Mechanisms Controlling the Behavior of Vascular Smooth Muscle Cells in Hypoxic Pulmonary Hypertension
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
39589304
PubMed Central
PMC11627264
DOI
10.33549/physiolres.935394
PII: 935394
Knihovny.cz E-zdroje
- MeSH
- hypoxie * metabolismus MeSH
- lidé MeSH
- myocyty hladké svaloviny * metabolismus patologie MeSH
- plicní hypertenze * metabolismus patologie MeSH
- proliferace buněk MeSH
- svaly hladké cévní * metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pulmonary hypertension is a complex and heterogeneous condition with five main subtypes (groups). This review focuses on pulmonary hypertension caused by chronic hypoxia (hypoxic pulmonary hypertension, HPH, group 3). It is based mainly on our own experimental work, especially our collaboration with the group of Professor Herget, whose fifth anniversary of death we commemorate. We have found that oxidation and degradation of the extracellular matrix (ECM) in vitro, in either the presence or the absence of pro-inflammatory cells, activate vascular smooth muscle cell (VSMC) proliferation. Significant changes in the ECM of pulmonary arteries also occurred in vivo in hypoxic rats, namely a decrease in collagen VI and an increase in matrix metalloproteinase 9 (MMP-9) in the tunica media, which may also contribute to the growth activation of VSMCs. The proliferation of VSMCs was also enhanced in their co-culture with macrophages, most likely due to the paracrine production of growth factors in these cells. However, hypoxia itself has a dual effect: on the one hand, it can activate VSMC proliferation and hyperplasia, but on the other hand, it can also induce VSMC hypertrophy and increased expression of contractile markers in these cells. The influence of hypoxia-inducible factors, microRNAs and galectin-3 in the initiation and development of HPH, and the role of cell types other than VSMCs (endothelial cells, adventitial fibroblasts) are also discussed. Keywords: Vasoconstriction, Remodeling, Oxidation, Degradation, Extracellular matrix, Collagen, Proteolytic enzymes, Metalloproteinases, Macrophages, Mast cells, Smooth muscle cells, Endothelial cells, Fibroblasts, Mesenchymal stem cells, Hypoxia-inducible factor, microRNA, Galectins, Hyperplasia, Hypertrophy, Therapy of hypoxic pulmonary hypertension.
Zobrazit více v PubMed
Humbert M, Kovacs G, Hoeper MM, Badagliacca R, Berger RMF, Brida M, Carlsen J, Coats AJS, Escribano-Subias P, Ferrari P, Ferreira DS, Ghofrani HA, Giannakoulas G, Kiely DG, Mayer E, Meszaros G, Nagavci B, Olsson KM, Pepke-Zaba J, Quint JK, Rådegran G, Simonneau G, Sitbon O, Tonia T, Toshner M, Vachiery JL, Noordegraaf AV, Delcroix M, Rosenkranz S, Grp EESD. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Respir J. 2023;61:2200879. doi: 10.1183/13993003.00879-2022. PubMed DOI
Vonk Noordegraaf A, Groeneveldt JA, Bogaard HJ. Pulmonary hypertension. Eur Respir Rev. 2016;25:4–11. doi: 10.1183/16000617.0096-2015. PubMed DOI PMC
Hoeper MM, Ghofrani HA, Grünig E, Klose H, Olschewski H, Rosenkranz S. Pulmonary Hypertension. Dtsch Arztebl Int. 2017;114:73–84. doi: 10.3238/arztebl.2016.0073. PubMed DOI PMC
Thompson AAR, Lawrie A. Targeting Vascular Remodeling to Treat Pulmonary Arterial Hypertension. Trends Mol Med. 2017;23:31–45. doi: 10.1016/j.molmed.2016.11.005. PubMed DOI
Wijeratne DT, Lajkosz K, Brogly SB, Lougheed MD, Jiang L, Housin A, Barber D, Johnson A, Doliszny KM, Archer SL. Increasing Incidence and Prevalence of World Health Organization Groups 1 to 4 Pulmonary Hypertension A Population-Based Cohort Study in Ontario, Canada. Circ-Cardiovasc Qual. 2018;11:e003973. doi: 10.1161/CIRCOUTCOMES.117.003973. PubMed DOI PMC
Thenappan T, Ormiston ML, Ryan JJ, Archer SL. Pulmonary arterial hypertension: pathogenesis and clinical management. BMJ. 2018;360:j5492. doi: 10.1136/bmj.j5492. PubMed DOI PMC
Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, Williams PG, Souza R. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J. 2019;53:1801913. doi: 10.1183/13993003.01913-2018. PubMed DOI PMC
Chai T, Qiu C, Xian Z, Lu Y, Zeng Y, Li J. A narrative review of research advances in hypoxic pulmonary hypertension. Ann Transl Med. 2022;10:230. doi: 10.21037/atm-22-259. PubMed DOI PMC
Singh N, Dorfmuller P, Shlobin OA, Ventetuolo CE. Group 3 Pulmonary Hypertension: From Bench to Bedside. Circ Res. 2022;130:1404–1422. doi: 10.1161/CIRCRESAHA.121.319970. PubMed DOI PMC
Maimaitiaili N, Zeng YX, Ju PA, Zhakeer G, Guangxi E, Yao HY, Shi YF, Zhai M, Zhuang JH, Peng WH, Zhuoga D, Yu Q. NLRC3 deficiency promotes hypoxia-induced pulmonary hypertension development via IKK/NF-?B p65/HIF-1a pathway. Exp Cell Res. 2023;431:113755. doi: 10.1016/j.yexcr.2023.113755. PubMed DOI
Zhang YP, Xu CB. The roles of endothelin and its receptors in cigarette smoke-associated pulmonary hypertension with chronic lung disease. Pathol Res Pract. 2020;216:153083. doi: 10.1016/j.prp.2020.153083. PubMed DOI
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med. 2021;8:649512. doi: 10.3389/fcvm.2021.649512. PubMed DOI PMC
Siques P, Pena E, Brito J, El Alam S. Oxidative stress, kinase activation, and inflammatory pathways involved in effects on smooth muscle cells during pulmonary artery hypertension under hypobaric hypoxia exposure. Front Physiol. 2021;12:690341. doi: 10.3389/fphys.2021.690341. PubMed DOI PMC
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol. 2015;308:L229–L252. doi: 10.1152/ajplung.00238.2014. PubMed DOI PMC
Humbert M, Guignabert C, Bonnet S, Dorfmüller P, Klinger JR, Nicolls MR, Olschewski AJ, Pullamsetti SS, Schermuly RT, Stenmark KR, Rabinovitch M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur Respir J. 2019;53:1801887. doi: 10.1183/13993003.01887-2018. PubMed DOI PMC
Mandras SA, Mehta HS, Vaidya A. Pulmonary Hypertension: A Brief Guide for Clinicians. Mayo Clin Proc. 2020;95:1978–1988. doi: 10.1016/j.mayocp.2020.04.039. PubMed DOI
Suggett AJ, Herget J. Effect of alpha-methyldopa on the pulmonary vascular changes induced by chronic hypoxia in rats. Clin Sci Mol Med. 1977;53:397–400. doi: 10.1042/cs0530397. PubMed DOI
Herget J, Kuklík V. Perinatal lung injury extends in adults the site of hypoxic pulmonary vasoconstriction upstream. Physiol Res. 1995;44:25–30. PubMed
Herget J, Paleček F, Vízek M, Holusa R. Causes of Experimental Pulmonary-Hypertension in Rats. Physiol Bohemoslov. 1976;25:411–418. PubMed
Herget J, Paleček F, Preclík P, Čermáková M, Vízek M, Petrovická M. Pulmonary-Hypertension Induced by Repeated Pulmonary Inflammation in the Rat. J Appl Physiol Respir Environ Exerc Physiol. 1981;51:755–761. doi: 10.1152/jappl.1981.51.3.755. PubMed DOI
Herget J, Holusa R, Palecek F. Pulmonary-Hypertension in Rats with Experimental Emphysema. Physiol Bohemoslov. 1974;23:55–65. PubMed
Herget J, Paleček F, Čermáková M, Vízek M. Pulmonary-Hypertension in Rats with Papain Emphysema. Respiration. 1979;38:204–212. doi: 10.1159/000194082. PubMed DOI
Herget J, Kuncová M, Havránková J, Paleček F. Pulmonary-Hypertension in Silicotic Rats. Arch Environ Health. 1979;34:320–324. doi: 10.1080/00039896.1979.10667424. PubMed DOI
Weir EK, López-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042–2055. doi: 10.1056/NEJMra050002. PubMed DOI PMC
Hampl V, Herget J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev. 2000;80:1337–1372. doi: 10.1152/physrev.2000.80.4.1337. PubMed DOI
Osada-Oka M, Ikeda T, Imaoka S, Akiba S, Sato T. VEGF-enhanced proliferation under hypoxia by an autocrine mechanism in human vascular smooth muscle cells. J Atheroscler Thromb. 2008;15:26–33. doi: 10.5551/jat.E533. PubMed DOI
Böger R, Hannemann J. Dual role of the L-arginine-ADMA-NO pathway in systemic hypoxic vasodilation and pulmonary hypoxic vasoconstriction. Pulm Circ. 2020;10:2045894020918850. doi: 10.1177/2045894020918850. PubMed DOI PMC
Slobod D, Damia A, Leali M, Spinelli E, Mauri T. Pathophysiology and clinical meaning of ventilation-perfusion mismatch in the acute respiratory distress syndrome. Biology (Basel) 2022;12:67. doi: 10.3390/biology12010067. PubMed DOI PMC
Dunham-Snary KJ, Wu DC, Sykes EA, Thakrar A, Parlow LRG, Mewburn JD, Parlow JL, Archer SL. Hypoxic pulmonary vasoconstriction from molecular mechanisms to medicine. Chest. 2017;151:181–192. doi: 10.1016/j.chest.2016.09.001. PubMed DOI PMC
Herget J, Bíbová J, Novotná J. [Mechanisms of remodeling of pulmonary blood vessels in chronic hypoxia] Cesk Fysiol. 1999;48:179–184. PubMed
Archer SL, Will JA, Weir EK. Redox status in the control of pulmonary vascular tone. Herz. 1986;11:127–141. PubMed
Archer SL, Huang J, Henry T, Peterson D, Weir EK. A Redox-Based O2 Sensor in Rat Pulmonary Vasculature. Circ Res. 1993;73:1100–1112. doi: 10.1161/01.RES.73.6.1100. PubMed DOI
Herget J, Wilhelm J, Novotná J, Eckhardt A, Vytášek R, Mrázková L, Ošťádal M. A possible role of the oxidant tissue injury in the development of hypoxic pulmonary hypertension. Physiol Res. 2000;49:493–501. PubMed
Lachmanová V, Hnilicková O, Povýsilová V, Hampl V, Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci. 2005;77:175–182. doi: 10.1016/j.lfs.2004.11.027. PubMed DOI
Hodyc D, Johnson E, Skoumalová A, Tkaczyk J, Maxová H, Vízek M, Herget J. Reactive oxygen species production in the early and later stage of chronic ventilatory hypoxia. Physiol Res. 2012;61:145–151. doi: 10.33549/physiolres.932206. PubMed DOI
Vajner L, Vytášek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7-day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP-13 expression in rats. Int J Exp Pathol. 2006;87:383–391. doi: 10.1111/j.1365-2613.2006.00493.x. PubMed DOI PMC
Maxová H, Novotná J, Vajner L, Tomášová H, Vytášek R, Vízek M, Bačáková L, Valoušková V, Eliášová T, Herget J. In Vitro Hypoxia Increases Production of Matrix Metalloproteinases and Tryptase in Isolated Rat Lung Mast Cells. Physiol Res. 2008;57:903–910. doi: 10.33549/physiolres.931278. PubMed DOI
Maxová H, Bačáková L, Lisá V, Novotná J, Tomášová H, Vízek M, Herget J. Production of proteolytic enzymes in mast cells, fibroblasts, vascular smooth muscle and endothelial cells cultivated under normoxic or hypoxic conditions. Physiol Res. 2010;59:711–719. doi: 10.33549/physiolres.931909. PubMed DOI
Maxová H, Bačáková L, Eckhardt A, Mikšík I, Lisá V, Novotná J, Herget J. Growth of vascular smooth muscle cells on Collagen I exposed to RBL-2H3 mastocytoma cells. Cell Physiol Biochem. 2010;25:615–622. doi: 10.1159/000315080. PubMed DOI
Gallardo-Vara E, Ntokou A, Dave JM, Jovin DG, Saddouk FZ, Greif DM. Vascular pathobiology of pulmonary hypertension. J Heart Lung Transplant. 2023;42:544–552. doi: 10.1016/j.healun.2022.12.012. PubMed DOI PMC
Stenmark KR, Bouchey D, Nemenoff R, Dempsey EC, Das M. Hypoxia-induced pulmonary vascular remodeling: contribution of the adventitial fibroblasts. Physiol Res. 2000;49:503–517. PubMed
Nozik-Grayck E, Stenmark KR. Role of reactive oxygen species in chronic hypoxia-induced pulmonary hypertension and vascular remodeling. Adv Exp Med Biol. 2007;618:101–112. doi: 10.1007/978-0-387-75434-5_8. PubMed DOI
Zaloudíková M, Herget J, Vízek M. The contractile response of isolated small pulmonary arteries induced by activated macrophages. Physiol Res. 2014;63:267–270. doi: 10.33549/physiolres.932698. PubMed DOI
Žaloudíková M, Vytášek R, Rašková M, Vízek M, Uhlík J, Hampl V. The effect of exposure to hypoxia on superoxide formation by alveolar macrophages is indirect. Life Sci. 2019;236:116864. doi: 10.1016/j.lfs.2019.116864. PubMed DOI
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res. 2023;72:S137–S156. doi: 10.33549/physiolres.935058. PubMed DOI PMC
Maxová H, Herget J, Vízek M. Lung mast cells and hypoxic pulmonary hypertension. Physiol Res. 2012;61:1–11. doi: 10.33549/physiolres.932221. PubMed DOI
Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans. 1996;24:1028–1032. https://doi.org/10.1042/bst0241028, https://doi.org/10.1042/bst024521sc. PubMed DOI
Bačáková L, Herget J, Wilhelm J. Influence of macrophages and macrophage-modified collagen I on the adhesion and proliferation of vascular smooth muscle cells in culture. Physiol Res. 1999;48:341–351. PubMed
