Phenotype and function of macrophage polarization in monocrotaline-induced pulmonary arterial hypertension rat model
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
33676385
PubMed Central
PMC8820576
DOI
10.33549/physiolres.934456
PII: 934456
Knihovny.cz E-zdroje
- MeSH
- antigeny diferenciační myelomonocytární metabolismus MeSH
- apoptóza MeSH
- arteria pulmonalis metabolismus patologie MeSH
- časové faktory MeSH
- CD antigeny metabolismus MeSH
- cytokiny metabolismus MeSH
- endoteliální buňky pupečníkové žíly (lidské) metabolismus patologie MeSH
- fenotyp MeSH
- kokultivační techniky MeSH
- krysa rodu Rattus MeSH
- kultivované buňky MeSH
- lidé MeSH
- makrofágy metabolismus patologie MeSH
- mediátory zánětu metabolismus MeSH
- modely nemocí na zvířatech MeSH
- monokrotalin MeSH
- myocyty hladké svaloviny metabolismus patologie MeSH
- plicní arteriální hypertenze chemicky indukované metabolismus patologie MeSH
- potkani Sprague-Dawley MeSH
- proliferace buněk MeSH
- receptor mannózy metabolismus MeSH
- remodelace cév * MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny diferenciační myelomonocytární MeSH
- CD antigeny MeSH
- CD68 protein, rat MeSH Prohlížeč
- cytokiny MeSH
- mediátory zánětu MeSH
- monokrotalin MeSH
- Nos2 protein, rat MeSH Prohlížeč
- receptor mannózy MeSH
- synthasa oxidu dusnatého, typ II MeSH
Pulmonary arterial hypertension (PAH) isa fatal disease characterized by vascular remodeling and chronic inflammation. Macrophages are the key orchestrators of inflammatory and repair responses, and have been demonstrated to be vital in the pathogenesis of PAH. However, specific phenotype of macrophage polarization (M1 & M2 macrophage) in the development of PAH and the underlying mechanisms how they work are still largely unclear. A rat model of monocrotaline (MCT) induced PAH was used. Hemodynamic analysis and histopathological experiments were conducted at day 3, 7, 14, 21 and 28, respectively. In PAH rat lung tissue, confocal microscopic images showed that CD68+NOS2+ M1-like macrophages were remarkably infiltrated on early stage, but dramatically decreased in mid-late stage. Meanwhile, CD68+CD206+ M2-like macrophages in lung tissue accumulated gradually since day 7 to day 28, and the relative ratio of M2/M1 macrophage increased over time. Results detected by western blot and immunohistochemistry were consistent. Further vitro functional studies revealed the possible mechanism involved in this pathophysiological process. By using Transwell co-culture system, it was found that M1 macrophages inducedendothelial cellapoptosis, while M2 macrophages significantly promoted proliferation of both endothelial cell and smooth muscle cell.These data preliminarily demonstrated a temporal dynamic change of macrophage M1/M2 polarization status in the development of experimental PAH. M1 macrophages participated in the initial stage of inflammation by accelerating apoptosis of endothelial cell, while M2 macrophages predominated in the reparative stage of inflammation and the followed stage of aberrant tissue remodeling.
Zobrazit více v PubMed
CHEN YJ, ZHU H, ZHANG N, SHEN L, WANG R, ZHOU JS, HU JG, LU HZ. Temporal kinetics of macrophage polarization in the injured rat spinal cord. J Neurosci Res. 2015;93:1526–33. doi: 10.1002/jnr.23612. PubMed DOI
CUCAK H, GRUNNET LG, ROSENDAHL A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization. J Leukocyte Biol. 2014;95:149–160. doi: 10.1189/jlb.0213075. PubMed DOI
