOI PMC
Lenne C., Douce R. A Low Molecular Mass Heat-Shock Protein Is Localized to Higher Plant Mitochondria. Plant. Physiol. 1994;105:1255–1261. doi: 10.1104/pp.105.4.1255. PubMed DOI PMC
Chen H.F., Chen C.Y., Lin T.H., Huang Z.W., Chi T.H., Ma Y.S., Wu S.B., Wei Y.H., Hsieh M. The protective roles of phosphorylated heat shock protein 27 in human cells harboring myoclonus epilepsy with ragged-red fibers A8344G mtDNA mutation. FEBS J. 2012;279:2987–3001. doi: 10.1111/j.1742-4658.2012.08678.x. PubMed DOI
Zhou M., Lambert H., Landry J. Transient activation of a distinct serine protein kinase is responsible for 27-kDa heat shock protein phosphorylation in mitogen-stimulated and heat-shocked cells. J. Biol. Chem. 1993;268:35–43. doi: 10.1016/S0021-9258(18)54111-9. PubMed DOI
Arrigo A.P. Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: An update. FEBS Lett. 2013;587:1959–1969. doi: 10.1016/j.febslet.2013.05.011. PubMed DOI
Hadari Y.R., Haring H.U., Zick Y. p75, a member of the heat shock protein family, undergoes tyrosine phosphorylation in response to oxidative stress. J. Biol. Chem. 1997;272:657–662. doi: 10.1074/jbc.272.1.657. PubMed DOI
Rasola A., Neckers L., Picard D. Mitochondrial oxidative phosphorylation TRAP(1)ped in tumor cells. Trends Cell Biol. 2014;24:455–463. doi: 10.1016/j.tcb.2014.03.005. PubMed DOI PMC
Sciacovelli M., Guzzo G., Morello V., Frezza C., Zheng L., Nannini N., Calabrese F., Laudiero G., Esposito F., Landriscina M., et al. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab. 2013;17:988–999. doi: 10.1016/j.cmet.2013.04.019. PubMed DOI PMC
Yoshida S., Tsutsumi S., Muhlebach G., Sourbier C., Lee M.J., Lee S., Vartholomaiou E., Tatokoro M., Beebe K., Miyajima N., et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA. 2013;110:E1604–E1612. doi: 10.1073/pnas.1220659110. PubMed DOI PMC
Pridgeon J.W., Olzmann J.A., Chin L.S., Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007;5:e172. doi: 10.1371/journal.pbio.0050172. PubMed DOI PMC
Kang B.H., Plescia J., Dohi T., Rosa J., Doxsey S.J., Altieri D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell. 2007;131:257–270. doi: 10.1016/j.cell.2007.08.028. PubMed DOI
Kowalik M.A., Guzzo G., Morandi A., Perra A., Menegon S., Masgras I., Trevisan E., Angioni M.M., Fornari F., Quagliata L., et al. Metabolic reprogramming identifies the most aggressive lesions at early phases of hepatic carcinogenesis. Oncotarget. 2016;7:32375–32393. doi: 10.18632/oncotarget.8632. PubMed DOI PMC
Masgras I., Sanchez-Martin C., Colombo G., Rasola A. The Chaperone TRAP1 as a Modulator of the Mitochondrial Adaptations in Cancer Cells. Front. Oncol. 2017;7:58. doi: 10.3389/fonc.2017.00058. PubMed DOI PMC
Selak M.A., Armour S.M., MacKenzie E.D., Boulahbel H., Watson D.G., Mansfield K.D., Pan Y., Simon M.C., Thompson C.B., Gottlieb E. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell. 2005;7:77–85. doi: 10.1016/j.ccr.2004.11.022. PubMed DOI
Ficarro S., Chertihin O., Westbrook V.A., White F., Jayes F., Kalab P., Marto J.A., Shabanowitz J., Herr J.C., Hunt D.F., et al. Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J. Biol. Chem. 2003;278:11579–11589. doi: 10.1074/jbc.M202325200. PubMed DOI
Cappello F., Marino Gammazza A., Palumbo Piccionello A., Campanella C., Pace A., Conway de Macario E., Macario A.J. Hsp60 chaperonopathies and chaperonotherapy: Targets and agents. Expert Opin. Ther. Targets. 2014;18:185–208. doi: 10.1517/14728222.2014.856417. PubMed DOI
Richardson A., Landry S.J., Georgopoulos C. The ins and outs of a molecular chaperone machine. Trends Biochem. Sci. 1998;23:138–143. doi: 10.1016/S0968-0004(98)01193-1. PubMed DOI
Vilasi S., Bulone D., Caruso Bavisotto C., Campanella C., Marino Gammazza A., San Biagio P.L., Cappello F., Conway de Macario E., Macario A.J.L. Chaperonin of Group I: Oligomeric Spectrum and Biochemical and Biological Implications. Front. Mol. Biosci. 2017;4:99. doi: 10.3389/fmolb.2017.00099. PubMed DOI PMC
Caruso Bavisotto C., Alberti G., Vitale A.M., Paladino L., Campanella C., Rappa F., Gorska M., Conway de Macario E., Cappello F., Macario A.J.L., et al. Hsp60 Post-translational Modifications: Functional and Pathological Consequences. Front. Mol. Biosci. 2020;7:95. doi: 10.3389/fmolb.2020.00095. PubMed DOI PMC
Gu Y., Ande S.R., Mishra S. Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose. Arch. Biochem. Biophys. 2011;505:98–104. doi: 10.1016/j.abb.2010.09.024. PubMed DOI
Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., Nardone J., Lee K., Reeves C., Li Y., et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–1203. doi: 10.1016/j.cell.2007.11.025. PubMed DOI
Chattopadhyay S., Mukherjee A., Patra U., Bhowmick R., Basak T., Sengupta S., Chawla-Sarkar M. Tyrosine phosphorylation modulates mitochondrial chaperonin Hsp60 and delays rotavirus NSP4-mediated apoptotic signaling in host cells. Cell Microbiol. 2017;19 doi: 10.1111/cmi.12670. PubMed DOI
