Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Grantová Agentura, Univerzita Karlova
Univerzita Karlova v Praze (Charles University)
R01 DE009517
NIDCR NIH HHS - United States
16-05919S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
R01DE009517
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
R03DE025275
U.S. Department of Health & Human Services | National Institutes of Health (NIH)
UNCE204025/2012
Univerzita Karlova v Praze (Charles University)
R03 DE025275
NIDCR NIH HHS - United States
18-18079S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
1554417
National Science Foundation (NSF)
LM2015064
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
30405113
PubMed Central
PMC6221878
DOI
10.1038/s41426-018-0179-x
PII: 10.1038/s41426-018-0179-x
Knihovny.cz E-zdroje
- MeSH
- acylace MeSH
- bakteriální toxiny genetika metabolismus MeSH
- buněčná membrána metabolismus MeSH
- buněčné linie MeSH
- cholesterol metabolismus MeSH
- Kingella kingae enzymologie genetika MeSH
- lidé MeSH
- lysin chemie MeSH
- posttranslační úpravy proteinů * MeSH
- rekombinantní proteiny metabolismus MeSH
- transaminasy genetika metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální toxiny MeSH
- cholesterol MeSH
- lysin MeSH
- rekombinantní proteiny MeSH
- transaminasy MeSH
Kingella kingae is a member of the commensal oropharyngeal flora of young children. Improvements in detection methods have led to the recognition of K. kingae as an emerging pathogen that frequently causes osteoarticular infections in children and a severe form of infective endocarditis in children and adults. Kingella kingae secretes a membrane-damaging RTX (Repeat in ToXin) toxin, RtxA, which is implicated in the development of clinical infections. However, the mechanism by which RtxA recognizes and kills host cells is largely unexplored. To facilitate structure-function studies of RtxA, we have developed a procedure for the overproduction and purification of milligram amounts of biologically active recombinant RtxA. Mass spectrometry analysis revealed the activation of RtxA by post-translational fatty acyl modification on the lysine residues 558 and/or 689 by the fatty-acyltransferase RtxC. Acylated RtxA was toxic to various human cells in a calcium-dependent manner and possessed pore-forming activity in planar lipid bilayers. Using various biochemical and biophysical approaches, we demonstrated that cholesterol facilitates the interaction of RtxA with artificial and cell membranes. The results of analyses using RtxA mutant variants suggested that the interaction between the toxin and cholesterol occurs via two cholesterol recognition/interaction amino acid consensus motifs located in the C-terminal portion of the pore-forming domain of the toxin. Based on our observations, we conclude that the cytotoxic activity of RtxA depends on post-translational acylation of the K558 and/or K689 residues and on the toxin binding to cholesterol in the membrane.
Department of Chemical and Biomolecular Engineering Lehigh University Bethlehem PA USA
Department of Pathology School of Dental Medicine University of Pennsylvania Philadelphia PA USA
Faculty of Science Charles University Prague Czech Republic
Institute of Microbiology of the CAS v v i Prague Czech Republic
The Department of Cell and Molecular Biology at Karolinska Institutet Stockholm Sweden
Zobrazit více v PubMed
Yagupsky P, Porsch E, St Geme JW3rd. Kingella kingae: an emerging pathogen in young children. Pediatrics. 2011;127:557–565. doi: 10.1542/peds.2010-1867. PubMed DOI
Henriksen SD, Bovre K. Moraxella kingii sp.nov., a haemolytic, saccharolytic species of the genus. Moraxella. J. Gen. Microbiol. 1968;51:377–385. doi: 10.1099/00221287-51-3-377. PubMed DOI
