Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding

. 2018 Nov 07 ; 7 (1) : 178. [epub] 20181107

Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30405113

Grantová podpora
Grantová Agentura, Univerzita Karlova Univerzita Karlova v Praze (Charles University)
R01 DE009517 NIDCR NIH HHS - United States
16-05919S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
R01DE009517 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
R03DE025275 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
UNCE204025/2012 Univerzita Karlova v Praze (Charles University)
R03 DE025275 NIDCR NIH HHS - United States
18-18079S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
1554417 National Science Foundation (NSF)
LM2015064 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)

Odkazy

PubMed 30405113
PubMed Central PMC6221878
DOI 10.1038/s41426-018-0179-x
PII: 10.1038/s41426-018-0179-x
Knihovny.cz E-zdroje

Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.

Zobrazit více v PubMed

Yagupsky P, Porsch E, St Geme JW3rd. Kingella kingae: an emerging pathogen in young children. Pediatrics. 2011;127:557–565. doi: 10.1542/peds.2010-1867. PubMed DOI

Henriksen SD, Bovre K. Moraxella kingii sp.nov., a haemolytic, saccharolytic species of the genus. Moraxella. J. Gen. Microbiol. 1968;51:377–385. doi: 10.1099/00221287-51-3-377. PubMed DOI

Yagupsky P. Kingella kingae: carriage, transmission, and disease. Clin. Microbiol. Rev. 2015;28:54–79. doi: 10.1128/CMR.00028-14. PubMed DOI PMC

Yagupsky P, Dagan R, Prajgrod F, Merires M. Respiratory carriage of Kingella kingae among healthy children. Pediatr. Infect. Dis. J. 1995;14:673–678. doi: 10.1097/00006454-199508000-00005. PubMed DOI

Yagupsky P, et al. Dissemination of Kingella kingae in the community and long-term persistence of invasive clones. Pediatr. Infect. Dis. J. 2009;28:707–710. doi: 10.1097/INF.0b013e31819f1f36. PubMed DOI

Kaplan JB, et al. In vitro characterization of biofilms formed by Kingella kingae. Mol. Oral. Microbiol. 2017;32:341–353. doi: 10.1111/omi.12176. PubMed DOI PMC

Kehl-Fie TE, Miller SE, St Geme JW3rd. Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J. Bacteriol. 2008;190:7157–7163. doi: 10.1128/JB.00884-08. PubMed DOI PMC

Yagupsky P, Peled N, Katz O. Epidemiological features of invasive Kingella kingae infections and respiratory carriage of the organism. J. Clin. Microbiol. 2002;40:4180–4184. doi: 10.1128/JCM.40.11.4180-4184.2002. PubMed DOI PMC

Principi N, Esposito S. Kingella kingae infections in children. Bmc. Infect. Dis. 2015;15:260. doi: 10.1186/s12879-015-0986-9. PubMed DOI PMC

Yagupsky, P. Detection of respiratory colonization by Kingella kingae and the novel Kingella negevensis species in children: uses and methodology. J. Clin. Microbiol. 56, e00633-18 (2018). PubMed PMC

Kehl-Fie TE, St Geme JW3rd. Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC

Chang DW, Nudell YA, Lau J, Zakharian E, Balashova NV. RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect. Immun. 2014;82:2318–2328. doi: 10.1128/IAI.01636-14. PubMed DOI PMC

Ceroni D, Cherkaoui A, Ferey S, Kaelin A, Schrenzel J. Kingella kingae osteoarticular infections in young children: clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J. Pediatr. Orthop. 2010;30:301–304. doi: 10.1097/BPO.0b013e3181d4732f. PubMed DOI

Cherkaoui A, Ceroni D, Emonet S, Lefevre Y, Schrenzel J. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay. J. Med. Microbiol. 2009;58:65–68. doi: 10.1099/jmm.0.47707-0. PubMed DOI

Opota O, et al. Genomics of the new species Kingella negevensis: diagnostic issues and identification of a locus encoding a RTX toxin. Microbes Infect. 2017;19:546–552. doi: 10.1016/j.micinf.2017.08.001. PubMed DOI

El Houmami N, et al. Molecular Tests That Target the RTX Locus Do Not Distinguish between Kingella kingae and the Recently Described Kingella negevensis Species. J. Clin. Microbiol. 2017;55:3113–3122. doi: 10.1128/JCM.00736-17. PubMed DOI PMC

Linhartova I, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC

Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb. Pathog. 2011;51:22–30. doi: 10.1016/j.micpath.2011.03.005. PubMed DOI PMC

Barcena-Uribarri I, Benz R, Winterhalter M, Zakharian E, Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. Biochim. Biophys. Acta. 2015;1848:1536–1544. doi: 10.1016/j.bbamem.2015.03.036. PubMed DOI PMC

Kaplan JB, et al. Genome sequence of Kingella kingae septic arthritis isolate PYKK081. J. Bacteriol. 2012;194:3017. doi: 10.1128/JB.00421-12. PubMed DOI PMC

Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA. 1985;82:1074–1078. doi: 10.1073/pnas.82.4.1074. PubMed DOI PMC

Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. doi: 10.1126/science.7939682. PubMed DOI

Basar T, et al. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 1999;274:10777–10783. doi: 10.1074/jbc.274.16.10777. PubMed DOI

Masin J, et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. doi: 10.1038/s41598-017-09575-6. PubMed DOI PMC

Stanley P, Packman LC, Koronakis V, Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994;266:1992–1996. doi: 10.1126/science.7801126. PubMed DOI

Lim KB, et al. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 2000;275:36698–36702. doi: 10.1074/jbc.C000544200. PubMed DOI

Fong KP, et al. Aggregatibacter actinomycetemcomitans leukotoxin is post-translationally modified by addition of either saturated or hydroxylated fatty acyl chains. Mol. Oral. Microbiol. 2011;26:262–276. doi: 10.1111/j.2041-1014.2011.00617.x. PubMed DOI PMC

Osicka R, et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Balashova NV, Crosby JA, Al Ghofaily L, Kachlany SC. Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans. Infect. Immun. 2006;74:2015–2021. doi: 10.1128/IAI.74.4.2015-2021.2006. PubMed DOI PMC

Brown AC, et al. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J. Biol. Chem. 2013;288:23607–23621. doi: 10.1074/jbc.M113.486654. PubMed DOI PMC

Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol. Oral. Microbiol. 2016;31:94–105. doi: 10.1111/omi.12133. PubMed DOI PMC

Vazquez RF, et al. Novel evidence for the specific interaction between cholesterol and alpha-haemolysin of Escherichia coli. Biochem. J. 2014;458:481–489. doi: 10.1042/BJ20131432. PubMed DOI

Kilsdonk EP, et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 1995;270:17250–17256. doi: 10.1074/jbc.270.29.17250. PubMed DOI

Francis SA, et al. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance. Eur. J. Cell Biol. 1999;78:473–484. doi: 10.1016/S0171-9335(99)80074-0. PubMed DOI

Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI

Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci. Rep. 2011;1:69. doi: 10.1038/srep00069. PubMed DOI PMC

Masin J, Osicka R, Bumba L, Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim. Biophys. Acta. 1858;526-537:2016. PubMed

Novak Jakub, Cerny Ondrej, Osickova Adriana, Linhartova Irena, Masin Jiri, Bumba Ladislav, Sebo Peter, Osicka Radim. Structure–Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9(10):300. doi: 10.3390/toxins9100300. PubMed DOI PMC

El Houmami N, et al. Isolation and characterization of Kingella negevensis sp. nov., a novel Kingella species detected in a healthy paediatric population. Int. J. Syst. Evol. Microbiol. 2017;67:2370–2376. doi: 10.1099/ijsem.0.001957. PubMed DOI

Bauer ME, Welch RA. Association of RTX toxins with erythrocytes. Infect. Immun. 1996;64:4665–4672. PubMed PMC

Masin J, et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. doi: 10.1021/bi050459b. PubMed DOI

Balashova NV, Shah C, Patel JK, Megalla S, Kachlany SC. Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene. 2009;443:42–47. doi: 10.1016/j.gene.2009.05.002. PubMed DOI

Karst JC, et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. doi: 10.1074/jbc.M114.580852. PubMed DOI PMC

Herlax V, Bakas L. Acyl chains are responsible for the irreversibility in the Escherichia coli alpha-hemolysin binding to membranes. Chem. Phys. Lipids. 2003;122:185–190. doi: 10.1016/S0009-3084(02)00191-3. PubMed DOI

Herlax V, Mate S, Rimoldi O, Bakas L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem. 2009;284:25199–25210. doi: 10.1074/jbc.M109.009365. PubMed DOI PMC

Ludwig A, et al. Analysis of the in vivo activation of hemolysin (HlyA) from. Escherichia coli. J. Bacteriol. 1996;178:5422–5430. PubMed PMC

Benz R, Maier E, Ladant D, Ullmann A, Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994;269:27231–27239. PubMed

Rogel A, et al. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J. 1989;8:2755–2760. doi: 10.1002/j.1460-2075.1989.tb08417.x. PubMed DOI PMC

Gentile F, Knipling LG, Sackett DL, Wolff J. Invasive adenylyl cyclase of Bordetella pertussis. Physical, catalytic, and toxic properties. J. Biol. Chem. 1990;265:10686–10692. PubMed

Ostolaza H, Bartolome B, Serra JL, de la Cruz F, Goni FM. Alpha-haemolysin from E. coli. Purification and self-aggregation properties. FEBS Lett. 1991;280:195–198. doi: 10.1016/0014-5793(91)80291-A. PubMed DOI

Soloaga A, Ramirez JM, Goni FM. Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. Biochemistry. 1998;37:6387–6393. doi: 10.1021/bi9730994. PubMed DOI

Bakas L, Veiga MP, Soloaga A, Ostolaza H, Goni FM. Calcium-dependent conformation of E. coli alpha-haemolysin. Implications for the mechanism of membrane insertion and lysis. Biochim. Biophys. Acta. 1998;1368:225–234. doi: 10.1016/S0005-2736(97)00181-8. PubMed DOI

Di Scala C, et al. Relevance of CARC and CRAC cholesterol-recognition motifs in the nicotinic acetylcholine receptor and other membrane-bound receptors. Curr. Top. Membr. 2017;80:3–23. doi: 10.1016/bs.ctm.2017.05.001. PubMed DOI

Fantini J, Di Scala C, Baier CJ, Barrantes FJ. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem. Phys. Lipids. 2016;199:52–60. doi: 10.1016/j.chemphyslip.2016.02.009. PubMed DOI

Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front. Physiol. 2014;5:65. doi: 10.3389/fphys.2014.00065. PubMed DOI PMC

Zenner HP, Lehner W, Herrmann IF. Establishment of carcinoma cell lines from larynx and submandibular gland. Arch. Otorhinolaryngol. 1979;225:269–277. doi: 10.1007/BF00455679. PubMed DOI

Khan F, He M, Taussig MJ. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. Anal. Chem. 2006;78:3072–3079. doi: 10.1021/ac060184l. PubMed DOI

Benz R, Janko K, Boos W, Lauger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta. 1978;511:305–319. doi: 10.1016/0005-2736(78)90269-9. PubMed DOI

Singh MV, et al. Abnormal CD161(+) immune cells and retinoic acid receptor-related orphan receptor gammat-mediate enhanced IL-17F expression in the setting of genetic hypertension. J. Allergy Clin. Immunol. 2017;140:809–821 e803. doi: 10.1016/j.jaci.2016.11.039. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...