Microenvironmental regulation of T-cells in pulmonary hypertension

. 2023 ; 14 () : 1223122. [epub] 20230711

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37497214

Grantová podpora
P01 HL152961 NHLBI NIH HHS - United States

INTRODUCTION: In pulmonary hypertension (PH), pulmonary arterial remodeling is often accompanied by perivascular inflammation. The inflammation is characterized by the accumulation of activated macrophages and lymphocytes within the adventitial stroma, which is comprised primarily of fibroblasts. The well-known ability of fibroblasts to secrete interleukins and chemokines has previously been implicated as contributing to this tissue-specific inflammation in PH vessels. We were interested if pulmonary fibroblasts from PH arteries contribute to microenvironmental changes that could activate and polarize T-cells in PH. METHODS: We used single-cell RNA sequencing of intact bovine distal pulmonary arteries (dPAs) from PH and control animals and flow cytometry, mRNA expression analysis, and respirometry analysis of blood-derived bovine/human T-cells exposed to conditioned media obtained from pulmonary fibroblasts of PH/control animals and IPAH/control patients (CM-(h)PH Fibs vs CM-(h)CO Fibs). RESULTS: Single-cell RNA sequencing of intact bovine dPAs from PH and control animals revealed a pro-inflammatory phenotype of CD4+ T-cells and simultaneous absence of regulatory T-cells (FoxP3+ Tregs). By exposing T-cells to CM-(h)PH Fibs we stimulated their proinflammatory differentiation documented by increased IFNγ and decreased IL4, IL10, and TGFβ mRNA and protein expression. Interestingly, we demonstrated a reduction in the number of suppressive T-cell subsets, i.e., human/bovine Tregs and bovine γδ T-cells treated with CM-(h)PH-Fibs. We also noted inhibition of anti-inflammatory cytokine expression (IL10, TGFβ, IL4). Pro-inflammatory polarization of bovine T-cells exposed to CM-PH Fibs correlated with metabolic shift to glycolysis and lactate production with increased prooxidant intracellular status as well as increased proliferation of T-cells. To determine whether metabolic reprogramming of PH-Fibs was directly contributing to the effects of PH-Fibs conditioned media on T-cell polarization, we treated PH-Fibs with the HDAC inhibitor SAHA, which was previously shown to normalize metabolic status and examined the effects of the conditioned media. We observed significant suppression of inflammatory polarization associated with decreased T-cell proliferation and recovery of mitochondrial energy metabolism. CONCLUSION: This study demonstrates how the pulmonary fibroblast-derived microenvironment can activate and differentiate T-cells to trigger local inflammation, which is part of the vascular wall remodeling process in PH.

Zobrazit více v PubMed

Rabinovitch M, Guignabert C, Humbert M, Nicolls MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res (2014) 115:165–75. doi: 10.1161/CIRCRESAHA.113.301141 PubMed DOI PMC

Huertas A, Tu L, Humbert M, Guignabert C. Chronic inflammation within the vascular wall in pulmonary arterial hypertension: more than a spectator. Cardiovasc Res (2020) 116:885–93. doi: 10.1093/cvr/cvz308 PubMed DOI

Marsh LM, Jandl K, Grunig G, Foris V, Bashir M, Ghanim B, et al. . The inflammatory cell landscape in the lungs of patients with idiopathic pulmonary arterial hypertension. Eur Respir J 51 (2018) 51(1):1701214. doi: 10.1183/13993003.01214-2017 PubMed DOI PMC

Savai R, Pullamsetti SS, Kolbe J, Bieniek E, Voswinckel R, Fink L, et al. . Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med (2012) 186:897–908. doi: 10.1164/rccm.201202-0335OC PubMed DOI

Stacher E, Graham BB, Hunt JM, Gandjeva A, Groshong SD, McLaughlin VV, et al. . Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med (2012) 186:261–72. doi: 10.1164/rccm.201201-0164OC PubMed DOI PMC

Davidson S, Coles M, Thomas T, Kollias G, Ludewig B, Turley S, et al. . Fibroblasts as immune regulators in infection, inflammation and cancer. Nat Rev Immunol (2021) 21:704–17. doi: 10.1038/s41577-021-00540-z PubMed DOI

Crowley T, Buckley CD, Clark AR. Stroma: the forgotten cells of innate immune memory. Clin Exp Immunol (2018) 193:24–36. doi: 10.1111/cei.13149 PubMed DOI PMC

Gardiner CM, Mills KH. The cells that mediate innate immune memory and their functional significance in inflammatory and infectious diseases. Semin Immunol (2016) 28:343–50. doi: 10.1016/j.smim.2016.03.001 PubMed DOI