Plecitá-Hlavatá L, D’Alessandro A, El Kasmi K, Li M, Zhang H, Ježek P, Stenmark KR. Metabolic Reprogramming and Redox Signaling in Pulmonary Hypertension. Adv Exp Med Biol. 2017;967:241–260. doi: 10.1007/978-3-319-63245-2_14. PubMed DOI
Archer SL, Nelson DP, Weir EK. Simultaneous measurement of O2 radicals and pulmonary vascular reactivity in rat lung. J Appl Physiol (1985) 1989;67:1903–1911. doi: 10.1152/jappl.1989.67.5.1903. PubMed DOI
Hu YQ, Zhao YC, Li P, Lu H, Li H, Ge JB. Hypoxia and panvascular diseases: exploring the role of hypoxia-inducible factors in vascular smooth muscle cells under panvascular pathologies. Sci Bull (Beijing) 2023;68:1954–1974. doi: 10.1016/j.scib.2023.07.032. PubMed DOI
Bačáková L, Wilhelm J, Herget J, Novotná J, Eckhart A. Oxidized collagen stimulates proliferation of vascular smooth muscle cells. Exp Mol Pathol. 1997;64:185–194. doi: 10.1006/exmp.1997.2219. PubMed DOI
Bačáková L, Lisá V, Kubínová L, Wilhelm J, Novotná J, Eckhart A, Herget J. Ultraviolet light-irradiated collagen III modulates expression of cytoskeletal and surface adhesion molecules in rat aortic smooth muscle cells in vitro. Virchows Arch. 2002;440:50–62. doi: 10.1007/s004280100463. PubMed DOI
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res. 2018;114:551–564. doi: 10.1093/cvr/cvy004. PubMed DOI PMC
Hu CJ, Zhang H, Laux A, Pullamsetti SS, Stenmark KR. Mechanisms contributing to persistently activated cell phenotypes in pulmonary hypertension. J Physiol. 2019;597:1103–1119. doi: 10.1113/JP275857. PubMed DOI PMC
Wilhelm J, Sojková J, Herget J. Production of hydrogen peroxide by alveolar macrophages from rats exposed to subacute and chronic hypoxia. Physiol Res. 1996;45:185–191. PubMed
Bacakova L, Travnickova M, Filova E, Matějka R, Stepanovska J, Musilkova J, Zarubova J, Molitor M. The Role of Vascular Smooth Muscle Cells in the Physiology and Pathophysiology of Blood Vessels. In: SAKUMA K, editor. Muscle Cell and Tissue. London, United Kingdom: IntechOpen; 2018. pp. 229–256. DOI
Huang XJ, Akguen EE, Mehmood K, Zhang H, Tang ZX, Li Y. Mechanism of hypoxia-mediated smooth muscle cell proliferation leading to vascular remodeling. Biomed Res Int. 2022;2022:3959845. doi: 10.1155/2022/3959845. PubMed DOI PMC
D’Alessandro A, El Kasmi KC, Plecitá-Hlavatá L, Ježek P, Li M, Zhang H, Gupte SA, Stenmark KR. Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal. 2018;28:230–250. doi: 10.1089/ars.2017.7217. PubMed DOI PMC
Al-Qazazi R, Lima PDA, Prisco SZ, Potus F, Dasgupta A, Chen KH, Tian L, Bentley RET, Mewburn J, Martin AY, Wu DC, Jones O, Maurice DH, Bonnet S, Provencher S, Prins KW, Archer SL. Macrophage-NLRP3 activation promotes right ventricle failure in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2022;206:608–624. doi: 10.1164/rccm.202110-2274OC. PubMed DOI PMC
Napoli C, Paolisso G, Casamassimi A, Al-Omran M, Barbieri M, Sommese L, Infante T, Ignarro LJ. Effects of nitric oxide on cell proliferation novel insights. J Am Coll Cardiol. 2013;62:89–95. doi: 10.1016/j.jacc.2013.03.070. PubMed DOI
Hildebrand S, Ibrahim M, Schlitzer A, Maegdefessel L, Röll W, Pfeifer A. PDGF regulates guanylate cyclase expression and cGMP signaling in vascular smooth muscle. Commun Biol. 2022;5:197. https://doi.org/10.1038/s42003-022-03244-9, https://doi.org/10.1038/s42003-022-03140-2. PubMed DOI PMC
Novotná J, Herget J. Exposure to chronic hypoxia induces qualitative changes of collagen in the walls of peripheral pulmonary arteries. Life Sci. 1998;62:1–12. doi: 10.1016/S0024-3205(97)01032-1. PubMed DOI
Novotná J, Herget J. Possible role of matrix metalloproteinases in reconstruction of peripheral pulmonary arteries induced by hypoxia. Physiol Res. 2002;51:323–334. doi: 10.33549/physiolres.930238. PubMed DOI
Bačáková L, Herget J, Novotná J, Eckhart A, Lisá V. Adhesion, growth and stress adaptation of vascular smooth muscle cells in cultures on collagen I degraded by matrix metalloproteinase - 13. Ateroskleróza: metabolizmus, klinika a liečba. 2002;6:155–161.
Roberts ISD, Brenchley PEC. Mast cells: the forgotten cells of renal fibrosis. J Clin Pathol. 2000;53:858–862. doi: 10.1136/jcp.53.11.858. PubMed DOI PMC
Herget J, Novotná J, Bíbová J, Povýsilová V, Vanková M, Hampl V. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol-Lung C. 2003;285:L199–L208. doi: 10.1152/ajplung.00167.2002. PubMed DOI
Banasová A, Maxová H, Hampl V, Vízek M, Povysilová V, Novotná J, Vajnerová O, Hnilicková O, Herget J. Prevention of mast cell degranulation by disodium cromoglycate attenuates the development of hypoxic pulmonary hypertension in rats exposed to chronic hypoxia. Respiration. 2008;76:102–107. doi: 10.1159/000121410. PubMed DOI
Maxová H, Vasilková M, Novotná J, Vajnerová O, Banasová A, Vízek M, Herget J. Prevention of mast cell degranulation by disodium cromoglycate delayed the regression of hypoxic pulmonary hypertension in rats. Respiration. 2010;80:335–339. doi: 10.1159/000312403. PubMed DOI
Bacakova L, Filova E, Parizek M, Ruml T, Svorcik V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol Adv. 2011;29:739–767. doi: 10.1016/j.biotechadv.2011.06.004. PubMed DOI
Žaloudíková M, Eckhardt A, Vytášek R, Uhlík J, Novotný T, Bačáková L, Musílková J, Hampl V. Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: a novel step in pulmonary arterial remodeling. Pulm Circ. 2019;9:2045894019860747. doi: 10.1177/2045894019860747. PubMed DOI PMC
Shamhart PE, Meszaros JG. Non-fibrillar collagens: Key mediators of post-infarction cardiac remodeling? J Mol Cell Cardiol. 2010;48:530–537. doi: 10.1016/j.yjmcc.2009.06.017. PubMed DOI
Bonaldo P, Colombatti A. The carboxyl terminus of the chicken Alpha-3 chain of collagen-vi is a unique mosaic structure with glycoprotein Ib-Like, Fibronectin Type-Iii, and kunitz modules. J Biol Chem. 1989;264:20235–20239. doi: 10.1016/S0021-9258(19)47052-X. PubMed DOI
Aigner T, Hambach L, Söder S, Schlötzer-Schrehardt U, Pöschl E. The C5 domain of Col6A3 is cleaved off from the Col6 fibrils immediately after secretion. Biochem Biophys Res Commun. 2002;290:743–748. doi: 10.1006/bbrc.2001.6227. PubMed DOI
Cescon M, Gattazzo F, Chen PW, Bonaldo P. Collagen VI at a glance. J Cell Sci. 2015;128:3525–3531. doi: 10.1242/jcs.169748. PubMed DOI
Wang JY, Pan WS. The biological role of the collagen Alpha-3 (VI) Chain and its cleaved c5 domain fragment endotrophin in cancer. Oncotargets Ther. 2020;13:5779–5793. doi: 10.2147/OTT.S256654. PubMed DOI PMC
Sun K, Park J, Kim M, Scherer PE. Endotrophin, a multifaceted player in metabolic dysregulation and cancer progression, is a predictive biomarker for the response to PPARγ agonist treatment. Diabetologia. 2017;60:24–29. doi: 10.1007/s00125-016-4130-1. PubMed DOI PMC
Park J, Scherer PE. Adipocyte-derived endotrophin promotes malignant tumor progression. J Clin Invest. 2012;122:4243–4256. doi: 10.1172/JCI63930. PubMed DOI PMC
Henriksen K, Genovese F, Reese-Petersen A, Audoly LP, Sun K, Karsdal MA, Scherer PE. Endotrophin, a Key Marker and Driver for Fibroinflammatory Disease. Endocr Rev. 2024;45:361–378. doi: 10.1210/endrev/bnad036. PubMed DOI PMC
Williams J, Maroney SP, Schmitt LR, Brown RD, Krafsur G, Frid MG, McCabe MC, Iheagwam FN, Gandjeva A, Williams KJ, Luyendyk JP, Saviola AJ, Tuder RM, Stenmark K, Hansen KC. A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation. Am J Pathol. accepted. PubMed PMC
Manalo DJ, Rowan A, Lavoie T, Natarajan L, Kelly BD, Ye SQ, Garcia JGN, Semenza GL. Transcriptional regulation of vascular endothelial cell responses to hypoxia by HIF-1. Blood. 2005;105:659–669. doi: 10.1182/blood-2004-07-2958. PubMed DOI
Novák T, Žaloudíková M, Smolková P, Kaftanová B, Edlmanová J, Krása K, Hampl V. Hypoxia-inducible factors activator, roxadustat, increases pulmonary vascular resistance in rats. Physiol Res. 2023;72:S587–S592. doi: 10.33549/physiolres.935220. PubMed DOI PMC
Pozeg ZI, Michelakis ED, McMurtry MS, Thébaud B, Wu XC, Dyck JRB, Hashimoto K, Wang SH, Harry G, Sultanian R, Koshal A, Archer SL. In vivo gene transfer of the O-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction chronically hypoxic rats. Circulation. 2003;107:2037–2044. doi: 10.1161/01.CIR.0000062688.76508.B3. PubMed DOI
Luo YT, Teng X, Zhang LL, Chen JN, Liu Z, Chen XH, Zhao S, Yang S, Feng J, Yan XY. CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension. Nat Commun. 2019;10:3551. https://doi.org/10.1038/s41467-019-12107-7, https://doi.org/10.1038/s41467-019-11500-6. PubMed DOI PMC
Pullamsetti SS, Mamazhakypov A, Weissmann N, Seeger W, Savai R. Hypoxia-inducible factor signaling in pulmonary hypertension. J Clin Invest. 2020;130:5638–5651. doi: 10.1172/JCI137558. PubMed DOI PMC
Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J. 2019;54:1900378. doi: 10.1183/13993003.00378-2019. PubMed DOI PMC
Zhang WF, Tao ZY, Xu F, Diao Q, Li J, Zhou L, Miao YX, Xie SS, Wan JJ, Xu RL. An overview of miRNAs involved in PASMC phenotypic switching in pulmonary hypertension. Biomed Res Int. 2021;2021:5765029. doi: 10.1155/2021/5765029. PubMed DOI PMC
Kumar S, Frid MG, Zhang H, Li M, Riddle S, Brown RD, Yadav SC, Roy MK, Dzieciatkowska ME, D’Alessandro A, Hansen KC, Stenmark KR. Complement-containing small extracellular vesicles from adventitial fibroblasts induce proinflammatory and metabolic reprogramming in macrophages. JCI Insight. 2021;6:e148382. doi: 10.1172/jci.insight.148382. PubMed DOI PMC
Plecitá-Hlavatá L, Brázdová A, Křivonosková M, Hu CJ, Phang T, Tauber J, Li M, Zhang H, Hoetzenecker K, Crnkovic S, Kwapiszewska G, Stenmark KR. Microenvironmental regulation of T-cells in pulmonary hypertension. Front Immunol. 2023;14:1223122. doi: 10.3389/fimmu.2023.1223122. PubMed DOI PMC
Hu CJ, Laux A, Gandjeva A, Wang LY, Li M, Brown RD, Riddle S, Kheyfets VO, Tuder RM, Zhang H, Stenmark KR. The effect of hypoxia-inducible factor inhibition on the phenotype of fibroblasts in human and bovine pulmonary hypertension. Am J Respir Cell Mol Biol. 2023;69:73–86. doi: 10.1165/rcmb.2022-0114OC. PubMed DOI PMC
Bačáková L, Pellicciari C, Bottone MG, Lisá V, Mareš V. A sex-related difference in the hypertrophic versus hyperplastic response of vascular smooth muscle cells to repeated passaging in culture. Histol Histopathol. 2001;16:675–684. doi: 10.14670/HH-16.675. PubMed DOI
Sedlář A, Vrbata D, Pokorná K, Holzerová K, Červený J, Kočková O, Hlaváčková M, Doubková M, Musílková J, Křen V, Kolář F, Bačáková L, Bojarová P. Glycopolymer Inhibitors of Galectin-3 Suppress the Markers of Tissue Remodeling in Pulmonary Hypertension. J Med Chem. 2024;67:9214–9226. doi: 10.1021/acs.jmedchem.4c00341. PubMed DOI PMC
Barman SA, Li XY, Haigh S, Kondrikov D, Mahboubi K, Bordan Z, Stepp DW, Zhou JL, Wang YS, Weintraub DN, Traber EE, Snider L, Jonigk D, Sullivan ENE, Crislip RY, Butcher JT, Thompson J, Su YC, Chen F, Fulton DJR. Galectin-3 is expressed in vascular smooth muscle cells and promotes pulmonary hypertension through changes in proliferation, apoptosis, and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019;316:L784–L797. doi: 10.1152/ajplung.00186.2018. PubMed DOI PMC
Tian L, Chen K, Cao J, Han Z, Wang Y, Gao L, Fan Y, Wang C. Galectin-3 induces the phenotype transformation of human vascular smooth muscle cells via the canonical Wnt signaling. Mol Med Rep. 2017;15:3840–3846. doi: 10.3892/mmr.2017.6429. PubMed DOI
Li TZM, Zha LH, Luo H, Li SQ, Zhao L, He JN, Li XH, Qi QQ, Liu YW, Yu ZX. Galectin-3 mediates endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Aging Dis. 2019;10:731–745. doi: 10.14336/AD.2018.1001. PubMed DOI PMC
Choo YY, Sakai T, Komatsu S, Ikebe R, Jeffers A, Singh KP, Idell S, Tucker TA, Ikebe M. Calponin 1 contributes to myofibroblast differentiation of human pleural mesothelial cells. Am J Physiol Lung Cell Mol Physiol. 2022;322:L348–L364. doi: 10.1152/ajplung.00289.2021. PubMed DOI PMC
Bekhite MM, Finkensieper A, Rebhan J, Huse S, Schultze-Mosgau S, Figulla HR, Sauer H, Wartenberg M. Hypoxia, leptin, and vascular endothelial growth factor stimulate vascular endothelial cell differentiation of human adipose tissue-derived stem cells. Stem Cells Dev. 2014;23:333–351. doi: 10.1089/scd.2013.0268. PubMed DOI
Podkalicka P, Stepniewski J, Mucha O, Kachamakova-Trojanowska N, Dulak J, Loboda A. Hypoxia as a driving force of pluripotent stem cell reprogramming and differentiation to endothelial cells. Biomolecules. 2020;10:1614. doi: 10.3390/biom10121614. PubMed DOI PMC
Shimomura S, Inoue H, Arai Y, Nakagawa S, Fujii Y, Kishida T, Shin-Ya M, Ichimaru S, Tsuchida S, Mazda O, Kubo T. Hypoxia promotes differentiation of pure cartilage from human induced pluripotent stem cells. Mol Med Rep. 2022;26:229. doi: 10.3892/mmr.2022.12745. PubMed DOI PMC
Yu X, Wan QL, Ye XL, Cheng Y, Pathak JL, Li ZB. Cellular hypoxia promotes osteogenic differentiation of mesenchymal stem cells and bone defect healing via STAT3 signaling. Cell Mol Biol Lett. 2019;24:64. doi: 10.1186/s11658-019-0191-8. PubMed DOI PMC
Chen W, Zhuo Y, Duan D, Lu M. Effects of hypoxia on differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther. 2020;15:332–339. doi: 10.2174/1574888X14666190823144928. PubMed DOI
Lin JY, Zhu QQ, Huang JY, Cai RF, Kuang YP. Hypoxia Promotes Vascular Smooth Muscle Cell (VSMC) Differentiation of Adipose-Derived Stem Cell (ADSC) by Regulating Mettl3 and Paracrine Factors. Stem Cells Int. 2020;2020:2830565. doi: 10.1155/2020/2830565. PubMed DOI PMC
Frid MG, Dempsey EC, Durmowicz AG, Stenmark KR. Smooth muscle cell heterogeneity in pulmonary and systemic vessels - Importance in vascular disease. Arterioscler Thromb Vasc Biol. 1997;17:1203–1209. doi: 10.1161/01.ATV.17.7.1203. PubMed DOI
Frid MG, Aldashev AA, Dempsey EC, Stenmark KR. Smooth muscle cells isolated from discrete compartments of the mature vascular media exhibit unique phenotypes and distinct growth capabilities. Circ Res. 1997;81:940–952. doi: 10.1161/01.RES.81.6.940. PubMed DOI
Stiebellehner L, Frid MG, Reeves JT, Low RB, Gnanasekharan M, Stenmark KR. Bovine distal pulmonary arterial media is composed of a uniform population of well-differentiated smooth muscle cells with low proliferative capabilities. Am J Physiol Lung Cell Mol Physiol. 2003;285:L819–L828. doi: 10.1152/ajplung.00062.2003. PubMed DOI
Shimoda LA, Manalo DJ, Sham JSK, Semenza GL, Sylvester JT. Partial HIF-1α deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol. 2001;281:L202–L208. doi: 10.1152/ajplung.2001.281.1.L202. PubMed DOI
Gui Y, Yin H, He JY, Yang SH, Walsh MP, Zheng XL. Endoreduplication of human smooth muscle cells induced by 2-methoxyestradiol: a role for cyclin-dependent kinase 2. Am J Physiol Lung Cell Mol Physiol. 2007;292:H1313–H1320. doi: 10.1152/ajpheart.00867.2006. PubMed DOI
Majka SM, Skokan M, Wheeler L, Harral J, Gladson S, Burnham E, Loyd JE, Stenmark KR, Varella-Garcia M, West J. Evidence for cell fusion is absent in vascular lesions associated with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol. 2008;295:L1028–L1039. doi: 10.1152/ajplung.90449.2008. PubMed DOI PMC
