Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model

. 2021 Apr 30 ; 70 (2) : 213-226. [epub] 20210308

Jazyk angličtina Země Česko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33676385

Pulmonary arterial hypertension (PAH) isa fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages inducedendothelial cellapoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell.These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.

Zobrazit více v PubMed

CHEN YJ, ZHU H, ZHANG N, SHEN L, WANG R, ZHOU JS, HU JG, LU HZ. Temporal kinetics of macrophage polarization in the injured rat spinal cord. J Neurosci Res. 2015;93:1526–33. doi: 10.1002/jnr.23612. PubMed DOI

CUCAK H, GRUNNET LG, ROSENDAHL A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukocyte Biol. 2014;95:149–160. doi: 10.1189/jlb.0213075. PubMed DOI

DALEY E, EMSON C, GUIGNABERT C, De WAAL MALEFYT R, LOUTEN J, KURUP VP, HOGABOAM C, TARASEVICIENE-STEWART L, VOELKEL NF, RABINOVITCH M, GRUNIG E, GRUNIG G. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med. 2008;205:361–372. doi: 10.1084/jem.20071008. PubMed DOI PMC

DAVENPORT AP, KUC RE, SOUTHAN C, MAGUIRE JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res. 2018;67:S37–S54. doi: 10.33549/physiolres.933872. PubMed DOI

DAVIS MJ, TSANG TM, QIU Y, DAYRIT JK, FREIJ JB, HUFFNAGLE GB, OLSZEWSKI MA. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013;4:e00264–13. doi: 10.1128/mBio.00264-13. PubMed DOI PMC

ERZURUM S, ROUNDS SI, STEVENS T, ALDRED M, ALIOTTA J, ARCHER SL, ASOSINGH K, BALABAN R, BAUER N, BHATTACHARYA J, BOGAARD H, CHOUDHARY G, DORN GW, DWEIK R, FAGAN K, FALLON M, FINKEL T, GERACI M, GLADWIN MT, HASSOUN PM, HUMBERT M, KAMINSKI N, KAWUT SM, LOSCALZO J, McDONALD D, McMURTRY IF, NEWMAN J, NICOLLS M, RABINOVITCH M, SHIZURU J, OKA M, POLGAR P, RODMAN D, SCHUMACKER P, STENMARK K, TUDER R, VOELKEL N, SULLIVAN E, WEINSHILBOUM R, YODER MC, ZHAO Y, GAIL D, MOORE TM. Strategic plan for lung vascular research: An NHLBI-ORDR Workshop Report. Am J Respir Crit Care Med. 2010;182:1554–1562. doi: 10.1164/rccm.201006-0869WS. PubMed DOI PMC

FARKAS D, THOMPSON AAR, BHAGWANI AR, HULTMAN S, JI H, KOTHA N, FARR G, ARNOLD ND, BRAITHWAITE A, CASBOLT H, COLE JE, SABROE I, MONACO C, COOL CD, GONCHAROVA EA, LAWRIE A, FARKAS L. Toll-like receptor 3 is a therapeutic target for pulmonary hypertension. Am J Respir Crit Care Med. 2019;199:199–210. doi: 10.1164/rccm.201707-1370OC. PubMed DOI PMC

FREIRE-DE-LIMA CG, XIAO YQ, GARDAI SJ, BRATTON DL, SCHIEMANN WP, HENSON PM. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem. 2006;281:38376–38384. doi: 10.1074/jbc.M605146200. PubMed DOI

FRID MG, BRUNETTI JA, BURKE DL, CARPENTER TC, DAVIE NJ, REEVES JT, ROEDERSHEIMER MT, van ROOIJEN N, STENMARK KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168:659–669. doi: 10.2353/ajpath.2006.050599. PubMed DOI PMC

GAO L, FAN Y, HAO Y, YUAN P, LIU D, JING Z, ZHANG Z. Cysteine-rich 61 (Cyr61) upregulated in pulmonary arterial hypertension promotes the proliferation of pulmonary artery smooth muscle cells. Int J Med Sci. 2017;14:820–828. doi: 10.7150/ijms.19282. PubMed DOI PMC

HERDER V, ISKANDAR CD, KEGLER K, HANSMANN F, ELMARABET SA, KHAN MA, KALKUHL A, DESCHL U, BAUMGARTNER W, ULRICH R, BEINEKE A. Dynamic changes of microglia/macrophage M1 and M2 polarization in theiler’s murine encephalomyelitis. Brain Pathol. 2015;25:712–723. doi: 10.1111/bpa.12238. PubMed DOI PMC

MAARMAN G, LECOUR S, BUTROUS G, THIENEMANN F, SLIWA K. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ. 2013;3:739–756. doi: 10.1086/674770. PubMed DOI PMC

MEYRICK B, GAMBLE W, REID L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol. 1980;239:H692–H702. doi: 10.1152/ajpheart.1980.239.5.H692. PubMed DOI

MURRAY PJ, ALLEN JE, BISWAS SK, FISHER EA, GILROY DW, GOERDT S, GORDON S, HAMILTON JA, IVASHKIV LB, LAWRENCE T, LOCATI M, MANTOVANI A, MARTINEZ FO, MEGE JL, MOSSER DM, NATOLI G, SAEIJ JP, SCHULTZE JL, SHIREY KA, SICA A, SUTTLES J, UDALOVA I, Van GINDERACHTER JA, VOGEL SN, WYNN TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. doi: 10.1016/j.immuni.2014.06.008. PubMed DOI PMC

NAKAGAWA Y, CHIBA K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014;7:1028–1048. doi: 10.3390/ph7121028. PubMed DOI PMC

NOGUEIRA-FERREIRA R, FERREIRA R, HENRIQUES-COELHO T. Cellular interplay in pulmonary arterial hypertension: implications for new therapies. Biochim Biophys Acta. 2014;1843:885–893. doi: 10.1016/j.bbamcr.2014.01.030. PubMed DOI

NOGUEIRA-FERREIRA R, VITORINO R, FERREIRA R, HENRIQUES-COELHO T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm Pharmacol Ther. 2015;35:8–16. doi: 10.1016/j.pupt.2015.09.007. PubMed DOI

PELED M, FISHER EA. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol. 2014;5:579. doi: 10.3389/fimmu.2014.00579. PubMed DOI PMC

RABINOVITCH M, GUIGNABERT C, HUMBERT M, NICOLLS MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–175. doi: 10.1161/CIRCRESAHA.113.301141. PubMed DOI PMC

SAKAO S, TARASEVICIENE-STEWART L, WOOD K, COOL CD, VOELKEL NF. Apoptosis of pulmonary microvascular endothelial cells stimulates vascular smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol. 2006;291:L362–L368. doi: 10.1152/ajplung.00111.2005. PubMed DOI

SAVAI R, PULLAMSETTI SS, KOLBE J, BIENIEK E, VOSWINCKEL R, FINK L, SCHEED A, RITTER C, DAHAL BK, VATER A, KLUSSMANN S, GHOFRANI HA, WEISSMANN N, KLEPETKO W, BANAT GA, SEEGER W, GRIMMINGER F, SCHERMULY RT. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:897–908. doi: 10.1164/rccm.201202-0335OC. PubMed DOI

SICA A, BRONTE V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–1166. doi: 10.1172/JCI31422. PubMed DOI PMC

TABAS I, BORNFELDT KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res. 2016;118:653–667. doi: 10.1161/CIRCRESAHA.115.306256. PubMed DOI PMC

THENAPPAN T, GOEL A, MARSBOOM G, FANG YH, TOTH PT, ZHANG HJ, KAJIMOTO H, HONG Z, PAUL J, WIETHOLT C, POGORILER J, PIAO L, REHMAN J, ARCHER SL. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183:1080–1091. doi: 10.1164/rccm.201008-1303OC. PubMed DOI PMC

THENAPPAN T, ORMISTON ML, RYAN JJ, ARCHER SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492. PubMed DOI PMC

TIAN W, JIANG X, TAMOSIUNIENE R, SUNG YK, QIAN J, DHILLON G, GERA L, FARKAS L, RABINOVITCH M, ZAMANIAN RT, INAYATHULLAH M, FRIDLIB M, RAJADAS J, PETERS-GOLDEN M, VOELKEL NF, NICOLLS MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5:200ra117. doi: 10.1126/scitranslmed.3006674. PubMed DOI PMC

TJIU JW, CHEN JS, SHUN CT, LIN SJ, LIAO YH, CHU CY, TSAI TF, CHIU HC, DAI YS, INOUE H, YANG PC, KUO ML, JEE SH. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129:1016–1025. doi: 10.1038/jid.2008.310. PubMed DOI

VERGADI E, CHANG MS, LEE C, LIANG OD, LIU X, FERNANDEZ-GONZALEZ A, MITSIALIS SA, KOUREMBANAS S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011;123:1986–1995. doi: 10.1161/CIRCULATIONAHA.110.978627. PubMed DOI PMC

WEST J, HEMNES A. Experimental and transgenic models of pulmonary hypertension. Compr Physiol. 2011;1:769–782. doi: 10.1002/cphy.c100003. PubMed DOI

YUAN A, HSIAO YJ, CHEN HY, CHEN HW, HO CC, CHEN YY, LIU YC, HONG TH, YU SL, CHEN JJ, YANG PC. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep. 2015;5:14273. doi: 10.1038/srep14273. PubMed DOI PMC

ZALOUDIKOVA M, VYTASEK R, VAJNEROVA O, HNILICKOVA O, VIZEK M, HAMPL V, HERGET J. Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia-induced increase in serum concentration of MCP-1. Physiol Res. 2016;65:763–768. doi: 10.33549/physiolres.933187. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Microenvironmental regulation of T-cells in pulmonary hypertension

. 2023 ; 14 () : 1223122. [epub] 20230711

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...