Dai X, Medzhitov R. Inflammation: memory beyond immunity. Nature (2017) 550:460–1. doi: 10.1038/nature24154 PubMed DOI

Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, et al. . Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med (2017) 214:579–96. doi: 10.1084/jem.20162024 PubMed DOI PMC

Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer (2006) 6:392–401. doi: 10.1038/nrc1877 PubMed DOI

Pugliese SC, Kumar S, Janssen WJ, Graham BB, Frid MG, Riddle SR, et al. . And compartment-specific activation of lung macrophages in hypoxic pulmonary hypertension. J Immunol (2017) 198:4802–12. doi: 10.4049/jimmunol.1601692 PubMed DOI PMC

El Kasmi KC, Pugliese SC, Riddle SR, Poth JM, Anderson AL, Frid MG, et al. . Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J Immunol (2014) 193:597–609. doi: 10.4049/jimmunol.1303048 PubMed DOI PMC

Fan Y, Hao Y, Gao D, Li G, Zhang Z. Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model. Physiol Res (2021) 70:213–26. doi: 10.33549/physiolres.934456 PubMed DOI PMC

Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, et al. . Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PloS One (2015) 10:e0118655. doi: 10.1371/journal.pone.0118655 PubMed DOI PMC

Zhao L, Chen CN, Hajji N, Oliver E, Cotroneo E, Wharton J, et al. . Histone deacetylation inhibition in pulmonary hypertension: therapeutic potential of valproic acid and suberoylanilide hydroxamic acid. Circulation (2012) 126:455–67. doi: 10.1161/CIRCULATIONAHA.112.103176 PubMed DOI PMC

Hoek A, Rutten VP, Kool J, Arkesteijn GJ, Bouwstra RJ, Van Rhijn I, et al. . Subpopulations of bovine WC1(+) gammadelta T cells rather than CD4(+)CD25(high) Foxp3(+) T cells act as immune regulatory cells ex vivo. Vet Res (2009) 40:6. doi: 10.1051/vetres:2008044 PubMed DOI PMC

Li M, Riddle S, Kumar S, Poczobutt J, McKeon BA, Frid MG, et al. . Microenvironmental regulation of macrophage transcriptomic and metabolomic profiles in pulmonary hypertension. Front Immunol (2021) 12:640718. doi: 10.3389/fimmu.2021.640718 PubMed DOI PMC

Worrell JC, MacLeod MKL. Stromal-immune cell crosstalk fundamentally alters the lung microenvironment following tissue insult. Immunology (2021) 163:239–49. doi: 10.1111/imm.13319 PubMed DOI PMC

Taraseviciene-Stewart L, Nicolls MR, Kraskauskas D, Scerbavicius R, Burns N, Cool C, et al. . Absence of T cells confers increased pulmonary arterial hypertension and vascular remodeling. Am J Respir Crit Care Med (2007) 175:1280–9. doi: 10.1164/rccm.200608-1189OC PubMed DOI PMC

Steiner MK, Syrkina OL, Kolliputi N, Mark EJ, Hales CA, Waxman AB. Interleukin-6 overexpression induces pulmonary hypertension. Circ Res (2009) 104:236–44. doi: 10.1161/CIRCRESAHA.108.182014 PubMed DOI PMC

Maston LD, Jones DT, Giermakowska W, Howard TA, Cannon JL, Wang W, et al. . Central role of T helper 17 cells in chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol (2017) 312:L609–24. doi: 10.1152/ajplung.00531.2016 PubMed DOI PMC

Tian W, Jiang SY, Jiang X, Tamosiuniene R, Kim D, Guan T, et al. . The role of regulatory T cells in pulmonary arterial hypertension. Front Immunol (2021) 12:684657. doi: 10.3389/fimmu.2021.684657 PubMed DOI PMC

Itoh M, Takahashi T, Sakaguchi N, Kuniyasu Y, Shimizu J, Otsuka F, et al. . Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol (1999) 162:5317–26. doi: 10.4049/jimmunol.162.9.5317 PubMed DOI

Huertas A, Phan C, Bordenave J, Tu L, Thuillet R, Le Hiress M, et al. . Regulatory T cell dysfunction in idiopathic, heritable and connective tissue-associated pulmonary arterial hypertension. Chest (2016) 149:1482–93. doi: 10.1016/j.chest.2016.01.004 PubMed DOI

Gaowa S, Zhou W, Yu L, Zhou X, Liao K, Yang K, et al. . Effect of Th17 and treg axis disorder on outcomes of pulmonary arterial hypertension in connective tissue diseases. Mediators Inflammation (2014) 2014:247372. doi: 10.1155/2014/247372 PubMed DOI PMC

Frid MG, Li M, Gnanasekharan M, Burke DL, Fragoso M, Strassheim D, et al. . Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall. Am J Physiol Lung Cell Mol Physiol (2009) 297:L1059–72. doi: 10.1152/ajplung.90611.2008 PubMed DOI PMC

Nielsen MC, Andersen MN, Moller HJ. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology (2020) 159:63–74. doi: 10.1111/imm.13125 PubMed DOI PMC

Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. . Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol (2019) 20:163–72. doi: 10.1038/s41590-018-0276-y PubMed DOI PMC

Baldwin CL, Damani-Yokota P, Yirsaw A, Loonie K, Teixeira AF, Gillespie A. Special features of gammadelta T cells in ruminants. Mol Immunol (2021) 134:161–9. doi: 10.1016/j.molimm.2021.02.028 PubMed DOI

Zhang H, Wang D, Li M, Plecita-Hlavata L, D’Alessandro A, Tauber J, et al. . Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (Polypyrimidine tract binding protein 1)/Pyruvate kinase muscle axis. Circulation (2017) 136:2468–85. doi: 10.1161/CIRCULATIONAHA.117.028069 PubMed DOI PMC

Nakagome K, Matsushita S, Nagata M. Neutrophilic inflammation in severe asthma. Int Arch Allergy Immunol (2012) 158 Suppl 1:96–102. doi: 10.1159/000337801 PubMed DOI

Loubaki L, Semlali A, Boisvert M, Jacques E, Plante S, Aoudjit F, et al. . Crosstalk between T cells and bronchial fibroblasts obtained from asthmatic subjects involves CD40L/alpha 5 beta 1 interaction. Mol Immunol (2010) 47:2112–8. doi: 10.1016/j.molimm.2010.03.011 PubMed DOI

Li M, Riddle SR, Frid MG, El Kasmi KC, McKinsey TA, Sokol RJ, et al. . Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol (2011) 187:2711–22. doi: 10.4049/jimmunol.1100479 PubMed DOI PMC

Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. . Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation (2010) 122:920–7. doi: 10.1161/CIRCULATIONAHA.109.933762 PubMed DOI

Matura LA, Ventetuolo CE, Palevsky HI, Lederer DJ, Horn EM, Mathai SC, et al. . Interleukin-6 and tumor necrosis factor-alpha are associated with quality of life-related symptoms in pulmonary arterial hypertension. Ann Am Thorac Soc (2015) 12:370–5. doi: 10.1513/AnnalsATS.201410-463OC PubMed DOI PMC

Sweatt AJ, Hedlin HK, Balasubramanian V, Hsi A, Blum LK, Robinson WH, et al. . Discovery of distinct immune phenotypes using machine learning in pulmonary arterial hypertension. Circ Res (2019) 124:904–19. doi: 10.1161/CIRCRESAHA.118.313911 PubMed DOI PMC

Jandl K, Marsh LM, Mutgan AC, Crnkovic S, Valzano F, Zabini D, et al. . Impairment of the NKT-STAT1-CXCL9 axis contributes to vessel fibrosis in pulmonary hypertension caused by lung fibrosis. Am J Respir Crit Care Med (2022) 206:981–98. doi: 10.1164/rccm.202201-0142OC PubMed DOI

Mo C, Zeng Z, Deng Q, Ding Y, Xiao R. Imbalance between T helper 17 and regulatory T cell subsets plays a significant role in the pathogenesis of systemic sclerosis. BioMed Pharmacother (2018) 108:177–83. doi: 10.1016/j.biopha.2018.09.037 PubMed DOI

Cao D, van Vollenhoven R, Klareskog L, Trollmo C, Malmstrom V. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther (2004) 6:R335–46. doi: 10.1186/ar1192 PubMed DOI PMC

Paladugu M, Thakur A, Lum LG, Mittal S, Parajuli P. Generation and immunologic functions of Th17 cells in malignant gliomas. Cancer Immunol Immunother (2013) 62:75–86. doi: 10.1007/s00262-012-1312-7 PubMed DOI PMC

Zhang L, Wang T, Wang XQ, Du RZ, Zhang KN, Liu XG, et al. . Elevated frequencies of circulating Th22 cell in addition to Th17 cell and Th17/Th1 cell in patients with acute coronary syndrome. PloS One (2013) 8:e71466. doi: 10.1371/journal.pone.0071466 PubMed DOI PMC

Ryba-Stanislawowska M, Skrzypkowska M, Mysliwiec M, Mysliwska J. Loss of the balance between CD4(+)Foxp3(+) regulatory T cells and CD4(+)IL17A(+) Th17 cells in patients with type 1 diabetes. Hum Immunol (2013) 74:701–7. doi: 10.1016/j.humimm.2013.01.024 PubMed DOI

Ding HS, Yang J, Yang J, Ding JW, Chen P, Zhu P. Interleukin-17 contributes to cardiovascular diseases. Mol Biol Rep (2012) 39:7473–8. doi: 10.1007/s11033-012-1580-5 PubMed DOI

Dejaco C, Duftner C, Grubeck-Loebenstein B, Schirmer M. Imbalance of regulatory T cells in human autoimmune diseases. Immunology (2006) 117:289–300. doi: 10.1111/j.1365-2567.2005.02317.x PubMed DOI PMC

Halvorson T, Tuomela K, Levings MK. Targeting regulatory T cell metabolism in disease: novel therapeutic opportunities. Eur J Immunol (2023):e2250002. doi: 10.1002/eji.202250002 PubMed DOI

Procaccini C, Carbone F, Di Silvestre D, Brambilla F, De Rosa V, Galgani M, et al. . The proteomic landscape of human ex vivo regulatory and conventional T cells reveals specific metabolic requirements. Immunity (2016) 44:406–21. doi: 10.1016/j.immuni.2016.01.028 PubMed DOI PMC

Kishore M, Cheung KCP, Fu H, Bonacina F, Wang G, Coe D, et al. . Regulatory T cell migration is dependent on glucokinase-mediated glycolysis. Immunity (2017) 47:875–889 e10. doi: 10.1016/j.immuni.2017.10.017 PubMed DOI PMC

Chu Y, Xiangli X, Xiao W. Regulatory T cells protect against hypoxia-induced pulmonary arterial hypertension in mice. Mol Med Rep (2015) 11:3181–7. doi: 10.3892/mmr.2014.3106 PubMed DOI

Guzman E, Hope J, Taylor G, Smith AL, Cubillos-Zapata C, Charleston B. Bovine gammadelta T cells are a major regulatory T cell subset. J Immunol (2014) 193:208–22. doi: 10.4049/jimmunol.1303398 PubMed DOI PMC

Albarrak SM, Waters WR, Stabel JR, Hostetter JM. Evaluating the cytokine profile of the WC1(+) gammadelta T cell subset in the ileum of cattle with the subclinical and clinical forms of MAP infection. Vet Immunol Immunopathol (2018) 201:26–31. doi: 10.1016/j.vetimm.2018.05.003 PubMed DOI

Frid MG, McKeon BA, Thurman JM, Maron BA, Li M, Zhang H, et al. . Immunoglobulin-driven complement activation regulates proinflammatory remodeling in pulmonary hypertension. Am J Respir Crit Care Med (2020) 201:224–39. doi: 10.1164/rccm.201903-0591OC PubMed DOI PMC

Breitling S, Hui Z, Zabini D, Hu Y, Hoffmann J, Goldenberg NM, et al. . The mast cell-b cell axis in lung vascular remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol (2017) 312:L710–21. doi: 10.1152/ajplung.00311.2016 PubMed DOI

Tamby MC, Chanseaud Y, Humbert M, Fermanian J, Guilpain P, Garcia-de-la-Pena-Lefebvre P, et al. . Anti-endothelial cell antibodies in idiopathic and systemic sclerosis associated pulmonary arterial hypertension. Thorax (2005) 60:765–72. doi: 10.1136/thx.2004.029082 PubMed DOI PMC

Ormiston ML, Chang C, Long LL, Soon E, Jones D, Machado R, et al. . Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension. Circulation (2012) 126:1099–109. doi: 10.1161/CIRCULATIONAHA.112.110619 PubMed DOI

Lipsky PE, van der Heijde DM, St Clair EW, Furst DE, Breedveld FC, Kalden JR, et al. . Infliximab and methotrexate in the treatment of rheumatoid arthritis. anti-tumor necrosis factor trial in rheumatoid arthritis with concomitant therapy study group. N Engl J Med (2000) 343:1594–602. doi: 10.1056/NEJM200011303432202 PubMed DOI

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. . Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med (2017) 377:1119–31. doi: 10.1056/NEJMoa1707914 PubMed DOI

Soroureddin Z, Nouri-Vaskeh M, Maleki M, Baghbanzadeh A, Hajiasgharzadeh K, Taban Sadeghi M, et al. . Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: a review from physiology to the clinic. Life Sci (2020) 253:117720. doi: 10.1016/j.lfs.2020.117720 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace