The yeast mitochondrial succinylome: Implications for regulation of mitochondrial nucleoids
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34480900
PubMed Central
PMC8477199
DOI
10.1016/j.jbc.2021.101155
PII: S0021-9258(21)00957-1
Knihovny.cz E-zdroje
- Klíčová slova
- DNA–protein interaction, lysine succinylation, mitochondria, mitochondrial DNA, mitochondrial nucleoid, post-translational modification (PTM), proteomics, succinylome, yeast,
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- kyselina jantarová metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- posttranslační úpravy proteinů * MeSH
- proteasa La genetika metabolismus MeSH
- proteomika * MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ABF2 protein, S cerevisiae MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- kyselina jantarová MeSH
- mitochondriální proteiny MeSH
- proteasa La MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- transkripční faktory MeSH
Acylation modifications, such as the succinylation of lysine, are post-translational modifications and a powerful means of regulating protein activity. Some acylations occur nonenzymatically, driven by an increase in the concentration of acyl group donors. Lysine succinylation has a profound effect on the corresponding site within the protein, as it dramatically changes the charge of the residue. In eukaryotes, it predominantly affects mitochondrial proteins because the donor of succinate, succinyl-CoA, is primarily generated in the tricarboxylic acid cycle. Although numerous succinylated mitochondrial proteins have been identified in Saccharomyces cerevisiae, a more detailed characterization of the yeast mitochondrial succinylome is still lacking. Here, we performed a proteomic MS analysis of purified yeast mitochondria and detected 314 succinylated mitochondrial proteins with 1763 novel succinylation sites. The mitochondrial nucleoid, a complex of mitochondrial DNA and mitochondrial proteins, is one of the structures whose protein components are affected by succinylation. We found that Abf2p, the principal component of mitochondrial nucleoids responsible for compacting mitochondrial DNA in S. cerevisiae, can be succinylated in vivo on at least thirteen lysine residues. Abf2p succinylation in vitro inhibits its DNA-binding activity and reduces its sensitivity to digestion by the ATP-dependent ScLon protease. We conclude that changes in the metabolic state of a cell resulting in an increase in the concentration of tricarboxylic acid intermediates may affect mitochondrial functions.
Central European Institute of Technology Masaryk University Brno Czech Republic
Institute of Chemistry Slovak Academy of Sciences Bratislava Slovakia
Institute of Molecular Biology Slovak Academy of Sciences Bratislava Slovakia
Zobrazit více v PubMed
Cagin U., Enriquez J.A. The complex crosstalk between mitochondria and the nucleus: What goes in between? Int. J. Biochem. Cell Biol. 2015;63:10–15. PubMed
Guaragnella N., Coyne L.P., Chen X.J., Giannattasio S. Mitochondria-cytosol-nucleus crosstalk: Learning from Saccharomyces cerevisiae. FEMS Yeast Res. 2018;18:foy088. PubMed PMC
Pfanner N., Warscheid B., Wiedemann N. Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 2019;20:267–284. PubMed PMC
Graves J.D., Krebs E.G. Protein phosphorylation and signal transduction. Pharmacol. Ther. 1999;82:111–121. PubMed
Tomáška Ľ. Mitochondrial protein phosphorylation: Lessons from yeasts. Gene. 2000;255:59–64. PubMed
Rao S., Gerbeth C., Harbauer A., Mikropoulou D., Meisinger C., Schmidt O. Signaling at the gate: Phosphorylation of the mitochondrial protein import machinery. Cell Cycle. 2011;10:2083–2090. PubMed
Frankovsky J., Vozáriková V., Nosek J., Tomáška Ľ. Mitochondrial protein phosphorylation in yeast revisited. Mitochondrion. 2021;57:148–162. PubMed
Guo X., Niemi N.M., Coon J.J., Pagliarini D.J. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase. J. Biol. Chem. 2017;292:11751–11759. PubMed PMC
Guo X., Niemi N.M., Hutchins P.D., Condon S.G.F., Jochem A., Ulbrich A., Higbee A.J., Russell J.D., Senes A., Coon J.J., Pagliarini D.J. Ptc7p dephosphorylates select mitochondrial proteins to enhance metabolic function. Cell Rep. 2017;18:307–313. PubMed PMC
Reinders J., Wagner K., Zahedit R.P., Stojanovski D., Eyrich B., van der Laan M., Rehling P., Sickman A., Pfanner N., Meisinger C. Profiling phosphoproteins of yeast mitochondria reveals a role of phosphorylation in assembly of the ATP synthase. Mol. Cell. Proteomics. 2007;6:1896–1906. PubMed
Renvoisé M., Bonhomme L., Davanture M., Valot B., Zivy M., Lemaire C. Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J. Proteomics. 2014;106:140–150. PubMed
Schmidt O., Harbauer A.B., Rao S., Eyrich B., Zahedi R.P., Stojanovski D., Schönfisch B., Guiard B., Sickmann A., Pfanner N., Meisinger C. Regulation of mitochondrial protein import by cytosolic kinases. Cell. 2011;144:227–239. PubMed
Ringel A.E., Tucker S.A., Haigis M.C. Chemical and physiological features of mitochondrial acylation. Mol. Cell. 2018;72:610–624. PubMed PMC
Garland P.B., Shepherd D., Yates D.W. Steady-state concentrations of coenzyme A, acetyl-coenzyme A and long-chain fatty acyl-coenzyme A in rat-liver mitochondria oxidizing palmitate. Biochem. J. 1965;97:587–594. PubMed PMC
Hansford R.G., Johnson R.N. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J. Biol. Chem. 1975;250:8361–8375. PubMed
Ghanta S., Grossmann R.E., Brenner C. Mitochondrial protein acetylation as a cell-intrinsic, evolutionary driver of fat storage: Chemical and metabolic logic of acetyl-lysine modifications. Crit. Rev. Biochem. Mol. Biol. 2013;48:561–574. PubMed PMC
Wagner G.R., Bhatt D.P., O'Connell T.M., Thompson J.W., Dubois L.G., Backos D.S., Yang H., Mitchell G.A., Ilkayeva O.R., Stevens R.D., Grimsrud P.A., Hirschey M.D. A class of reactive acyl-CoA species reveals the non-enzymatic origins of protein acylation. Cell Metab. 2017;25:823–837. PubMed PMC
Rosen R., Becher D., Büttner K., Biran D., Hecker M., Ron E.Z. Probing the active site of homoserine trans-succinylase. FEBS Lett. 2004;577:386–392. PubMed
Weinert B.T., Schölz C., Wagner S.A., Iesmantavicius V., Su D., Daniel J.A., Choudhary C. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4:842–851. PubMed
Zhang Z., Tan M., Xie Z., Dai L., Chen Y., Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat. Chem. Biol. 2011;7:58–63. PubMed PMC
Waitkus M.S., Diplas B.H., Yan H. Biological role and therapeutic potential of IDH mutations in cancer. Cancer Cell. 2018;34:186–195. PubMed PMC
Dang L., Su S.-S.M. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: From basic discovery to therapeutics development. Annu. Rev. Biochem. 2017;86:305–331. PubMed
Li F., He X., Ye D., Lin Y., Yu H., Yao C., Huang L., Zhang J., Wang F., Xu S., Wu X., Liu L., Yang C., Shi J., He X. NADP+-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance. Mol. Cell. 2015;60:661–675. PubMed
Rardin M.J., He W., Nishida Y., Newman J.C., Carrico C., Danielson S.R., Guo A., Gut P., Sahu A.K., Li B., Uppala R., Fitch M., Riiff T., Zhu L., Zhou J. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013;18:920–933. PubMed PMC
Gaviard C., Broutin I., Cosette P., Dé E., Jouenne T., Hardouin J. Lysine succinylation and acetylation in Pseudomonas aeruginosa. J. Proteome Res. 2018;17:2449–2459. PubMed
Wang J., Li L., Chai R., Zhang Z., Qiu H., Mao X., Hao Z., Wang Y., Sun G. Succinyl-proteome profiling of Pyricularia oryzae, a devastating phytopathogenic fungus that causes rice blast disease. Sci. Rep. 2019;9:3490. PubMed PMC
Park J., Chen Y., Tishkoff D.X., Peng C., Tan M., Dai L., Xie Z., Zhang Y., Zwaans B.M.M., Skinner M.E., Lombard D.B., Zhao Y. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell. 2013;50:919–930. PubMed PMC
Wang G., Xu L., Yu H., Gao J., Guo L. Systematic analysis of the lysine succinylome in the model medicinal mushroom Ganoderma lucidum. BMC Genomics. 2019;20:585. PubMed PMC
Zhou C., Dai J., Lu H., Chen Z., Guo M., He Y., Gao K., Ge T., Jin J., Wang L., Tian B., Hua Y., Zhao Y. Succinylome analysis reveals the involvement of lysine succinylation in the extreme resistance of Deinococcus radiodurans. Proteomics. 2019;19 PubMed
Yuan H., Chen J., Yang Y., Shen C., Xu D., Wang J., Yan D., He Y., Zheng B. Quantitative succinyl-proteome profiling of Chinese hickory (Carya cathayensis) during the grafting process. BMC Plant Biol. 2019;19:467. PubMed PMC
Li X., Hu X., Wan Y., Xie G., Li X., Chen D., Cheng Z., Yi X., Liang S., Tan F. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii. J. Proteome Res. 2014;13:6087–6095. PubMed
Yang M., Wang Y., Chen Y., Cheng Z., Gu J., Deng J., Bi L., Chen C., Mo R., Wang X., Ge F. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis. Mol. Cell. Proteomics. 2015;14:796–811. PubMed PMC
Kosono S., Tamura M., Suzuki S., Kawamura Y., Yoshida A., Nishiyama M., Yoshida M. Changes in the acetylome and succinylome of Bacillus subtilis in response to carbon source. PLoS One. 2015;10 PubMed PMC
Mizuno Y., Nagano-Shoji M., Kubo S., Kawamura Y., Yoshida A., Kawasaki H., Nishiyama M., Yoshida M., Kosono S. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction. Microbiologyopen. 2016;5:152–173. PubMed PMC
Zheng H., He Y., Zhou X., Qian G., Lv G., Shen Y., Liu J., Li D., Li X., Liu W. Systematic analysis of the lysine succinylome in Candida albicans. J. Proteome Res. 2016;15:3793–3801. PubMed
Jin W., Wu F. Proteome-wide identification of lysine succinylation in the proteins of tomato (Solanum lycopersicum) PLoS One. 2016;11 PubMed PMC
Shen C., Xue J., Sun T., Guo H., Zhang L., Meng Y., Wang H. Succinyl-proteome profiling of a high taxol containing hybrid Taxus species (Taxus x media) revealed involvement of succinylation in multiple metabolic pathways. Sci. Rep. 2016;6:21764. PubMed PMC
Qian L., Nie L., Chen M., Liu P., Zhu J., Zhai L., Tao S.C., Cheng Z., Zhao Y., Tan M. Global profiling of protein lysine malonylation in Escherichia coli reveals its role in energy metabolism. J. Proteome Res. 2016;15:2060–2071. PubMed
Zhang Y., Wang G., Song L., Mu P., Wang S., Liang W., Lin Q. Global analysis of protein lysine succinylation profiles in common wheat. BMC Genomics. 2017;18:309. PubMed PMC
Xu Y.X., Shen C.J., Ma J.Q., Chen W., Mao J., Zhou Y.Y., Chen L. Quantitative succinyl-proteome profiling of Camellia sinensis cv. “Anji Baicha” during periodic albinism. Sci. Rep. 2017;7:1873. PubMed PMC
Xu X., Liu T., Yang J., Chen L., Liu B., Wei C., Wang L., Jin Q. The first succinylome profile of Trichophyton rubrum reveals lysine succinylation on proteins involved in various key cellular processes. BMC Genomics. 2017;18:577. PubMed PMC
Feng S., Jiao K., Guo H., Jiang M., Hao J., Wang H., Shen C. Succinyl-proteome profiling of Dendrobium officinale, an important traditional Chinese orchid herb, revealed involvement of succinylation in the glycolysis pathway. BMC Genomics. 2017;18:598. PubMed PMC
Chen J., Li F., Liu Y., Shen W., Du X., He L., Meng Z., Ma X., Wang Y. Systematic identification of mitochondrial lysine succinylome in silkworm (Bombyx mori) midgut during the larval gluttonous stage. J. Proteomics. 2018;174:61–70. PubMed
Ren S., Yang M., Yue Y., Ge F., Li Y., Guo X., Zhang J., Zhang F., Nie X., Wang S. Lysine succinylation contributes to aflatoxin production and pathogenicity in Aspergillus flavus. Mol. Cell. Proteomics. 2018;17:457–471. PubMed PMC
Meng X., Lv Y., Mujahid H., Edelmann M.J., Zhao H., Peng X., Peng Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. Biochim. Biophys. Acta Proteins Proteom. 2018;1866:451–463. PubMed
Henriksen P., Wagner S.A., Weinert B.T., Sharma S., Bačinskaja G., Rehman M., Juffer A.H., Walther T.C., Lisby M., Choudhary C. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in saccharomyces cerevisiae. Mol. Cell. Proteomics. 2012;11:1510–1522. PubMed PMC
Harmel R., Fiedler D. Features and regulation of non-enzymatic post-translational modifications. Nat. Chem. Biol. 2018;14:244–252. PubMed
Klausen M.S., Jespersen M.C., Nielsen H., Jensen K.K., Jurtz V.I., Sønderby C.K., Sommer M.O.A., Winther O., Nielsen M., Petersen B., Marcatili P. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019;87:520–527. PubMed
Ramachandran G.N., Ramakrishnan C., Sasisekharan V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 1963;7:95–99. PubMed
Armenteros J.J.A., Salvatore M., Emanuelsson O., Winther O., von Heijne G., Elofsson A., Nielsen H. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance. 2019;2 PubMed PMC
Gao J., Xu D. Correlation between posttranslational modification and intrinsic disorder in protein. Biocomput. 2011;2012:94–103. PubMed PMC
Oldfield C.J., Dunker A.K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 2014;83:553–584. PubMed
Miyakawa I. Organization and dynamics of yeast mitochondrial nucleoids. Proc. Jpn. Acad. Ser. B. 2017;93:339–359. PubMed PMC
Vozáriková V., Kunová N., Bauer J.A., Frankovský J., Kotrasová V., Procházková K., Džugasová V., Kutejová E., Pevala V., Nosek J., Tomáška Ľ. Mitochondrial HMG-box containing proteins: From biochemical properties to the roles in human diseases. Biomolecules. 2020;10:1193. PubMed PMC
Dilweg I.W., Dame R.T. Post-translational modification of nucleoid-associated proteins: An extra layer of functional modulation in bacteria? Biochem. Soc. Trans. 2018;46:1381–1392. PubMed
Ho B., Baryshnikova A., Brown G.W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 2018;6:192–205.e3. PubMed
Kaufman B.A., Newman S.M., Hallberg R.L., Slaughter C.A., Perlman P.S., Butow R.A. In organello formaldehyde crosslinking of proteins to mtDNA: Identification of bifunctional proteins. Proc. Natl. Acad. Sci. U. S. A. 2000;97:7772–7777. PubMed PMC
Chakraborty A., Lyonnais S., Battistini F., Hospital A., Medici G., Prohens R., Orozco M., Vilardell J., Soì M. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res. 2016;45:951–967. PubMed PMC
Li Y., Li H., Sui M., Li M., Wang J., Meng Y., Sun T., Liang Q., Suo C., Gao X., Li C., Li Z., Du W., Zhang B., Sai S. Fungal acetylome comparative analysis identifies an essential role of acetylation in human fungal pathogen virulence. Commun. Biol. 2019;2:154. PubMed PMC
Paik W.K., Pearson D., Lee H.W., Kim S. Nonenzymatic acetylation of histones with acetyl-CoA. Biochim. Biophys. Acta. 1970;213:513–522. PubMed
Wolfe A.J. Bacterial protein acetylation: New discoveries unanswered questions. Curr. Genet. 2016;62:335–341. PubMed PMC
Čanigová N. Comenius University in Bratislava; 2017. Comparative Analysis of Mitochondrial HMG Box-Containing Proteins. M.Sc. Thesis.
Miyakawa I., Okamuro A., Kinsky S., Visacka K., Tomaska L., Nosek J. Mitochondrial nucleoids from the yeast Candida parapsilosis: Expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology. 2009;155:1558–1568. PubMed
Višacká K., Gerhold J.M., Petrovičová J., Kinský S., Jõers P., Nosek J., Sedman J., Tomáška Ľ. Novel subfamily of mitochondrial HMG box-containing proteins: Functional analysis of Gcf1p from Candida albicans. Microbiology. 2009;155:1226–1240. PubMed PMC
Bakkaiová J., Arata K., Matsunobu M., Ono B., Aoki T., Lajdova D., Nebohacova M., Nosek J., Miyakawa I., Tomaska L. The strictly aerobic yeast Yarrowia lipolytica tolerates loss of a mitochondrial DNA-packaging protein. Eukaryot. Cell. 2014;13:1143–1157. PubMed PMC
Crooks D.R., Maio N., Lang M., Ricketts C.J., Vocke C.D., Gurram S., Turan S., Kim Y.Y., Cawthon G.M., Sohelian F., De Val N., Pfeiffer R.M., Jailwala P., Tandon M., Tran B. Mitochondrial DNA alterations underlie an irreversible shift to aerobic glycolysis in fumarate hydratase-deficient renal cancer. Sci. Signal. 2021;14 PubMed PMC
Yang M., Ternette N., Su H., Dabiri R., Kessler B., Adam J., Teh B., Pollard P. The succinated proteome of FH-mutant tumours. Metabolites. 2014;4:640–654. PubMed PMC
Kunová N., Ondrovičová G., Bauer J.A., Bellová J., Ambro L., Martináková L., Kotrasová V., Kutejová E., Pevala V. The role of Lon-mediated proteolysis in the dynamics of mitochondrial nucleic acid-protein complexes. Sci. Rep. 2017;7:631. PubMed PMC
Gao W., Wu M., Wang N., Zhang Y., Hua J., Tang G., Wang Y. Increased expression of mitochondrial transcription factor a and nuclear respiratory factor-1 predicts a poor clinical outcome of breast cancer. Oncol. Lett. 2018;15:1449–1458. PubMed PMC
Xie Z., Dai J., Dai L., Tan M., Cheng Z., Wu Y., Boeke J.D., Zhao Y. Lysine succinylation and lysine malonylation in histones. Mol. Cell. Proteomics. 2012;11:100–107. PubMed PMC
Wang Y., Guo Y.R., Liu K., Yin Z., Liu R., Xia Y., Tan L., Yang P., Lee J.H., Li X.J., Hawke D., Zheng Y., Qian X., Lyu J., He J. KAT2A coupled with the α-KGDH complex acts as a histone H3 succinyltransferase. Nature. 2017;552:273–277. PubMed PMC
Dehzangi A., López Y., Lal S.P., Taherzadeh G., Sattar A., Tsunoda T., Sharma A. Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams. PLoS One. 2018;13 PubMed PMC
Ondrovičová G., Liu T., Singh K., Tian B., Li H., Gakh O., Perečko D., Janata J., Granot Z., Orly J., Kutejová E., Suzuki C.K. Cleavage site selection within a folded substrate by the ATP-dependent Lon protease. J. Biol. Chem. 2005;280:25103–25110. PubMed
Bennett B.D., Kimball E.H., Gao M., Osterhout R., Van Dien S.J., Rabinowitz J.D. Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat. Chem. Biol. 2009;5:593–599. PubMed PMC
Di Bartolomeo F., Malina C., Campbell K., Mormino M., Fuchs J., Vorontsov E., Gustafsson C.M., Nielsen J. Absolute yeast mitochondrial proteome quantification reveals trade-off between biosynthesis and energy generation during diauxic shift. Proc. Natl. Acad. Sci. U. S. A. 2020;117:7524–7535. PubMed PMC
Chen X.J., Butow R.A. The organization and inheritance of the mitochondrial genome. Nat. Rev. Genet. 2005;6:815–825. PubMed
Gibson G.E., Xu H., Chen H.-L., Chen W., Denton T.T., Zhang S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J. Neurochem. 2015;134:86–96. PubMed PMC
Valachovič M., Bareither B.M., Bhuiyan M.S.A., Eckstein J., Barbuch R., Balderes D., Wilcox L., Sturley S.L., Dickson R.C., Bard M. Cumulative mutations affecting sterol biosynthesis in the yeast Saccharomyces cerevisiae result in synthetic lethality that is suppressed by alterations in sphingolipid profiles. Genetics. 2006;173:1893–1908. PubMed PMC
Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast. 1995;11:355–360. PubMed
Nosek J., Tomáška Ľ. Create Space Independent Publishing Platform, Create Space Independent Publishing Platform; Charleston, SC: 2013. Laboratory Protocols in Molecular and Cell Biology of Yeasts.
Van Dijl J.M., Kutejová E., Suda K., Perečko D., Schatz G., Suzuki C.K. The ATPase and protease domains of yeast mitochondrial Lon: Roles in proteolysis and respiration-dependent growth. Proc. Natl. Acad. Sci. U. S. A. 1998;95:10584–10589. PubMed PMC
Suzuki C.K., Kutejová E., Suda K. Analysis and purification of ATP-dependent mitochondrial Lon protease of Saccharomyces cerevisiae. Methods Enzymol. 1995;260:486–494. PubMed
Somogyi M. Notes on sugar determination. J. Biol. Chem. 1952;195:19–23. PubMed
Michalski A., Damoc E., Lange O., Denisov E., Nolting D., Müller M., Viner R., Schwartz J., Remes P., Belford M., Dunyach J.J., Cox J., Horning S., Mann M., Makarov A. Ultra high resolution linear ion trap orbitrap mass spectrometer (orbitrap elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol. Cell. Proteomics. 2012;11 O111.013698. PubMed PMC
Cox J., Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008;26:1367–1372. PubMed
Morgenstern M., Stiller S.B., Lübbert P., Peikert C.D., Dannenmaier S., Drepper F., Weill U., Höß P., Feuerstein R., Gebert M., Bohnert M., van der Laan M., Schuldiner M., Schütze C., Oeljeklaus S. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 2017;19:2836–2852. PubMed PMC
Vögtle F.N., Burkhart J.M., Gonczarowska-Jorge H., Kücükköse C., Taskin A.A., Kopczynski D., Ahrends R., Mossmann D., Sickmann A., Zahedi R.P., Meisinger C. Landscape of submitochondrial protein distribution. Nat. Commun. 2017;8:1–10. PubMed PMC
Mi H., Muruganujan A., Ebert D., Huang X., Thomas P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019;47:D419–D426. PubMed PMC
Balakrishnan R., Park J., Karra K., Hitz B.C., Binkley G., Hong E.L., Sullivan J., Micklem G., Cherry J.M. YeastMine-An integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database. 2012;2012:bar062. PubMed PMC
Cherry J.M., Hong E.L., Amundsen C., Balakrishnan R., Binkley G., Chan E.T., Christie K.R., Costanzo M.C., Dwight S.S., Engel S.R., Fisk D.G., Hirschman J.E., Hitz B.C., Karra K., Krieger C.J. Saccharomyces Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2012;40:D700–D705. PubMed PMC
Crooks G.E., Hon G., Chandonia J.M., Brenner S.E. WebLogo: A sequence logo generator. Genome Res. 2004;14:1188–1190. PubMed PMC
Thomsen M.C.F., Nielsen M. Seq2Logo: A method for construction and visualization of amino acid binding motifs and sequence profiles including sequence weighting, pseudo counts and two-sided representation of amino acid enrichment and depletion. Nucleic Acids Res. 2012;40:W281–W287. PubMed PMC
Bakkaiová J., Marini V., Willcox S., Nosek J., Griffith J.D., Krejci L., Tomáška Ľ. Yeast mitochondrial HMG proteins: DNA-binding properties of the most evolutionarily divergent component of mitochondrial nucleoids. Biosci. Rep. 2016;36 PubMed PMC
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. PubMed
Green M.R., Sambrook J. Cold Spring Harbor Laboratory Press; New York, NY: 2012. Molecular Cloning: A Laboratory Manual.
Berrow N.S., Alderton D., Sainsbury S., Nettleship J., Assenberg R., Rahman N., Stuart D.I., Owens R.J. A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res. 2007;35:e45. PubMed PMC
Du J., Zhou Y., Su X., Yu J.J., Khan S., Jiang H., Kim J., Woo J., Kim J.H., Choi B.H., He B., Chen W., Zhang S., Cerione R.A., Auwerx J. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334:806–809. PubMed PMC
Kovalevskiy O., Nicholls R.A., Long F., Carlon A., Murshudov G.N. Overview of refinement procedures within REFMAC 5: Utilizing data from different sources. Acta Crystallogr. Sect. D Struct. Biol. 2018;74:215–227. PubMed PMC
Case D.A., Babin V., Berryman J.T., Betz R.M., Cai Q., Cerutti D.S., Cheatham T.E., III, Darden T.A., Duke R.E., Gohlke H., Goetz A.W., Gusarov S., Homeyer N., Janowski P., Kaus J. University of California, San Francisco; San Francisco, CA: 2014. AMBER 14.
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–1612. PubMed
Williams C.J., Headd J.J., Moriarty N.W., Prisant M.G., Videau L.L., Deis L.N., Verma V., Keedy D.A., Hintze B.J., Chen V.B., Jain S., Lewis S.M., Arendall W.B., Snoeyink J., Adams P.D. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 2018;27:293–315. PubMed PMC
Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., Wilson L., Chen J., Liles K., Chun M., Li P., Gohara D.W., Dolinsky T., Konecny R. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018;27:112–128. PubMed PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D.J., Inuganti A., Griss J., Mayer G., Eisenacher M., Pérez E., Uszkoreit J., Pfeuffer J., Sachsenberg T., Yilmaz Ş. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Stringer C., Wang T., Michaelos M., Pachitariu M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods. 2021;18:100–106. PubMed