Asquith K.L., Baleato R.M., McLaughlin E.A., Nixon B., Aitken R.J. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J. Cell Sci. 2004;117:3645–3657. doi: 10.1242/jcs.01214. PubMed DOI
Desautels M., Goldberg A.L. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl. Acad. Sci. USA. 1982;79:1869–1873. doi: 10.1073/pnas.79.6.1869. PubMed DOI PMC
Akimov V., Barrio-Hernandez I., Hansen S.V.F., Hallenborg P., Pedersen A.K., Bekker-Jensen D.B., Puglia M., Christensen S.D.K., Vanselow J.T., Nielsen M.M., et al. UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat. Struct Mol. Biol. 2018;25:631–640. doi: 10.1038/s41594-018-0084-y. PubMed DOI
Ghosh J.C., Seo J.H., Agarwal E., Wang Y., Kossenkov A.V., Tang H.Y., Speicher D.W., Altieri D.C. Akt phosphorylation of mitochondrial Lonp1 protease enables oxidative metabolism and advanced tumor traits. Oncogene. 2019;38:6926–6939. doi: 10.1038/s41388-019-0939-7. PubMed DOI PMC
Gibellini L., Pinti M., Beretti F., Pierri C.L., Onofrio A., Riccio M., Carnevale G., De Biasi S., Nasi M., Torelli F., et al. Sirtuin 3 interacts with Lon protease and regulates its acetylation status. Mitochondrion. 2014;18:76–81. doi: 10.1016/j.mito.2014.08.001. PubMed DOI
Gibellini L., De Gaetano A., Mandrioli M., Van Tongeren E., Bortolotti C.A., Cossarizza A., Pinti M. The biology of Lonp1: More than a mitochondrial protease. Int. Rev. Cell Mol. Biol. 2020;354:1–61. doi: 10.1016/bs.ircmb.2020.02.005. PubMed DOI
Sepuri N.B.V., Tammineni P., Mohammed F., Paripati A. Nuclear Transcription Factors in the Mitochondria: A New Paradigm in Fine-Tuning Mitochondrial Metabolism. Handb. Exp. Pharmacol. 2017;240:3–20. doi: 10.1007/164_2016_3. PubMed DOI
Fukuda R., Zhang H., Kim J.W., Shimoda L., Dang C.V., Semenza G.L. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129:111–122. doi: 10.1016/j.cell.2007.01.047. PubMed DOI
Goto M., Miwa H., Suganuma K., Tsunekawa-Imai N., Shikami M., Mizutani M., Mizuno S., Hanamura I., Nitta M. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer. 2014;14:76. doi: 10.1186/1471-2407-14-76. PubMed DOI PMC
Zhou X., Teper D., Andrade M.O., Zhang T., Chen S., Song W.Y., Wang N. A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host. mBio. 2018;9 doi: 10.1128/mBio.02146-17. PubMed DOI PMC
Brunings A.M., Gabriel D.W. Xanthomonas citri: Breaking the surface. Mol. Plant. Pathol. 2003;4:141–157. doi: 10.1046/j.1364-3703.2003.00163.x. PubMed DOI
Baker T.A., Sauer R.T. ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim. Biophys. Acta. 2012;1823:15–28. doi: 10.1016/j.bbamcr.2011.06.007. PubMed DOI PMC
Kang S.G., Ortega J., Singh S.K., Wang N., Huang N.N., Steven A.C., Maurizi M.R. Functional proteolytic complexes of the human mitochondrial ATP-dependent protease, hClpXP. J. Biol. Chem. 2002;277:21095–21102. doi: 10.1074/jbc.M201642200. PubMed DOI
Haynes C.M., Petrova K., Benedetti C., Yang Y., Ron D. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell. 2007;13:467–480. doi: 10.1016/j.devcel.2007.07.016. PubMed DOI
Haynes C.M., Ron D. The mitochondrial UPR—Protecting organelle protein homeostasis. J. Cell Sci. 2010;123:3849–3855. doi: 10.1242/jcs.075119. PubMed DOI
Zhao Q., Wang J., Levichkin I.V., Stasinopoulos S., Ryan M.T., Hoogenraad N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002;21:4411–4419. doi: 10.1093/emboj/cdf445. PubMed DOI PMC
da Fonseca P.C., He J., Morris E.P. Molecular model of the human 26S proteasome. Mol. Cell. 2012;46:54–66. doi: 10.1016/j.molcel.2012.03.026. PubMed DOI
Kang S.G., Maurizi M.R., Thompson M., Mueser T., Ahvazi B. Crystallography and mutagenesis point to an essential role for the N-terminus of human mitochondrial ClpP. J. Struct. Biol. 2004;148:338–352. doi: 10.1016/j.jsb.2004.07.004. PubMed DOI
Kang S.G., Dimitrova M.N., Ortega J., Ginsburg A., Maurizi M.R. Human mitochondrial ClpP is a stable heptamer that assembles into a tetradecamer in the presence of ClpX. J. Biol. Chem. 2005;280:35424–35432. doi: 10.1074/jbc.M507240200. PubMed DOI
Kasashima K., Sumitani M., Endo H. Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX. Exp. Cell Res. 2012;318:2335–2343. doi: 10.1016/j.yexcr.2012.07.012. PubMed DOI
Sauer R.T., Bolon D.N., Burton B.M., Burton R.E., Flynn J.M., Grant R.A., Hersch G.L., Joshi S.A., Kenniston J.A., Levchenko I., et al. Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell. 2004;119:9–18. doi: 10.1016/j.cell.2004.09.020. PubMed DOI PMC
Deepa S.S., Bhaskaran S., Ranjit R., Qaisar R., Nair B.C., Liu Y., Walsh M.E., Fok W.C., Van Remmen H. Down-regulation of the mitochondrial matrix peptidase ClpP in muscle cells causes mitochondrial dysfunction and decreases cell proliferation. Free Radic Biol. Med. 2016;91:281–292. doi: 10.1016/j.freeradbiomed.2015.12.021. PubMed DOI PMC
Houtkooper R.H., Mouchiroud L., Ryu D., Moullan N., Katsyuba E., Knott G., Williams R.W., Auwerx J. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature. 2013;497:451–457. doi: 10.1038/nature12188. PubMed DOI PMC
Siegelin M.D., Dohi T., Raskett C.M., Orlowski G.M., Powers C.M., Gilbert C.A., Ross A.H., Plescia J., Altieri D.C. Exploiting the mitochondrial unfolded protein response for cancer therapy in mice and human cells. J. Clin. Invest. 2011;121:1349–1360. doi: 10.1172/JCI44855. PubMed DOI PMC
Rath E., Berger E., Messlik A., Nunes T., Liu B., Kim S.C., Hoogenraad N., Sans M., Sartor R.B., Haller D. Induction of dsRNA-activated protein kinase links mitochondrial unfolded protein response to the pathogenesis of intestinal inflammation. Gut. 2012;61:1269–1278. doi: 10.1136/gutjnl-2011-300767. PubMed DOI PMC
Gal-Ben-Ari S., Barrera I., Ehrlich M., Rosenblum K. PKR: A Kinase to Remember. Front. Mol. Neurosci. 2018;11:480. doi: 10.3389/fnmol.2018.00480. PubMed DOI PMC
Taniuchi S., Miyake M., Tsugawa K., Oyadomari M., Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2alpha kinases. Sci. Rep. 2016;6:32886. doi: 10.1038/srep32886. PubMed DOI PMC
Seo J.H., Rivadeneira D.B., Caino M.C., Chae Y.C., Speicher D.W., Tang H.Y., Vaira V., Bosari S., Palleschi A., Rampini P., et al. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. PLoS Biol. 2016;14:e1002507. doi: 10.1371/journal.pbio.1002507. PubMed DOI PMC
Brown T.A., Tkachuk A.N., Shtengel G., Kopek B.G., Bogenhagen D.F., Hess H.F., Clayton D.A. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell Biol. 2011;31:4994–5010. doi: 10.1128/MCB.05694-11. PubMed DOI PMC
Vozarikova V., Kunova N., Bauer J.A., Frankovsky J., Kotrasova V., Prochazkova K., Dzugasova V., Kutejova E., Pevala V., Nosek J., et al. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules. 2020;10:1193. doi: 10.3390/biom10081193. PubMed DOI PMC
Cho J.H., Lee Y.K., Chae C.B. The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression. Biochim. Biophys. Acta. 2001;1522:175–186. doi: 10.1016/S0167-4781(01)00333-5. PubMed DOI
Lu B., Lee J., Nie X., Li M., Morozov Y.I., Venkatesh S., Bogenhagen D.F., Temiakov D., Suzuki C.K. Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol. Cell. 2013;49:121–132. doi: 10.1016/j.molcel.2012.10.023. PubMed DOI PMC
Wang K.Z., Zhu J., Dagda R.K., Uechi G., Cherra S.J., 3rd, Gusdon A.M., Balasubramani M., Chu C.T. ERK-mediated phosphorylation of TFAM downregulates mitochondrial transcription: Implications for Parkinson’s disease. Mitochondrion. 2014;17:132–140. doi: 10.1016/j.mito.2014.04.008. PubMed DOI PMC
Alami-Ouahabi N., Veilleux S., Meistrich M.L., Boissonneault G. The testis-specific high-mobility-group protein, a phosphorylation-dependent DNA-packaging factor of elongating and condensing spermatids. Mol. Cell Biol. 1996;16:3720–3729. doi: 10.1128/MCB.16.7.3720. PubMed DOI PMC
Ramachandran C., Yau P., Bradbury E.M., Shyamala G., Yasuda H., Walsh D.A. Phosphorylation of high-mobility-group proteins by the calcium-phospholipid-dependent protein kinase and the cyclic AMP-dependent protein kinase. J. Biol. Chem. 1984;259:13495–13503. doi: 10.1016/S0021-9258(18)90721-0. PubMed DOI
Wisniewski J.R., Schulze E. High affinity interaction of dipteran high mobility group (HMG) proteins 1 with DNA is modulated by COOH-terminal regions flanking the HMG box domain. J. Biol. Chem. 1994;269:10713–10719. doi: 10.1016/S0021-9258(17)34117-0. PubMed DOI
Lund T., Berg K. Metaphase-specific phosphorylations weaken the association between chromosomal proteins HMG 14 and 17, and DNA. FEBS Lett. 1991;289:113–116. doi: 10.1016/0014-5793(91)80921-O. PubMed DOI
Reeves R., Langan T.A., Nissen M.S. Phosphorylation of the DNA-binding domain of nonhistone high-mobility group I protein by cdc2 kinase: Reduction of binding affinity. Proc. Natl. Acad. Sci. USA. 1991;88:1671–1675. doi: 10.1073/pnas.88.5.1671. PubMed DOI PMC
Schwanbeck R., Wisniewski J.R. Cdc2 and mitogen-activated protein kinases modulate DNA binding properties of the putative transcriptional regulator Chironomus high mobility group protein I. J. Biol. Chem. 1997;272:27476–27483. doi: 10.1074/jbc.272.43.27476. PubMed DOI
Bogenhagen D.F., Rousseau D., Burke S. The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 2008;283:3665–3675. doi: 10.1074/jbc.M708444200. PubMed DOI
Rubio-Cosials A., Sidow J.F., Jimenez-Menendez N., Fernandez-Millan P., Montoya J., Jacobs H.T., Coll M., Bernado P., Sola M. Human mitochondrial transcription factor A induces a U-turn structure in the light strand promoter. Nat. Struct. Mol. Biol. 2011;18:1281–1289. doi: 10.1038/nsmb.2160. PubMed DOI
Gaspari M., Falkenberg M., Larsson N.G., Gustafsson C.M. The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J. 2004;23:4606–4614. doi: 10.1038/sj.emboj.7600465. PubMed DOI PMC
Dagda R.K., Zhu J., Kulich S.M., Chu C.T. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson’s disease. Autophagy. 2008;4:770–782. doi: 10.4161/auto.6458. PubMed DOI PMC