Orton EC, LaRue SM, Ensley B, Stenmark K. Bromodeoxyuridine labeling and DNA content of pulmonary arterial medial cells from hypoxia-exposed and nonexposed healthy calves. Am J Vet Res. 1992;53:1925–1930. doi: 10.2460/ajvr.1992.53.10.1925. PubMed DOI
Born E, Lipskaia L, Breau M, Houssaini A, Beaulieu D, Marcos E, Pierre R, Do Cruzeiro M, Lefevre M, Derumeaux G, Bulavin DV, Delcroix M, Quarck R, Reen V, Gil J, Bernard D, Flaman JM, Adnot S, Abid S. Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression. Circulation. 2023;147:650–666. doi: 10.1161/CIRCULATIONAHA.122.058794. PubMed DOI
Krása K, Vajnerová O, Ďurišová J, Minaříkova M, Miková D, Srbová M, Chalupský K, Kaftanová B, Hampl V. Simvastatin and dehydroepiandrosterone sulfate effects against hypoxic pulmonary hypertension are not additive. Physiol Res. 2022;71:801–810. doi: 10.33549/physiolres.934913. PubMed DOI PMC
Sedlář A, Trávníčková M, Bojarová P, Vlachová M, Slámová K, Křen V, Bačáková L. Interaction between galectin-3 and integrins mediates cell-matrix adhesion in endothelial cells and mesenchymal Stem Cells. Int J Mol Sci. 2021;22:5144. doi: 10.3390/ijms22105144. PubMed DOI PMC
Mocumbi A, Humbert M, Saxena A, Jing ZC, Sliwa K, Thienemann F, Archer SL, Stewart S. Pulmonary hypertension. Nat Rev Dis Primers. 2024;10:1. https://doi.org/10.1038/s41572-023-00486-7, https://doi.org/10.1038/s41572-024-00493-2. PubMed DOI
Nathan SD, Barbera JA, Gaine SP, Harari S, Martinez FJ, Olschewski H, Olsson KM, Peacock AJ, Pepke-Zaba J, Provencher S, Weissmann N, Seeger W. Pulmonary hypertension in chronic lung disease and hypoxia. Eur Respir J. 2019;53:1801914. doi: 10.1183/13993003.01914-2018. PubMed DOI PMC
Otani N, Tomoe T, Kawabe A, Sugiyama T, Horie Y, Sugimura H, Yasu T, Nakamoto T. Recent Advances in the Treatment of Pulmonary Arterial Hypertension. Pharmaceuticals (Basel) 2022;15:1277. doi: 10.3390/ph15101277. PubMed DOI PMC
Rubin LJ. Endothelin receptor antagonists for the treatment of pulmonary artery hypertension. Life Sci. 2012;91:517–521. doi: 10.1016/j.lfs.2012.07.033. PubMed DOI
Redaelli S, Magliocca A, Malhotra R, Ristagno G, Citerio G, Bellani G, Berra L, Rezoagli E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide-Biol Ch. 2022;121:20–33. doi: 10.1016/j.niox.2022.01.007. PubMed DOI PMC
Rawat M, Lakshminrusimha S, Vento M. Pulmonary hypertension and oxidative stress: Where is the link? Semin Fetal Neonatal Med. 2022;27:101347. doi: 10.1016/j.siny.2022.101347. PubMed DOI PMC
Waxman A, Restrepo-Jaramillo R, Thenappan T, Ravichandran A, Engel P, Bajwa A, Allen R, Feldman J, Argula R, Smith P, Rollins K, Deng CQ, Peterson L, Bell H, Tapson V, Nathan SD. Inhaled Treprostinil in Pulmonary Hypertension Due to Interstitial Lung Disease. N Engl J Med. 2021;384:325–334. doi: 10.1056/NEJMoa2008470. PubMed DOI
Behr J. Inhaled Treprostinil in Pulmonary Hypertension in the context of interstitial lung disease: a success, finally. Am J Respir Crit Care Med. 2022;205:144–146. doi: 10.1164/rccm.202110-2444ED. PubMed DOI PMC
Piccari L, Wort SJ. Use of inhaled treprostinil in patients with interstitial lung disease and pulmonary hypertension: to boldly go where no other pulmonary vasodilator has gone before? Thorax. 2024;79:295–296. doi: 10.1136/thorax-2023-221167. PubMed DOI
Wan JJ, Yi J, Wang FY, Zhang C, Dai AG. Expression and regulation of HIF-1a in hypoxic pulmonary hypertension: Focus on pathological mechanism and pharmacological treatment. Int J Med Sci. 2024;21:45–60. doi: 10.7150/ijms.88216. PubMed DOI PMC