DALEY E, EMSON C, GUIGNABERT C, De WAAL MALEFYT R, LOUTEN J, KURUP VP, HOGABOAM C, TARASEVICIENE-STEWART L, VOELKEL NF, RABINOVITCH M, GRUNIG E, GRUNIG G. Pulmonary arterial remodeling induced by a Th2 immune response. J Exp Med. 2008;205:361–372. doi: 10.1084/jem.20071008. PubMed DOI PMC
DAVENPORT AP, KUC RE, SOUTHAN C, MAGUIRE JJ. New drugs and emerging therapeutic targets in the endothelin signaling pathway and prospects for personalized precision medicine. Physiol Res. 2018;67:S37–S54. doi: 10.33549/physiolres.933872. PubMed DOI
DAVIS MJ, TSANG TM, QIU Y, DAYRIT JK, FREIJ JB, HUFFNAGLE GB, OLSZEWSKI MA. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013;4:e00264–13. doi: 10.1128/mBio.00264-13. PubMed DOI PMC
ERZURUM S, ROUNDS SI, STEVENS T, ALDRED M, ALIOTTA J, ARCHER SL, ASOSINGH K, BALABAN R, BAUER N, BHATTACHARYA J, BOGAARD H, CHOUDHARY G, DORN GW, DWEIK R, FAGAN K, FALLON M, FINKEL T, GERACI M, GLADWIN MT, HASSOUN PM, HUMBERT M, KAMINSKI N, KAWUT SM, LOSCALZO J, McDONALD D, McMURTRY IF, NEWMAN J, NICOLLS M, RABINOVITCH M, SHIZURU J, OKA M, POLGAR P, RODMAN D, SCHUMACKER P, STENMARK K, TUDER R, VOELKEL N, SULLIVAN E, WEINSHILBOUM R, YODER MC, ZHAO Y, GAIL D, MOORE TM. Strategic plan for lung vascular research: An NHLBI-ORDR Workshop Report. Am J Respir Crit Care Med. 2010;182:1554–1562. doi: 10.1164/rccm.201006-0869WS. PubMed DOI PMC
FARKAS D, THOMPSON AAR, BHAGWANI AR, HULTMAN S, JI H, KOTHA N, FARR G, ARNOLD ND, BRAITHWAITE A, CASBOLT H, COLE JE, SABROE I, MONACO C, COOL CD, GONCHAROVA EA, LAWRIE A, FARKAS L. Toll-like receptor 3 is a therapeutic target for pulmonary hypertension. Am J Respir Crit Care Med. 2019;199:199–210. doi: 10.1164/rccm.201707-1370OC. PubMed DOI PMC
FREIRE-DE-LIMA CG, XIAO YQ, GARDAI SJ, BRATTON DL, SCHIEMANN WP, HENSON PM. Apoptotic cells, through transforming growth factor-beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem. 2006;281:38376–38384. doi: 10.1074/jbc.M605146200. PubMed DOI
FRID MG, BRUNETTI JA, BURKE DL, CARPENTER TC, DAVIE NJ, REEVES JT, ROEDERSHEIMER MT, van ROOIJEN N, STENMARK KR. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage. Am J Pathol. 2006;168:659–669. doi: 10.2353/ajpath.2006.050599. PubMed DOI PMC
GAO L, FAN Y, HAO Y, YUAN P, LIU D, JING Z, ZHANG Z. Cysteine-rich 61 (Cyr61) upregulated in pulmonary arterial hypertension promotes the proliferation of pulmonary artery smooth muscle cells. Int J Med Sci. 2017;14:820–828. doi: 10.7150/ijms.19282. PubMed DOI PMC
HERDER V, ISKANDAR CD, KEGLER K, HANSMANN F, ELMARABET SA, KHAN MA, KALKUHL A, DESCHL U, BAUMGARTNER W, ULRICH R, BEINEKE A. Dynamic changes of microglia/macrophage M1 and M2 polarization in theiler’s murine encephalomyelitis. Brain Pathol. 2015;25:712–723. doi: 10.1111/bpa.12238. PubMed DOI PMC
MAARMAN G, LECOUR S, BUTROUS G, THIENEMANN F, SLIWA K. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet? Pulm Circ. 2013;3:739–756. doi: 10.1086/674770. PubMed DOI PMC
MEYRICK B, GAMBLE W, REID L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol. 1980;239:H692–H702. doi: 10.1152/ajpheart.1980.239.5.H692. PubMed DOI
MURRAY PJ, ALLEN JE, BISWAS SK, FISHER EA, GILROY DW, GOERDT S, GORDON S, HAMILTON JA, IVASHKIV LB, LAWRENCE T, LOCATI M, MANTOVANI A, MARTINEZ FO, MEGE JL, MOSSER DM, NATOLI G, SAEIJ JP, SCHULTZE JL, SHIREY KA, SICA A, SUTTLES J, UDALOVA I, Van GINDERACHTER JA, VOGEL SN, WYNN TA. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41:14–20. doi: 10.1016/j.immuni.2014.06.008. PubMed DOI PMC
NAKAGAWA Y, CHIBA K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel) 2014;7:1028–1048. doi: 10.3390/ph7121028. PubMed DOI PMC
NOGUEIRA-FERREIRA R, FERREIRA R, HENRIQUES-COELHO T. Cellular interplay in pulmonary arterial hypertension: implications for new therapies. Biochim Biophys Acta. 2014;1843:885–893. doi: 10.1016/j.bbamcr.2014.01.030. PubMed DOI
NOGUEIRA-FERREIRA R, VITORINO R, FERREIRA R, HENRIQUES-COELHO T. Exploring the monocrotaline animal model for the study of pulmonary arterial hypertension: A network approach. Pulm Pharmacol Ther. 2015;35:8–16. doi: 10.1016/j.pupt.2015.09.007. PubMed DOI
PELED M, FISHER EA. Dynamic aspects of macrophage polarization during atherosclerosis progression and regression. Front Immunol. 2014;5:579. doi: 10.3389/fimmu.2014.00579. PubMed DOI PMC
RABINOVITCH M, GUIGNABERT C, HUMBERT M, NICOLLS MR. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res. 2014;115:165–175. doi: 10.1161/CIRCRESAHA.113.301141. PubMed DOI PMC
SAKAO S, TARASEVICIENE-STEWART L, WOOD K, COOL CD, VOELKEL NF. Apoptosis of pulmonary microvascular endothelial cells stimulates vascular smooth muscle cell growth. Am J Physiol Lung Cell Mol Physiol. 2006;291:L362–L368. doi: 10.1152/ajplung.00111.2005. PubMed DOI
SAVAI R, PULLAMSETTI SS, KOLBE J, BIENIEK E, VOSWINCKEL R, FINK L, SCHEED A, RITTER C, DAHAL BK, VATER A, KLUSSMANN S, GHOFRANI HA, WEISSMANN N, KLEPETKO W, BANAT GA, SEEGER W, GRIMMINGER F, SCHERMULY RT. Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186:897–908. doi: 10.1164/rccm.201202-0335OC. PubMed DOI
SICA A, BRONTE V. Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 2007;117:1155–1166. doi: 10.1172/JCI31422. PubMed DOI PMC
TABAS I, BORNFELDT KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res. 2016;118:653–667. doi: 10.1161/CIRCRESAHA.115.306256. PubMed DOI PMC
THENAPPAN T, GOEL A, MARSBOOM G, FANG YH, TOTH PT, ZHANG HJ, KAJIMOTO H, HONG Z, PAUL J, WIETHOLT C, POGORILER J, PIAO L, REHMAN J, ARCHER SL. A central role for CD68(+) macrophages in hepatopulmonary syndrome. Reversal by macrophage depletion. Am J Respir Crit Care Med. 2011;183:1080–1091. doi: 10.1164/rccm.201008-1303OC. PubMed DOI PMC
THENAPPAN T, ORMISTON ML, RYAN JJ, ARCHER SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492. PubMed DOI PMC
TIAN W, JIANG X, TAMOSIUNIENE R, SUNG YK, QIAN J, DHILLON G, GERA L, FARKAS L, RABINOVITCH M, ZAMANIAN RT, INAYATHULLAH M, FRIDLIB M, RAJADAS J, PETERS-GOLDEN M, VOELKEL NF, NICOLLS MR. Blocking macrophage leukotriene b4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med. 2013;5:200ra117. doi: 10.1126/scitranslmed.3006674. PubMed DOI PMC
TJIU JW, CHEN JS, SHUN CT, LIN SJ, LIAO YH, CHU CY, TSAI TF, CHIU HC, DAI YS, INOUE H, YANG PC, KUO ML, JEE SH. Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol. 2009;129:1016–1025. doi: 10.1038/jid.2008.310. PubMed DOI
VERGADI E, CHANG MS, LEE C, LIANG OD, LIU X, FERNANDEZ-GONZALEZ A, MITSIALIS SA, KOUREMBANAS S. Early macrophage recruitment and alternative activation are critical for the later development of hypoxia-induced pulmonary hypertension. Circulation. 2011;123:1986–1995. doi: 10.1161/CIRCULATIONAHA.110.978627. PubMed DOI PMC
WEST J, HEMNES A. Experimental and transgenic models of pulmonary hypertension. Compr Physiol. 2011;1:769–782. doi: 10.1002/cphy.c100003. PubMed DOI
YUAN A, HSIAO YJ, CHEN HY, CHEN HW, HO CC, CHEN YY, LIU YC, HONG TH, YU SL, CHEN JJ, YANG PC. Opposite effects of M1 and M2 macrophage subtypes on lung cancer progression. Sci Rep. 2015;5:14273. doi: 10.1038/srep14273. PubMed DOI PMC
ZALOUDIKOVA M, VYTASEK R, VAJNEROVA O, HNILICKOVA O, VIZEK M, HAMPL V, HERGET J. Depletion of alveolar macrophages attenuates hypoxic pulmonary hypertension but not hypoxia-induced increase in serum concentration of MCP-1. Physiol Res. 2016;65:763–768. doi: 10.33549/physiolres.933187. PubMed DOI