Marko A.J., Miller R.A., Kelman A., Frauwirth K.A. Induction of glucose metabolism in stimulated T lymphocytes is regulated by mitogen-activated protein kinase signaling. PLoS ONE. 2010;5:e15425. doi: 10.1371/journal.pone.0015425. PubMed DOI PMC
Jeong S.Y., Rose A., Meier I. MFP1 is a thylakoid-associated, nucleoid-binding protein with a coiled-coil structure. Nucleic Acids Res. 2003;31:5175–5185. doi: 10.1093/nar/gkg693. PubMed DOI PMC
Ogrzewalla K., Piotrowski M., Reinbothe S., Link G. The plastid transcription kinase from mustard (Sinapis alba L.). A nuclear-encoded CK2-type chloroplast enzyme with redox-sensitive function. Eur. J. Biochem. 2002;269:3329–3337. doi: 10.1046/j.1432-1033.2002.03017_269_13.x. PubMed DOI
Powikrowska M., Oetke S., Jensen P.E., Krupinska K. Dynamic composition, shaping and organization of plastid nucleoids. Front. Plant. Sci. 2014;5:424. doi: 10.3389/fpls.2014.00424. PubMed DOI PMC
Sekine K., Fujiwara M., Nakayama M., Takao T., Hase T., Sato N. DNA binding and partial nucleoid localization of the chloroplast stromal enzyme ferredoxin:sulfite reductase. FEBS J. 2007;274:2054–2069. doi: 10.1111/j.1742-4658.2007.05748.x. PubMed DOI
Sekine K., Hase T., Sato N. Reversible DNA compaction by sulfite reductase regulates transcriptional activity of chloroplast nucleoids. J. Biol. Chem. 2002;277:24399–24404. doi: 10.1074/jbc.M201714200. PubMed DOI
Melonek J., Matros A., Trosch M., Mock H.P., Krupinska K. The core of chloroplast nucleoids contains architectural SWIB domain proteins. Plant. Cell. 2012;24:3060–3073. doi: 10.1105/tpc.112.099721. PubMed DOI PMC
Chi-Ham C.L., Keaton M.A., Cannon G.C., Heinhorst S. The DNA-compacting protein DCP68 from soybean chloroplasts is ferredoxin:sulfite reductase and co-localizes with the organellar nucleoid. Plant. Mol. Biol. 2002;49:621–631. doi: 10.1023/A:1015500431421. PubMed DOI
Tomaska L. Phosphorylation of mitochondrial telomere binding protein of Candida parapsilosis by camp-dependent protein kinase. Biochem. Biophys. Res. Commun. 1998;242:457–460. doi: 10.1006/bbrc.1997.7968. PubMed DOI
Matsunaga M., Jaehning J.A. A mutation in the yeast mitochondrial core RNA polymerase, Rpo41, confers defects in both specificity factor interaction and promoter utilization. J. Biol. Chem. 2004;279:2012–2019. doi: 10.1074/jbc.M307819200. PubMed DOI
Cotney J., Shadel G.S. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2. J. Mol. Evol. 2006;63:707–717. doi: 10.1007/s00239-006-0075-1. PubMed DOI
Shutt T.E., Gray M.W. Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol. Biol. Evol. 2006;23:1169–1179. doi: 10.1093/molbev/msk001. PubMed DOI
Gnad F., de Godoy L.M., Cox J., Neuhauser N., Ren S., Olsen J.V., Mann M. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast. Proteomics. 2009;9:4642–4652. doi: 10.1002/pmic.200900144. PubMed DOI
Soufi B., Kelstrup C.D., Stoehr G., Frohlich F., Walther T.C., Olsen J.V. Global analysis of the yeast osmotic stress response by quantitative proteomics. Mol. Biosyst. 2009;5:1337–1346. doi: 10.1039/b902256b. PubMed DOI
Prieto-Martin A., Montoya J., Martinez-Azorin F. Phosphorylation of rat mitochondrial transcription termination factor (mTERF) is required for transcription termination but not for binding to DNA. Nucleic Acids Res. 2004;32:2059–2068. doi: 10.1093/nar/gkh528. PubMed DOI PMC
Fernandez-Silva P., Martinez-Azorin F., Micol V., Attardi G. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J. 1997;16:1066–1079. doi: 10.1093/emboj/16.5.1066. PubMed DOI PMC
Cammarota M., Paratcha G., Bevilaqua L.R., Levi de Stein M., Lopez M., Pellegrino de Iraldi A., Izquierdo I., Medina J.H. Cyclic AMP-responsive element binding protein in brain mitochondria. J. Neurochem. 1999;72:2272–2277. doi: 10.1046/j.1471-4159.1999.0722272.x. PubMed DOI
Lee J., Kim C.H., Simon D.K., Aminova L.R., Andreyev A.Y., Kushnareva Y.E., Murphy A.N., Lonze B.E., Kim K.S., Ginty D.D., et al. Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J. Biol. Chem. 2005;280:40398–40401. doi: 10.1074/jbc.C500140200. PubMed DOI PMC
Marinov G.K., Wang Y.E., Chan D., Wold B.J. Evidence for site-specific occupancy of the mitochondrial genome by nuclear transcription factors. PLoS ONE. 2014;9:e84713. doi: 10.1371/journal.pone.0084713. PubMed DOI PMC
Li H., Zassenhaus H.P. Purification and characterization of an RNA dodecamer sequence binding protein from mitochondria of Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 1999;261:740–745. doi: 10.1006/bbrc.1999.1085. PubMed DOI
Li H., Zassenhaus H.P. Phosphorylation is required for high-affinity binding of DBP, a yeast mitochondrial site-specific RNA binding protein. Curr. Genet. 2000;37:356–363. doi: 10.1007/s002940000117. PubMed DOI
Dziembowski A., Piwowarski J., Hoser R., Minczuk M., Dmochowska A., Siep M., van der Spek H., Grivell L., Stepien P.P. The yeast mitochondrial degradosome. Its composition, interplay between RNA helicase and RNase activities and the role in mitochondrial RNA metabolism. J. Biol. Chem. 2003;278:1603–1611. doi: 10.1074/jbc.M208287200. PubMed DOI
Hofmann T.J., Min J., Zassenhaus H.P. Formation of the 3’ end of yeast mitochondrial mRNAs occurs by site-specific cleavage two bases downstream of a conserved dodecamer sequence. Yeast. 1993;9:1319–1330. doi: 10.1002/yea.320091205. PubMed DOI
Osinga K.A., De Vries E., Van der Horst G., Tabak H.F. Processing of yeast mitochondrial messenger RNAs at a conserved dodecamer sequence. EMBO J. 1984;3:829–834. doi: 10.1002/j.1460-2075.1984.tb01892.x. PubMed DOI PMC
He H., Chen M., Scheffler N.K., Gibson B.W., Spremulli L.L., Gottlieb R.A. Phosphorylation of mitochondrial elongation factor Tu in ischemic myocardium: Basis for chloramphenicol-mediated cardioprotection. Circ. Res. 2001;89:461–467. doi: 10.1161/hh1701.096038. PubMed DOI
Lippmann C., Lindschau C., Vijgenboom E., Schroder W., Bosch L., Erdmann V.A. Prokaryotic elongation factor Tu is phosphorylated in vivo. J. Biol. Chem. 1993;268:601–607. doi: 10.1016/S0021-9258(18)54193-4. PubMed DOI
He H., Li H.L., Lin A., Gottlieb R.A. Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ. 1999;6:987–991. doi: 10.1038/sj.cdd.4400572. PubMed DOI
Korhonen J.A., Gaspari M., Falkenberg M. TWINKLE Has 5’ -> 3’ DNA helicase activity and is specifically stimulated by mitochondrial single-stranded DNA-binding protein. J. Biol. Chem. 2003;278:48627–48632. doi: 10.1074/jbc.M306981200. PubMed DOI
Kleber S., Sancho-Martinez I., Wiestler B., Beisel A., Gieffers C., Hill O., Thiemann M., Mueller W., Sykora J., Kuhn A., et al. Yes and PI3K bind CD95 to signal invasion of glioblastoma. Cancer Cell. 2008;13:235–248. doi: 10.1016/j.ccr.2008.02.003. PubMed DOI
Tatarov O., Mitchell T.J., Seywright M., Leung H.Y., Brunton V.G., Edwards J. SRC family kinase activity is up-regulated in hormone-refractory prostate cancer. Clin. Cancer Res. 2009;15:3540–3549. doi: 10.1158/1078-0432.CCR-08-1857. PubMed DOI
Verbeek B.S., Vroom T.M., Adriaansen-Slot S.S., Ottenhoff-Kalff A.E., Geertzema J.G., Hennipman A., Rijksen G. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 1996;180:383–388. doi: 10.1002/(SICI)1096-9896(199612)180:4<383::AID-PATH686>3.0.CO;2-N. PubMed DOI
Fu Y., Zagozdzon R., Avraham R., Avraham H.K. CHK negatively regulates Lyn kinase and suppresses pancreatic cancer cell invasion. Int. J. Oncol. 2006;29:1453–1458. doi: 10.3892/ijo.29.6.1453. PubMed DOI
Bolen J.B., Veillette A., Schwartz A.M., Deseau V., Rosen N. Analysis of pp60c-src in human colon carcinoma and normal human colon mucosal cells. Oncogene Res. 1987;1:149–168. PubMed
Masaki T., Igarashi K., Tokuda M., Yukimasa S., Han F., Jin Y.J., Li J.Q., Yoneyama H., Uchida N., Fujita J., et al. pp60c-src activation in lung adenocarcinoma. Eur. J. Cancer. 2003;39:1447–1455. doi: 10.1016/S0959-8049(03)00276-4. PubMed DOI
Elsberger B., Fullerton R., Zino S., Jordan F., Mitchell T.J., Brunton V.G., Mallon E.A., Shiels P.G., Edwards J. Breast cancer patients’ clinical outcome measures are associated with Src kinase family member expression. Br. J. Cancer. 2010;103:899–909. doi: 10.1038/sj.bjc.6605829. PubMed DOI PMC
Demory M.L., Boerner J.L., Davidson R., Faust W., Miyake T., Lee I., Huttemann M., Douglas R., Haddad G., Parsons S.J. Epidermal growth factor receptor translocation to the mitochondria: Regulation and effect. J. Biol. Chem. 2009;284:36592–36604. doi: 10.1074/jbc.M109.000760. PubMed DOI PMC
Hebert-Chatelain E. Src kinases are important regulators of mitochondrial functions. Int. J. Biochem. Cell Biol. 2013;45:90–98. doi: 10.1016/j.biocel.2012.08.014. PubMed DOI
Jiang H.L., Sun H.F., Gao S.P., Li L.D., Huang S., Hu X., Liu S., Wu J., Shao Z.M., Jin W. SSBP1 Suppresses TGFbeta-Driven Epithelial-to-Mesenchymal Transition and Metastasis in Triple-Negative Breast Cancer by Regulating Mitochondrial Retrograde Signaling. Cancer Res. 2016;76:952–964. doi: 10.1158/0008-5472.CAN-15-1630. PubMed DOI
Dorstyn L., Akey C.W., Kumar S. New insights into apoptosome structure and function. Cell Death Differ. 2018;25:1194–1208. doi: 10.1038/s41418-017-0025-z. PubMed DOI PMC
Schellenberg B., Wang P., Keeble J.A., Rodriguez-Enriquez R., Walker S., Owens T.W., Foster F., Tanianis-Hughes J., Brennan K., Streuli C.H., et al. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol. Cell. 2013;49:959–971. doi: 10.1016/j.molcel.2012.12.022. PubMed DOI PMC
Todt F., Cakir Z., Reichenbach F., Emschermann F., Lauterwasser J., Kaiser A., Ichim G., Tait S.W., Frank S., Langer H.F., et al. Differential retrotranslocation of mitochondrial Bax and Bak. EMBO J. 2015;34:67–80. doi: 10.15252/embj.201488806. PubMed DOI PMC
Edlich F., Banerjee S., Suzuki M., Cleland M.M., Arnoult D., Wang C., Neutzner A., Tjandra N., Youle R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–116. doi: 10.1016/j.cell.2011.02.034. PubMed DOI PMC
Letai A., Bassik M.C., Walensky L.D., Sorcinelli M.D., Weiler S., Korsmeyer S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2002;2:183–192. doi: 10.1016/S1535-6108(02)00127-7. PubMed DOI
Desagher S., Osen-Sand A., Montessuit S., Magnenat E., Vilbois F., Hochmann A., Journot L., Antonsson B., Martinou J.C. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell. 2001;8:601–611. doi: 10.1016/S1097-2765(01)00335-5. PubMed DOI
Izeradjene K., Douglas L., Delaney A.B., Houghton J.A. Casein kinase I attenuates tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by regulating the recruitment of fas-associated death domain and procaspase-8 to the death-inducing signaling complex. Cancer Res. 2004;64:8036–8044. doi: 10.1158/0008-5472.CAN-04-0762. PubMed DOI
Belikova N.A., Vladimirov Y.A., Osipov A.N., Kapralov A.A., Tyurin V.A., Potapovich M.V., Basova L.V., Peterson J., Kurnikov I.V., Kagan V.E. Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry. 2006;45:4998–5009. doi: 10.1021/bi0525573. PubMed DOI PMC
Kagan V.E., Bayir H.A., Belikova N.A., Kapralov O., Tyurina Y.Y., Tyurin V.A., Jiang J., Stoyanovsky D.A., Wipf P., Kochanek P.M., et al. Cytochrome c/cardiolipin relations in mitochondria: A kiss of death. Free Radic. Biol. Med. 2009;46:1439–1453. doi: 10.1016/j.freeradbiomed.2009.03.004. PubMed DOI PMC
Rajagopal B.S., Edzuma A.N., Hough M.A., Blundell K.L., Kagan V.E., Kapralov A.A., Fraser L.A., Butt J.N., Silkstone G.G., Wilson M.T., et al. The hydrogen-peroxide-induced radical behaviour in human cytochrome c-phospholipid complexes: Implications for the enhanced pro-apoptotic activity of the G41S mutant. Biochem. J. 2013;456:441–452. doi: 10.1042/BJ20130758. PubMed DOI
Garcia-Heredia J.M., Diaz-Quintana A., Salzano M., Orzaez M., Perez-Paya E., Teixeira M., De la Rosa M.A., Diaz-Moreno I. Tyrosine phosphorylation turns alkaline transition into a biologically relevant process and makes human cytochrome c behave as an anti-apoptotic switch. J. Biol. Inorg. Chem. 2011;16:1155–1168. doi: 10.1007/s00775-011-0804-9. PubMed DOI
Guerra-Castellano A., Diaz-Quintana A., Perez-Mejias G., Elena-Real C.A., Gonzalez-Arzola K., Garcia-Maurino S.M., De la Rosa M.A., Diaz-Moreno I. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc. Natl. Acad. Sci. USA. 2018;115:7955–7960. doi: 10.1073/pnas.1806833115. PubMed DOI PMC
Hotamisligil G.S., Davis R.J. Cell Signaling and Stress Responses. Cold Spring Harb Perspect Biol. 2016;8 doi: 10.1101/cshperspect.a006072. PubMed DOI PMC
Pohl S.O., Agostino M., Dharmarajan A., Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal. 2018;29:1215–1236. doi: 10.1089/ars.2017.7414. PubMed DOI
Low I.C., Loh T., Huang Y., Virshup D.M., Pervaiz S. Ser70 phosphorylation of Bcl-2 by selective tyrosine nitration of PP2A-B56delta stabilizes its antiapoptotic activity. Blood. 2014;124:2223–2234. doi: 10.1182/blood-2014-03-563296. PubMed DOI
Rayavarapu R.R., Heiden B., Pagani N., Shaw M.M., Shuff S., Zhang S., Schafer Z.T. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J. Biol. Chem. 2015;290:8722–8733. doi: 10.1074/jbc.M114.612754. PubMed DOI PMC
Iqbal A., Eckerdt F., Bell J., Nakano I., Giles F.J., Cheng S.Y., Lulla R.R., Goldman S., Platanias L.C. Targeting of glioblastoma cell lines and glioma stem cells by combined PIM kinase and PI3K-p110alpha inhibition. Oncotarget. 2016;7:33192–33201. doi: 10.18632/oncotarget.8899. PubMed DOI PMC
Nalluri S., Ghoshal-Gupta S., Kutiyanawalla A., Gayatri S., Lee B.R., Jiwani S., Rojiani A.M., Rojiani M.V. TIMP-1 Inhibits Apoptosis in Lung Adenocarcinoma Cells via Interaction with Bcl-2. PLoS ONE. 2015;10:e0137673. doi: 10.1371/journal.pone.0137673. PubMed DOI PMC
Polzien L., Baljuls A., Rennefahrt U.E., Fischer A., Schmitz W., Zahedi R.P., Sickmann A., Metz R., Albert S., Benz R., et al. Identification of novel in vivo phosphorylation sites of the human proapoptotic protein BAD: Pore-forming activity of BAD is regulated by phosphorylation. J. Biol. Chem. 2009;284:28004–28020. doi: 10.1074/jbc.M109.010702. PubMed DOI PMC
Bhakar A.L., Howell J.L., Paul C.E., Salehi A.H., Becker E.B., Said F., Bonni A., Barker P.A. Apoptosis induced by p75NTR overexpression requires Jun kinase-dependent phosphorylation of Bad. J. Neurosci. 2003;23:11373–11381. doi: 10.1523/JNEUROSCI.23-36-11373.2003. PubMed DOI PMC
Donovan N., Becker E.B., Konishi Y., Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J. Biol. Chem. 2002;277:40944–40949. doi: 10.1074/jbc.M206113200. PubMed DOI
Yu C., Minemoto Y., Zhang J., Liu J., Tang F., Bui T.N., Xiang J., Lin A. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol. Cell. 2004;13:329–340. doi: 10.1016/S1097-2765(04)00028-0. PubMed DOI
Moujalled D., Weston R., Anderton H., Ninnis R., Goel P., Coley A., Huang D.C., Wu L., Strasser A., Puthalakath H. Cyclic-AMP-dependent protein kinase A regulates apoptosis by stabilizing the BH3-only protein Bim. EMBO Rep. 2011;12:77–83. doi: 10.1038/embor.2010.190. PubMed DOI PMC
Putcha G.V., Le S., Frank S., Besirli C.G., Clark K., Chu B., Alix S., Youle R.J., LaMarche A., Maroney A.C., et al. JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis. Neuron. 2003;38:899–914. doi: 10.1016/S0896-6273(03)00355-6. PubMed DOI
Putcha G.V., Moulder K.L., Golden J.P., Bouillet P., Adams J.A., Strasser A., Johnson E.M. Induction of BIM, a proapoptotic BH3-only BCL-2 family member, is critical for neuronal apoptosis. Neuron. 2001;29:615–628. doi: 10.1016/S0896-6273(01)00238-0. PubMed DOI
Datta S.R., Dudek H., Tao X., Masters S., Fu H., Gotoh Y., Greenberg M.E. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91:231–241. doi: 10.1016/S0092-8674(00)80405-5. PubMed DOI
Majewski M., Nieborowska-Skorska M., Salomoni P., Slupianek A., Reiss K., Trotta R., Calabretta B., Skorski T. Activation of mitochondrial Raf-1 is involved in the antiapoptotic effects of Akt. Cancer Res. 1999;59:2815–2819. PubMed
Kennedy D., Mnich K., Oommen D., Chakravarthy R., Almeida-Souza L., Krols M., Saveljeva S., Doyle K., Gupta S., Timmerman V., et al. HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis. 2017;8:e3026. doi: 10.1038/cddis.2017.408. PubMed DOI PMC
Arokium H., Ouerfelli H., Velours G., Camougrand N., Vallette F.M., Manon S. Substitutions of potentially phosphorylatable serine residues of Bax reveal how they may regulate its interaction with mitochondria. J. Biol. Chem. 2007;282:35104–35112. doi: 10.1074/jbc.M704891200. PubMed DOI
Linseman D.A., Butts B.D., Precht T.A., Phelps R.A., Le S.S., Laessig T.A., Bouchard R.J., Florez-McClure M.L., Heidenreich K.A. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J. Neurosci. 2004;24:9993–10002. doi: 10.1523/JNEUROSCI.2057-04.2004. PubMed DOI PMC
Kim B.J., Ryu S.W., Song B.J. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J. Biol. Chem. 2006;281:21256–21265. doi: 10.1074/jbc.M510644200. PubMed DOI
Xin M., Gao F., May W.S., Flagg T., Deng X. Protein kinase Czeta abrogates the proapoptotic function of Bax through phosphorylation. J. Biol. Chem. 2007;282:21268–21277. doi: 10.1074/jbc.M701613200. PubMed DOI
Fox J.L., Ismail F., Azad A., Ternette N., Leverrier S., Edelmann M.J., Kessler B.M., Leigh I.M., Jackson S., Storey A. Tyrosine dephosphorylation is required for Bak activation in apoptosis. EMBO J. 2010;29:3853–3868. doi: 10.1038/emboj.2010.244. PubMed DOI PMC
Azad A., Fox J., Leverrier S., Storey A. Blockade of the BAK hydrophobic groove by inhibitory phosphorylation regulates commitment to apoptosis. PLoS ONE. 2012;7:e49601. doi: 10.1371/journal.pone.0049601. PubMed DOI PMC
Afreen S., Bohler S., Muller A., Demmerath E.M., Weiss J.M., Jutzi J.S., Schachtrup K., Kunze M., Erlacher M. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 2020;11:8. doi: 10.1038/s41419-019-2203-z. PubMed DOI PMC
Loo L.S.W., Soetedjo A.A.P., Lau H.H., Ng N.H.J., Ghosh S., Nguyen L., Krishnan V.G., Choi H., Roca X., Hoon S., et al. BCL-xL/BCL2L1 is a critical anti-apoptotic protein that promotes the survival of differentiating pancreatic cells from human pluripotent stem cells. Cell Death Dis. 2020;11:378. doi: 10.1038/s41419-020-2589-7. PubMed DOI PMC
Motoyama N., Wang F., Roth K.A., Sawa H., Nakayama K., Nakayama K., Negishi I., Senju S., Zhang Q., Fujii S., et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995;267:1506–1510. doi: 10.1126/science.7878471. PubMed DOI
Kharbanda S., Saxena S., Yoshida K., Pandey P., Kaneki M., Wang Q., Cheng K., Chen Y.N., Campbell A., Sudha T., et al. Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J. Biol. Chem. 2000;275:322–327. doi: 10.1074/jbc.275.1.322. PubMed DOI
Wang J., Beauchemin M., Bertrand R. Bcl-xL phosphorylation at Ser49 by polo kinase 3 during cell cycle progression and checkpoints. Cell Signal. 2011;23:2030–2038. doi: 10.1016/j.cellsig.2011.07.017. PubMed DOI PMC
Wang J., Beauchemin M., Bertrand R. Phospho-Bcl-x(L)(Ser62) plays a key role at DNA damage-induced G(2) checkpoint. Cell Cycle. 2012;11:2159–2169. doi: 10.4161/cc.20672. PubMed DOI PMC
Basu A., Haldar S. Identification of a novel Bcl-xL phosphorylation site regulating the sensitivity of taxol- or 2-methoxyestradiol-induced apoptosis. FEBS Lett. 2003;538:41–47. doi: 10.1016/S0014-5793(03)00131-5. PubMed DOI
De Chiara G., Marcocci M.E., Torcia M., Lucibello M., Rosini P., Bonini P., Higashimoto Y., Damonte G., Armirotti A., Amodei S., et al. Bcl-2 Phosphorylation by p38 MAPK: Identification of target sites and biologic consequences. J. Biol. Chem. 2006;281:21353–21361. doi: 10.1074/jbc.M511052200. PubMed DOI
Nencioni L., De Chiara G., Sgarbanti R., Amatore D., Aquilano K., Marcocci M.E., Serafino A., Torcia M., Cozzolino F., Ciriolo M.R., et al. Bcl-2 expression and p38MAPK activity in cells infected with influenza A virus: Impact on virally induced apoptosis and viral replication. J. Biol. Chem. 2009;284:16004–16015. doi: 10.1074/jbc.M900146200. PubMed DOI PMC
Tamura Y., Simizu S., Osada H. The phosphorylation status and anti-apoptotic activity of Bcl-2 are regulated by ERK and protein phosphatase 2A on the mitochondria. FEBS Lett. 2004;569:249–255. doi: 10.1016/j.febslet.2004.06.003. PubMed DOI
Breitschopf K., Haendeler J., Malchow P., Zeiher A.M., Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: Molecular characterization of the involved signaling pathway. Mol. Cell Biol. 2000;20:1886–1896. doi: 10.1128/MCB.20.5.1886-1896.2000. PubMed DOI PMC
Yamamoto K., Ichijo H., Korsmeyer S.J. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol. Cell Biol. 1999;19:8469–8478. doi: 10.1128/MCB.19.12.8469. PubMed DOI PMC
Inoshita S., Takeda K., Hatai T., Terada Y., Sano M., Hata J., Umezawa A., Ichijo H. Phosphorylation and inactivation of myeloid cell leukemia 1 by JNK in response to oxidative stress. J. Biol. Chem. 2002;277:43730–43734. doi: 10.1074/jbc.M207951200. PubMed DOI
Xu P., Das M., Reilly J., Davis R.J. JNK regulates FoxO-dependent autophagy in neurons. Genes Dev. 2011;25:310–322. doi: 10.1101/gad.1984311. PubMed DOI PMC
Kobayashi S., Lee S.H., Meng X.W., Mott J.L., Bronk S.F., Werneburg N.W., Craig R.W., Kaufmann S.H., Gores G.J. Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1. J. Biol. Chem. 2007;282:18407–18417. doi: 10.1074/jbc.M610010200. PubMed DOI
Chang S.H., Hwang C.S., Yin J.H., Chen S.D., Yang D.I. Oncostatin M-dependent Mcl-1 induction mediated by JAK1/2-STAT1/3 and CREB contributes to bioenergetic improvements and protective effects against mitochondrial dysfunction in cortical neurons. Biochim. Biophys. Acta. 2015;1853:2306–2325. doi: 10.1016/j.bbamcr.2015.05.014. PubMed DOI
Deng Y., Ren X., Yang L., Lin Y., Wu X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell. 2003;115:61–70. doi: 10.1016/S0092-8674(03)00757-8. PubMed DOI
Park B. JNK1mediated phosphorylation of Smac/DIABLO at the serine 6 residue is functionally linked to its mitochondrial release during TNFalpha-induced apoptosis of HeLa cells. Mol. Med. Rep. 2014;10:3205–3210. doi: 10.3892/mmr.2014.2625. PubMed DOI
Nijboer C.H., van der Kooij M.A., van Bel F., Ohl F., Heijnen C.J., Kavelaars A. Inhibition of the JNK/AP-1 pathway reduces neuronal death and improves behavioral outcome after neonatal hypoxic-ischemic brain injury. Brain Behav. Immun. 2010;24:812–821. doi: 10.1016/j.bbi.2009.09.008. PubMed DOI
Jeong C.H., Chun K.S., Kundu J., Park B. Phosphorylation of Smac by Akt promotes the caspase-3 activation during etoposide-induced apoptosis in HeLa cells. Mol. Carcinog. 2015;54:83–92. doi: 10.1002/mc.22075. PubMed DOI
Cook S.J., Stuart K., Gilley R., Sale M.J. Control of cell death and mitochondrial fission by ERK1/2 MAP kinase signalling. FEBS J. 2017;284:4177–4195. doi: 10.1111/febs.14122. PubMed DOI PMC
Gamas P., Marchetti S., Puissant A., Grosso S., Jacquel A., Colosetti P., Pasquet J.M., Mahon F.X., Cassuto J.P., Auberger P. Inhibition of imatinib-mediated apoptosis by the caspase-cleaved form of the tyrosine kinase Lyn in chronic myelogenous leukemia cells. Leukemia. 2009;23:1500–1506. doi: 10.1038/leu.2009.60. PubMed DOI
Luciano F., Herrant M., Jacquel A., Ricci J.E., Auberger P. The P54-cleaved form of the tyrosine kinase Lyn generated by caspases during BCR-induced cell death in B lymphoma acts as a negative regulator of apoptosis. Faseb J. 2003;17:711. doi: 10.1096/fj.02-0716fje. PubMed DOI
Contri A., Brunati A.M., Trentin L., Cabrelle A., Miorin M., Cesaro L., Pinna L.A., Zambello R., Semenzato G., Donella-Deana A. Chronic lymphocytic leukemia B cells contain anomalous Lyn tyrosine kinase, a putative contribution to defective apoptosis. J. Clin. Invest. 2005;115:369–378. doi: 10.1172/JCI200522094. PubMed DOI PMC
Mahon F.X., Hayette S., Lagarde V., Belloc F., Turcq B., Nicolini F., Belanger C., Manley P.W., Leroy C., Etienne G., et al. Evidence that resistance to nilotinib may be due to BCR-ABL, Pgp, or Src kinase overexpression. Cancer Res. 2008;68:9809–9816. doi: 10.1158/0008-5472.CAN-08-1008. PubMed DOI
Qi X., Mochly-Rosen D. The PKCdelta -Abl complex communicates ER stress to the mitochondria—An essential step in subsequent apoptosis. J. Cell Sci. 2008;121:804–813. doi: 10.1242/jcs.024653. PubMed DOI
Ishizawar R., Parsons S.J. c-Src and cooperating partners in human cancer. Cancer Cell. 2004;6:209–214. doi: 10.1016/j.ccr.2004.09.001. PubMed DOI
Juhaszova M., Zorov D.B., Kim S.H., Pepe S., Fu Q., Fishbein K.W., Ziman B.D., Wang S., Ytrehus K., Antos C.L., et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 2004;113:1535–1549. doi: 10.1172/JCI19906. PubMed DOI PMC