Binding of Kingella kingae RtxA Toxin Depends on Cell Surface Oligosaccharides, but Not on β2 Integrins
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-18079S
Grant Agency of the Czech Republic
LM2018133
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33260488
PubMed Central
PMC7730106
DOI
10.3390/ijms21239092
PII: ijms21239092
Knihovny.cz E-zdroje
- Klíčová slova
- Kingella kingae, RTX toxin, RtxA, oligosaccharides, β2 integrins,
- MeSH
- antigeny CD18 metabolismus MeSH
- bakteriální toxiny metabolismus MeSH
- buněčná membrána metabolismus MeSH
- buněčná smrt MeSH
- buněčné linie MeSH
- glykosidhydrolasy metabolismus MeSH
- glykosylace MeSH
- Kingella kingae metabolismus MeSH
- lidé MeSH
- makrofágy metabolismus MeSH
- myši MeSH
- oligosacharidy chemie metabolismus MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD18 MeSH
- bakteriální toxiny MeSH
- glykosidhydrolasy MeSH
- oligosacharidy MeSH
The Gram-negative coccobacillus Kingella kingae is increasingly recognized as an important invasive pediatric pathogen that causes mostly bacteremia and skeletal system infections. K. kingae secretes an RtxA toxin that belongs to a broad family of the RTX (Repeats in ToXin) cytotoxins produced by bacterial pathogens. Recently, we demonstrated that membrane cholesterol facilitates interaction of RtxA with target cells, but other cell surface structures potentially involved in toxin binding to cells remain unknown. We show that deglycosylation of cell surface structures by glycosidase treatment, or inhibition of protein N- and O-glycosylation by chemical inhibitors substantially reduces RtxA binding to target cells. Consequently, the deglycosylated cells were more resistant to cytotoxic activity of RtxA. Moreover, experiments on cells expressing or lacking cell surface integrins of the β2 family revealed that, unlike some other cytotoxins of the RTX family, K. kingae RtxA does not bind target cells via the β2 integrins. Our results, hence, show that RtxA binds cell surface oligosaccharides present on all mammalian cells but not the leukocyte-restricted β2 integrins. This explains the previously observed interaction of the toxin with a broad range of cell types of various mammalian species and reveals that RtxA belongs to the group of broadly cytolytic RTX hemolysins.
Zobrazit více v PubMed
Yagupsky P. Kingella kingae: Carriage, transmission, and disease. Clin. Microbiol. Rev. 2015;28:54–79. doi: 10.1128/CMR.00028-14. PubMed DOI PMC
Ceroni D., Dubois-Ferriere V., Cherkaoui A., Lamah L., Renzi G., Lascombes P., Wilson B., Schrenzel J. 30 years of study of Kingella kingae: Post tenebras, lux. Future Microbiol. 2013;8:233–245. doi: 10.2217/fmb.12.144. PubMed DOI
Principi N., Esposito S. Kingella kingae infections in children. BMC Infect. Dis. 2015;15:260. doi: 10.1186/s12879-015-0986-9. PubMed DOI PMC
Gene A., Garcia-Garcia J.J., Sala P., Sierra M., Huguet R. Enhanced culture detection of Kingella kingae, a pathogen of increasing clinical importance in pediatrics. Pediatr. Infect. Dis. J. 2004;23:886–888. doi: 10.1097/01.inf.0000137591.76624.82. PubMed DOI
Moumile K., Merckx J., Glorion C., Berche P., Ferroni A. Osteoarticular infections caused by Kingella kingae in children: Contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr. Infect. Dis. J. 2003;22:837–839. doi: 10.1097/01.inf.0000083848.93457.e7. PubMed DOI
Verdier I., Gayet-Ageron A., Ploton C., Taylor P., Benito Y., Freydiere A.M., Chotel F., Berard J., Vanhems P., Vandenesch F. Contribution of a broad range polymerase chain reaction to the diagnosis of osteoarticular infections caused by Kingella kingae: Description of twenty-four recent pediatric diagnoses. Pediatr. Infect. Dis. J. 2005;24:692–696. doi: 10.1097/01.inf.0000172153.10569.dc. PubMed DOI
Dubnov-Raz G., Ephros M., Garty B.Z., Schlesinger Y., Maayan-Metzger A., Hasson J., Kassis I., Schwartz-Harari O., Yagupsky P. Invasive pediatric Kingella kingae Infections: A nationwide collaborative study. Pediatr. Infect. Dis. J. 2010;29:639–643. doi: 10.1097/INF.0b013e3181d57a6c. PubMed DOI
Yagupsky P., Porsch E., St Geme J.W., 3rd Kingella kingae: An emerging pathogen in young children. Pediatrics. 2011;127:557–565. doi: 10.1542/peds.2010-1867. PubMed DOI
Osickova A., Balashova N., Masin J., Sulc M., Roderova J., Wald T., Brown A.C., Koufos E., Chang E.H., Giannakakis A., et al. Cytotoxic activity of Kingella kingae RtxA toxin depends on post-translational acylation of lysine residues and cholesterol binding. Emerg. Microbes Infect. 2018;7:178. doi: 10.1038/s41426-018-0179-x. PubMed DOI PMC
Kehl-Fie T.E., St Geme J.W., 3rd Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J. Bacteriol. 2007;189:430–436. doi: 10.1128/JB.01319-06. PubMed DOI PMC
Chang D.W., Nudell Y.A., Lau J., Zakharian E., Balashova N.V. RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect. Immun. 2014;82:2318–2328. doi: 10.1128/IAI.01636-14. PubMed DOI PMC
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Osickova A., Khaliq H., Masin J., Jurnecka D., Sukova A., Fiser R., Holubova J., Stanek O., Sebo P., Osicka R. Acyltransferase-mediated selection of the length of the fatty acyl chain and of the acylation site governs activation of bacterial RTX toxins. J. Biol. Chem. 2020;295:9268–9280. doi: 10.1074/jbc.RA120.014122. PubMed DOI PMC
Barcena-Uribarri I., Benz R., Winterhalter M., Zakharian E., Balashova N. Pore forming activity of the potent RTX-toxin produced by pediatric pathogen Kingella kingae: Characterization and comparison to other RTX-family members. Biochim. Biophys. Acta. 2015;1848:1536–1544. doi: 10.1016/j.bbamem.2015.03.036. PubMed DOI PMC
Mazzone A., Ricevuti G. Leukocyte CD11/CD18 integrins: Biological and clinical relevance. Haematologica. 1995;80:161–175. PubMed
Lally E.T., Kieba I.R., Sato A., Green C.L., Rosenbloom J., Korostoff J., Wang J.F., Shenker B.J., Ortlepp S., Robinson M.K., et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J. Biol. Chem. 1997;272:30463–30469. doi: 10.1074/jbc.272.48.30463. PubMed DOI
Ambagala T.C., Ambagala A.P., Srikumaran S. The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiol. Lett. 1999;179:161–167. PubMed
Li J., Clinkenbeard K.D., Ritchey J.W. Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Vet. Microbiol. 1999;67:91–97. doi: 10.1016/S0378-1135(99)00040-1. PubMed DOI
Jeyaseelan S., Hsuan S.L., Kannan M.S., Walcheck B., Wang J.F., Kehrli M.E., Lally E.T., Sieck G.C., Maheswaran S.K. Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infect. Immun. 2000;68:72–79. doi: 10.1128/IAI.68.1.72-79.2000. PubMed DOI PMC
Thumbikat P., Dileepan T., Kannan M.S., Maheswaran S.K. Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage beta2 integrins. Vet. Res. 2005;36:771–786. doi: 10.1051/vetres:2005036. PubMed DOI
Valeva A., Walev I., Kemmer H., Weis S., Siegel I., Boukhallouk F., Wassenaar T.M., Chavakis T., Bhakdi S. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J. Biol. Chem. 2005;280:36657–36663. doi: 10.1074/jbc.M507690200. PubMed DOI
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Wald T., Osickova A., Masin J., Liskova P.M., Petry-Podgorska I., Matousek T., Sebo P., Osicka R. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog. Dis. 2016;74:ftw008. doi: 10.1093/femspd/ftw008. PubMed DOI
Balashova N.V., Crosby J.A., Al Ghofaily L., Kachlany S.C. Leukotoxin confers beta-hemolytic activity to Actinobacillus actinomycetemcomitans. Infect. Immun. 2006;74:2015–2021. doi: 10.1128/IAI.74.4.2015-2021.2006. PubMed DOI PMC
Morova J., Osicka R., Masin J., Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA. 2008;105:5355–5360. doi: 10.1073/pnas.0711400105. PubMed DOI PMC
Hasan S., Osickova A., Bumba L., Novak P., Sebo P., Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI
El-Azami-El-Idrissi M., Bauche C., Loucka J., Osicka R., Sebo P., Ladant D., Leclerc C. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. J. Biol. Chem. 2003;278:38514–38521. doi: 10.1074/jbc.M304387200. PubMed DOI
Zenner H.P., Lehner W., Herrmann I.F. Establishment of carcinoma cell lines from larynx and submandibular gland. Arch. Otorhinolaryngol. 1979;225:269–277. doi: 10.1007/BF00455679. PubMed DOI
Ding Z.M., Babensee J.E., Simon S.I., Lu H., Perrard J.L., Bullard D.C., Dai X.Y., Bromley S.K., Dustin M.L., Entman M.L., et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 1999;163:5029–5038. PubMed
Coxon A., Rieu P., Barkalow F.J., Askari S., Sharpe A.H., von Andrian U.H., Arnaout M.A., Mayadas T.N. A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: A homeostatic mechanism in inflammation. Immunity. 1996;5:653–666. doi: 10.1016/S1074-7613(00)80278-2. PubMed DOI
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Infect Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC
Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β2 Integrin CD11b/CD18
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins