RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18375764
PubMed Central
PMC2291121
DOI
10.1073/pnas.0711400105
PII: 0711400105
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasový toxin metabolismus MeSH
- antigeny CD11b metabolismus MeSH
- antigeny CD18 metabolismus MeSH
- bakteriální proteiny MeSH
- bakteriální toxiny metabolismus MeSH
- Bordetella chemie enzymologie patogenita MeSH
- glykosylace MeSH
- hemolyziny MeSH
- lidé MeSH
- oligosacharidy metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- antigeny CD11b MeSH
- antigeny CD18 MeSH
- ApxI toxin, Bacteria MeSH Prohlížeč
- bakteriální proteiny MeSH
- bakteriální toxiny MeSH
- hemolyziny MeSH
- oligosacharidy MeSH
Bordetella pertussis adenylate cyclase (AC) toxin-hemolysin (Hly) (CyaA, ACT, or AC-Hly) is a cytotoxin of the RTX (repeat in toxin) family. It delivers into target cells an AC domain that catalyzes uncontrolled conversion of ATP to cAMP, a key signaling molecule subverting phagocyte functions. CyaA utilizes a heavily N-glycosylated beta(2) integrin receptor CD11b/CD18 (alpha(M)beta(2), Mac-1, or CR3). We show that deglycosylation of cell surface proteins by glycosidase treatment, or inhibition of protein N-glycosylation by tunicamycin, ablates CyaA binding and penetration of CD11b-expressing cells. Furthermore, binding of CyaA to cells was strongly inhibited in the presence of free saccharides occurring as building units of integrin oligosaccharide complex, whereas saccharides absent from integrin oligosaccharide chains failed to inhibit CyaA binding to CD11b/CD18-expressing cells. CyaA, hence, selectively recognized sugar residues of N-linked oligosaccharides of integrins. Moreover, glycosylation of CD11a/CD18, another receptor of the beta(2) integrin family, was also essential for cytotoxic action of other RTX cytotoxins, the leukotoxin of Aggregatibacter actinomycetemcomitans (LtxA) and the Escherichia coli alpha-Hly (HlyA). These results show that binding and killing of target cells by CyaA, LtxA, and HlyA depends on recognition of N-linked oligosaccharide chains of beta(2) integrin receptors. This sets a new paradigm for action of RTX cytotoxins.
Zobrazit více v PubMed
Goodwin MS, Weiss AA. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun. 1990;58:3445–3447. PubMed PMC
Weiss AA, Hewlett EL, Myers GA, Falkow S. Pertussis toxin and extracytoplasmic adenylate cyclase as virulence factors of Bordetella pertussis. J Infect Dis. 1984;150:219–222. PubMed
Glaser P, et al. The calmodulin-sensitive adenylate cyclase of Bordetella pertussis: Cloning and expression in Escherichia coli. Mol Microbiol. 1988;2:19–30. PubMed
Benz R, Maier E, Ladant D, Ullmann A, Sebo P. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. J Biol Chem. 1994;269:27231–27239. PubMed
Hackett M, Guo L, Shabanowitz J, Hunt DF, Hewlett EL. Internal lysine palmitoylation in adenylate cyclase toxin from Bordetella pertussis. Science. 1994;266:433–435. PubMed
Sebo P, Ladant D. Repeat sequences in the Bordetella pertussis adenylate cyclase toxin can be recognized as alternative carboxy-proximal secretion signals by the Escherichia coli alpha-haemolysin translocator. Mol Microbiol. 1993;9:999–1009. PubMed
Glaser P, et al. Identification of residues essential for catalysis and binding of calmodulin in Bordetella pertussis adenylate cyclase by site-directed mutagenesis. EMBO J. 1989;8:967–972. PubMed PMC
Bellalou J, Sakamoto H, Ladant D, Geoffroy C, Ullmann A. Deletions affecting hemolytic and toxin activities of Bordetella pertussis adenylate cyclase. Infect Immun. 1990;58:3242–3247. PubMed PMC
Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA. 1980;77:3841–3844. PubMed PMC
Vojtova J, Kamanova J, Sebo P. Bordetella adenylate cyclase toxin: A swift saboteur of host defense. Curr Opin Microbiol. 2006;9:69–75. PubMed
Sakamoto H, Bellalou J, Sebo P, Ladant D. Bordetella pertussis adenylate cyclase toxin. Structural and functional independence of the catalytic and hemolytic activities. J Biol Chem. 1992;267:13598–13602. PubMed
Welch RA. RTX toxin structure and function: A story of numerous anomalies and few analogies in toxin biology. Curr Top Microbiol Immunol. 2001;257:85–111. PubMed
Lally ET, et al. RTX toxins recognize a beta2 integrin on the surface of human target cells. J Biol Chem. 1997;272:30463–30469. PubMed
Ambagala TC, Ambagala A-P, Srikumaran S. The leukotoxin of Pasteurella haemolytica binds to beta(2) integrins on bovine leukocytes. FEMS Microbiol Lett. 1999;179:161–167. PubMed
Li J, Clinkenbeard KD, Ritchey JW. Bovine CD18 identified as a species specific receptor for Pasteurella haemolytica leukotoxin. Vet Microbiol. 1999;67:91–97. PubMed
Guermonprez P, et al. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J Exp Med. 2001;193:1035–1044. PubMed PMC
Arnaout MA. Structure and function of the leukocyte adhesion molecules CD11/CD18. Blood. 1990;75:1037–1050. PubMed
Mazzone A, Ricevuti G. Leukocyte CD11/CD18 integrins: Biological and clinical relevance. Haematologica. 1995;80:161–175. PubMed
Valeva A, et al. Binding of Escherichia coli hemolysin and activation of the target cells is not receptor-dependent. J Biol Chem. 2005;280:36657–36663. PubMed
Jeyaseelan S, et al. Lymphocyte function-associated antigen 1 is a receptor for Pasteurella haemolytica leukotoxin in bovine leukocytes. Infect Immun. 2000;68:72–79. PubMed PMC
Thumbikat P, Dileepan T, Kannan MS, Maheswaran SK. Characterization of Mannheimia (Pasteurella) haemolytica leukotoxin interaction with bovine alveolar macrophage beta2 integrins. Vet Res. 2005;36:771–786. PubMed
Asada M, Furukawa K, Kantor C, Gahmberg CG, Kobata A. Structural study of the sugar chains of human leukocyte cell adhesion molecules CD11/CD18. Biochemistry. 1991;30:1561–1571. PubMed
Zheng M, Fang H, Hakomori S. Functional role of N-glycosylation in alpha 5 beta 1 integrin receptor. De-N-glycosylation induces dissociation or altered association of alpha 5 and beta 1 subunits and concomitant loss of fibronectin binding activity. J Biol Chem. 1994;269:12325–12331. PubMed
Chammas R, Veiga SS, Line S, Potocnjak P, Brentani RR. Asn-linked oligosaccharide-dependent interaction between laminin and gp120/140. An alpha 6/beta 1 integrin. J Biol Chem. 1991;266:3349–3355. PubMed
Yahiro K, et al. Identification and characterization of receptors for vacuolating activity of subtilase cytotoxin. Mol Microbiol. 2006;62:480–490. PubMed
El-Azami-El-Idrissi M, et al. Interaction of Bordetella pertussis adenylate cyclase with CD11b/CD18: Role of toxin acylation and identification of the main integrin interaction domain. J Biol Chem. 2003;278:38514–38521. PubMed
Gordon VM, et al. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J Biol Chem. 1989;264:14792–14796. PubMed
Hirai M, Iwase H, Hayakawa T, Koizumi M, Takahashi H. Determination of asymmetric structure of ganglioside-DPPC mixed vesicle by using SANS, SAXS, and DLS. Biophys J. 2003;85:1600–1610. PubMed PMC
Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA. 1998;95:5752–5756. PubMed PMC
Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins
Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3
General and molecular microbiology and microbial genetics in the IM CAS