Yagupsky P. Kingella kingae: carriage, transmission, and disease. Clin. Microbiol. Rev. 2015;28:54–79. doi: 10.1128/CMR.00028-14. PubMed DOI PMC
Yagupsky P, Dagan R, Prajgrod F, Merires M. Respiratory carriage of Kingella kingae among healthy children. Pediatr. Infect. Dis. J. 1995;14:673–678. doi: 10.1097/00006454-199508000-00005. PubMed DOI
Yagupsky P, et al. Dissemination of Kingella kingae in the community and long-term persistence of invasive clones. Pediatr. Infect. Dis. J. 2009;28:707–710. doi: 10.1097/INF.0b013e31819f1f36. PubMed DOI
Kaplan JB, et al. In vitro characterization of biofilms formed by Kingella kingae. Mol. Oral. Microbiol. 2017;32:341–353. doi: 10.1111/omi.12176. PubMed DOI PMC
Kehl-Fie TE, Miller SE, St Geme JW3rd. Kingella kingae expresses type IV pili that mediate adherence to respiratory epithelial and synovial cells. J. Bacteriol. 2008;190:7157–7163. doi: 10.1128/JB.00884-08. PubMed DOI PMC
Yagupsky P, Peled N, Katz O. Epidemiological features of invasive Kingella kingae infections and respiratory carriage of the organism. J. Clin. Microbiol. 2002;40:4180–4184. doi: 10.1128/JCM.40.11.4180-4184.2002. PubMed DOI PMC
Principi N, Esposito S. Kingella kingae infections in children. Bmc. Infect. Dis. 2015;15:260. doi: 10.1186/s12879-015-0986-9. PubMed DOI PMC
Yagupsky, P. Detection of respiratory colonization by Kingella kingae and the novel Kingella negevensis species in children: uses and methodology. J. Clin. Microbiol. 56, e00633-18 (2018). PubMed PMC
Kehl-Fie TE, St Geme JW3rd. Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC
Chang DW, Nudell YA, Lau J, Zakharian E, Balashova NV. RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect. Immun. 2014;82:2318–2328. doi: 10.1128/IAI.01636-14. PubMed DOI PMC
Ceroni D, Cherkaoui A, Ferey S, Kaelin A, Schrenzel J. Kingella kingae osteoarticular infections in young children: clinical features and contribution of a new specific real-time PCR assay to the diagnosis. J. Pediatr. Orthop. 2010;30:301–304. doi: 10.1097/BPO.0b013e3181d4732f. PubMed DOI
Cherkaoui A, Ceroni D, Emonet S, Lefevre Y, Schrenzel J. Molecular diagnosis of Kingella kingae osteoarticular infections by specific real-time PCR assay. J. Med. Microbiol. 2009;58:65–68. doi: 10.1099/jmm.0.47707-0. PubMed DOI
Opota O, et al. Genomics of the new species Kingella negevensis: diagnostic issues and identification of a locus encoding a RTX toxin. Microbes Infect. 2017;19:546–552. doi: 10.1016/j.micinf.2017.08.001. PubMed DOI
El Houmami N, et al. Molecular Tests That Target the RTX Locus Do Not Distinguish between Kingella kingae and the Recently Described Kingella negevensis Species. J. Clin. Microbiol. 2017;55:3113–3122. doi: 10.1128/JCM.00736-17. PubMed DOI PMC
Linhartova I, et al. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb. Pathog. 2011;51:22–30. doi: 10.1016/j.micpath.2011.03.005. PubMed DOI PMC
Barcena-Uribarri I, Benz R, Winterhalter M, Zakharian E, Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. Biochim. Biophys. Acta. 2015;1848:1536–1544. doi: 10.1016/j.bbamem.2015.03.036. PubMed DOI PMC
Kaplan JB, et al. Genome sequence of Kingella kingae septic arthritis isolate PYKK081. J. Bacteriol. 2012;194:3017. doi: 10.1128/JB.00421-12. PubMed DOI PMC
Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA. 1985;82:1074–1078. doi: 10.1073/pnas.82.4.1074. PubMed DOI PMC
Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. doi: 10.1126/science.7939682. PubMed DOI
Basar T, et al. The conserved lysine 860 in the additional fatty-acylation site of Bordetella pertussis adenylate cyclase is crucial for toxin function independently of its acylation status. J. Biol. Chem. 1999;274:10777–10783. doi: 10.1074/jbc.274.16.10777. PubMed DOI
Masin J, et al. The conserved tyrosine residue 940 plays a key structural role in membrane interaction of Bordetella adenylate cyclase toxin. Sci. Rep. 2017;7:9330. doi: 10.1038/s41598-017-09575-6. PubMed DOI PMC
Stanley P, Packman LC, Koronakis V, Hughes C. Fatty acylation of two internal lysine residues required for the toxic activity of Escherichia coli hemolysin. Science. 1994;266:1992–1996. doi: 10.1126/science.7801126. PubMed DOI
Lim KB, et al. Escherichia coli alpha-hemolysin (HlyA) is heterogeneously acylated in vivo with 14-, 15-, and 17-carbon fatty acids. J. Biol. Chem. 2000;275:36698–36702. doi: 10.1074/jbc.C000544200. PubMed DOI
Fong KP, et al. Aggregatibacter actinomycetemcomitans leukotoxin is post-translationally modified by addition of either saturated or hydroxylated fatty acyl chains. Mol. Oral. Microbiol. 2011;26:262–276. doi: 10.1111/j.2041-1014.2011.00617.x. PubMed DOI PMC
Osicka R, et al. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC
Balashova NV, Crosby JA, Al Ghofaily L, Kachlany SC. Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans. Infect. Immun. 2006;74:2015–2021. doi: 10.1128/IAI.74.4.2015-2021.2006. PubMed DOI PMC
Brown AC, et al. Aggregatibacter actinomycetemcomitans leukotoxin utilizes a cholesterol recognition/amino acid consensus site for membrane association. J. Biol. Chem. 2013;288:23607–23621. doi: 10.1074/jbc.M113.486654. PubMed DOI PMC
Brown AC, Koufos E, Balashova NV, Boesze-Battaglia K, Lally ET. Inhibition of LtxA toxicity by blocking cholesterol binding with peptides. Mol. Oral. Microbiol. 2016;31:94–105. doi: 10.1111/omi.12133. PubMed DOI PMC
Vazquez RF, et al. Novel evidence for the specific interaction between cholesterol and alpha-haemolysin of Escherichia coli. Biochem. J. 2014;458:481–489. doi: 10.1042/BJ20131432. PubMed DOI
Kilsdonk EP, et al. Cellular cholesterol efflux mediated by cyclodextrins. J. Biol. Chem. 1995;270:17250–17256. doi: 10.1074/jbc.270.29.17250. PubMed DOI
Francis SA, et al. Rapid reduction of MDCK cell cholesterol by methyl-beta-cyclodextrin alters steady state transepithelial electrical resistance. Eur. J. Cell Biol. 1999;78:473–484. doi: 10.1016/S0171-9335(99)80074-0. PubMed DOI
Li H, Papadopoulos V. Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology. 1998;139:4991–4997. doi: 10.1210/endo.139.12.6390. PubMed DOI
Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci. Rep. 2011;1:69. doi: 10.1038/srep00069. PubMed DOI PMC
Masin J, Osicka R, Bumba L, Sebo P. Bordetella adenylate cyclase toxin: a unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC
Benz R. Channel formation by RTX-toxins of pathogenic bacteria: Basis of their biological activity. Biochim. Biophys. Acta. 1858;526-537:2016. PubMed
Novak Jakub, Cerny Ondrej, Osickova Adriana, Linhartova Irena, Masin Jiri, Bumba Ladislav, Sebo Peter, Osicka Radim. Structure–Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9(10):300. doi: 10.3390/toxins9100300. PubMed DOI PMC
El Houmami N, et al. Isolation and characterization of Kingella negevensis sp. nov., a novel Kingella species detected in a healthy paediatric population. Int. J. Syst. Evol. Microbiol. 2017;67:2370–2376. doi: 10.1099/ijsem.0.001957. PubMed DOI
Bauer ME, Welch RA. Association of RTX toxins with erythrocytes. Infect. Immun. 1996;64:4665–4672. PubMed PMC
Masin J, et al. Acylation of lysine 860 allows tight binding and cytotoxicity of Bordetella adenylate cyclase on CD11b-expressing cells. Biochemistry. 2005;44:12759–12766. doi: 10.1021/bi050459b. PubMed DOI
Balashova NV, Shah C, Patel JK, Megalla S, Kachlany SC. Aggregatibacter actinomycetemcomitans LtxC is required for leukotoxin activity and initial interaction between toxin and host cells. Gene. 2009;443:42–47. doi: 10.1016/j.gene.2009.05.002. PubMed DOI
Karst JC, et al. Calcium, acylation, and molecular confinement favor folding of Bordetella pertussis adenylate cyclase CyaA toxin into a monomeric and cytotoxic form. J. Biol. Chem. 2014;289:30702–30716. doi: 10.1074/jbc.M114.580852. PubMed DOI PMC
Herlax V, Bakas L. Acyl chains are responsible for the irreversibility in the Escherichia coli alpha-hemolysin binding to membranes. Chem. Phys. Lipids. 2003;122:185–190. doi: 10.1016/S0009-3084(02)00191-3. PubMed DOI
Herlax V, Mate S, Rimoldi O, Bakas L. Relevance of fatty acid covalently bound to Escherichia coli alpha-hemolysin and membrane microdomains in the oligomerization process. J. Biol. Chem. 2009;284:25199–25210. doi: 10.1074/jbc.M109.009365. PubMed DOI PMC
Ludwig A, et al. Analysis of the in vivo activation of hemolysin (HlyA) from. Escherichia coli. J. Bacteriol. 1996;178:5422–5430. PubMed PMC
Benz R, Maier E, Ladant D, Ullmann A, Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J. Biol. Chem. 1994;269:27231–27239. PubMed
Rogel A, et al. Bordetella pertussis adenylate cyclase: purification and characterization of the toxic form of the enzyme. EMBO J. 1989;8:2755–2760. doi: 10.1002/j.1460-2075.1989.tb08417.x. PubMed DOI PMC
Gentile F, Knipling LG, Sackett DL, Wolff J. Invasive adenylyl cyclase of Bordetella pertussis. Physical, catalytic, and toxic properties. J. Biol. Chem. 1990;265:10686–10692. PubMed
Ostolaza H, Bartolome B, Serra JL, de la Cruz F, Goni FM. Alpha-haemolysin from E. coli. Purification and self-aggregation properties. FEBS Lett. 1991;280:195–198. doi: 10.1016/0014-5793(91)80291-A. PubMed DOI
Soloaga A, Ramirez JM, Goni FM. Reversible denaturation, self-aggregation, and membrane activity of Escherichia coli alpha-hemolysin, a protein stable in 6 M urea. Biochemistry. 1998;37:6387–6393. doi: 10.1021/bi9730994. PubMed DOI
Bakas L, Veiga MP, Soloaga A, Ostolaza H, Goni FM. Calcium-dependent conformation of E. coli alpha-haemolysin. Implications for the mechanism of membrane insertion and lysis. Biochim. Biophys. Acta. 1998;1368:225–234. doi: 10.1016/S0005-2736(97)00181-8. PubMed DOI
Di Scala C, et al. Relevance of CARC and CRAC cholesterol-recognition motifs in the nicotinic acetylcholine receptor and other membrane-bound receptors. Curr. Top. Membr. 2017;80:3–23. doi: 10.1016/bs.ctm.2017.05.001. PubMed DOI
Fantini J, Di Scala C, Baier CJ, Barrantes FJ. Molecular mechanisms of protein-cholesterol interactions in plasma membranes: Functional distinction between topological (tilted) and consensus (CARC/CRAC) domains. Chem. Phys. Lipids. 2016;199:52–60. doi: 10.1016/j.chemphyslip.2016.02.009. PubMed DOI
Levitan I, Singh DK, Rosenhouse-Dantsker A. Cholesterol binding to ion channels. Front. Physiol. 2014;5:65. doi: 10.3389/fphys.2014.00065. PubMed DOI PMC
Zenner HP, Lehner W, Herrmann IF. Establishment of carcinoma cell lines from larynx and submandibular gland. Arch. Otorhinolaryngol. 1979;225:269–277. doi: 10.1007/BF00455679. PubMed DOI
Khan F, He M, Taussig MJ. Double-hexahistidine tag with high-affinity binding for protein immobilization, purification, and detection on ni-nitrilotriacetic acid surfaces. Anal. Chem. 2006;78:3072–3079. doi: 10.1021/ac060184l. PubMed DOI
Benz R, Janko K, Boos W, Lauger P. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Biochim. Biophys. Acta. 1978;511:305–319. doi: 10.1016/0005-2736(78)90269-9. PubMed DOI
Singh MV, et al. Abnormal CD161(+) immune cells and retinoic acid receptor-related orphan receptor gammat-mediate enhanced IL-17F expression in the setting of genetic hypertension. J. Allergy Clin. Immunol. 2017;140:809–821 e803. doi: 10.1016/j.jaci.2016.11.039. PubMed DOI PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins