Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-12695S
Grantová Agentura České Republiky
19-27630X
Grantová Agentura České Republiky
LM2018133
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018126
Ministerstvo Školství, Mládeže a Tělovýchovy
OP RDE CZ.02.1.01/0.0/0.0/18_046/0015861 CCP Infrastructure Upgrade II
Ministerstvo Školství, Mládeže a Tělovýchovy, ESIF
PubMed
34445770
PubMed Central
PMC8396599
DOI
10.3390/ijms22169064
PII: ijms22169064
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella, CREB, adenylate cyclase toxin, cAMP, epithelium, mucin, pertussis toxin,
- MeSH
- adenylátcyklasový toxin toxicita MeSH
- Bordetella pertussis metabolismus patogenita MeSH
- buněčné linie MeSH
- dýchací soustava metabolismus mikrobiologie MeSH
- epitelové buňky metabolismus mikrobiologie MeSH
- lidé MeSH
- mucin 5AC metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- pertuse metabolismus mikrobiologie MeSH
- protein vázající element responzivní pro cyklický AMP metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenylátcyklasový toxin MeSH
- mucin 5AC MeSH
- protein vázající element responzivní pro cyklický AMP MeSH
The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air-liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC- toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT- toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.
Zobrazit více v PubMed
Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC
Althouse B.M., Scarpino S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13:146. doi: 10.1186/s12916-015-0382-8. PubMed DOI PMC
Domenech de Celles M., Magpantay F.M., King A.A., Rohani P. The pertussis enigma: Reconciling epidemiology, immunology and evolution. Proc. Biol. Sci. 2016;283:20152309. doi: 10.1098/rspb.2015.2309. PubMed DOI PMC
Gill C.J., Gunning C.E., MacLeod W.B., Mwananyanda L., Thea D.M., Pieciak R.C., Kwenda G., Mupila Z., Rohani P. Asymptomatic Bordetella pertussis infections in a longitudinal cohort of young African infants and their mothers. eLife. 2021;10:e65663. doi: 10.7554/eLife.65663. PubMed DOI PMC
Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI
Scanlon K., Skerry C., Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. Adv. Exp. Med. Biol. 2019;1183:35–51. doi: 10.1007/5584_2019_403. PubMed DOI PMC
Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC
Goodwin M.S., Weiss A.A. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 1990;58:3445–3447. doi: 10.1128/iai.58.10.3445-3447.1990. PubMed DOI PMC
Guiso N., Rocancourt M., Szatanik M., Alonso J.M. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb. Pathog. 1989;7:373–380. doi: 10.1016/0882-4010(89)90040-5. PubMed DOI
Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., Tomala J., Masin J., Guiso N., et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect. Immun. 2017;85:e00937-16. doi: 10.1128/IAI.00937-16. PubMed DOI PMC
Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Morova J., Osicka R., Masin J., Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA. 2008;105:5355–5360. doi: 10.1073/pnas.0711400105. PubMed DOI PMC
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Hasan S., Osickova A., Bumba L., Novak P., Sebo P., Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI
Wald T., Osickova A., Masin J., Liskova P.M., Petry-Podgorska I., Matousek T., Sebo P., Osicka R. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog. Dis. 2016;74:ftw008. doi: 10.1093/femspd/ftw008. PubMed DOI
Masin J., Osickova A., Jurnecka D., Klimova N., Khaliq H., Sebo P., Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. doi: 10.1074/jbc.RA120.013630. PubMed DOI PMC
Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., Sebo P. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 2010;75:1550–1562. doi: 10.1111/j.1365-2958.2010.07077.x. PubMed DOI
Wolff J., Cook G.H., Goldhammer A.R., Berkowitz S.A. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA. 1980;77:3841–3844. doi: 10.1073/pnas.77.7.3841. PubMed DOI PMC
Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI
Eby J.C., Gray M.C., Hewlett E.L. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 2014;82:5256–5269. doi: 10.1128/IAI.02487-14. PubMed DOI PMC
Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI
Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI
Hasan S., Rahman W.U., Sebo P., Osicka R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins. 2019;11:362. doi: 10.3390/toxins11060362. PubMed DOI PMC
Gueirard P., Druilhe A., Pretolani M., Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 1998;66:1718–1725. doi: 10.1128/IAI.66.4.1718-1725.1998. PubMed DOI PMC
Ahmad J.N., Cerny O., Linhartova I., Masin J., Osicka R., Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell. Microbiol. 2016;18:384–398. doi: 10.1111/cmi.12519. PubMed DOI
Ahmad J.N., Holubova J., Benada O., Kofronova O., Stehlik L., Vasakova M., Sebo P. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio. 2019;10:e01743-19. doi: 10.1128/mBio.01743-19. PubMed DOI PMC
Ahmad J.N., Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front. Immunol. 2020;11:2181. doi: 10.3389/fimmu.2020.02181. PubMed DOI PMC
Gordon V.M., Young W.W., Jr., Lechler S.M., Gray M.C., Leppla S.H., Hewlett E.L. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J. Biol. Chem. 1989;264:14792–14796. doi: 10.1016/S0021-9258(18)63769-X. PubMed DOI
Sheppard D. Airway epithelial integrins: Why so many? Am. J. Respir. Cell Mol. Biol. 1998;19:349–351. doi: 10.1165/ajrcmb.19.3.f144. PubMed DOI
Sheppard D. Functions of pulmonary epithelial integrins: From development to disease. Physiol. Rev. 2003;83:673–686. doi: 10.1152/physrev.00033.2002. PubMed DOI
Eby J.C., Gray M.C., Warfel J.M., Paddock C.D., Jones T.F., Day S.R., Bowden J., Poulter M.D., Donato G.M., Merkel T.J., et al. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect. Immun. 2013;81:1390–1398. doi: 10.1128/IAI.00110-13. PubMed DOI PMC
Locht C., Coutte L., Mielcarek N. The ins and outs of pertussis toxin. FEBS J. 2011;278:4668–4682. doi: 10.1111/j.1742-4658.2011.08237.x. PubMed DOI
Armstrong G.D., Howard L.A., Peppler M.S. Use of glycosyltransferases to restore pertussis toxin receptor activity to asialoagalactofetuin. J. Biol. Chem. 1988;263:8677–8684. doi: 10.1016/S0021-9258(18)68358-9. PubMed DOI
el Baya A., Linnemann R., von Olleschik-Elbheim L., Robenek H., Schmidt M.A. Endocytosis and retrograde transport of pertussis toxin to the Golgi complex as a prerequisite for cellular intoxication. Eur. J. Cell Biol. 1997;73:40–48. PubMed
Kugler S., Bocker K., Heusipp G., Greune L., Kim K.S., Schmidt M.A. Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell. Microbiol. 2007;9:619–632. doi: 10.1111/j.1462-5822.2006.00813.x. PubMed DOI
Plaut R.D., Carbonetti N.H. Retrograde transport of pertussis toxin in the mammalian cell. Cell. Microbiol. 2008;10:1130–1139. doi: 10.1111/j.1462-5822.2007.01115.x. PubMed DOI
Banerjee T., Cilenti L., Taylor M., Showman A., Tatulian S.A., Teter K. Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation. Infect. Immun. 2016;84:3388–3398. doi: 10.1128/IAI.00732-16. PubMed DOI PMC
Hazes B., Read R.J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry. 1997;36:11051–11054. doi: 10.1021/bi971383p. PubMed DOI
Ernst K., Eberhardt N., Mittler A.K., Sonnabend M., Anastasia A., Freisinger S., Schiene-Fischer C., Malesevic M., Barth H. Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin. Toxins. 2018;10:181. doi: 10.3390/toxins10050181. PubMed DOI PMC
Ernst K., Mittler A.K., Winkelmann V., Kling C., Eberhardt N., Anastasia A., Sonnabend M., Lochbaum R., Wirsching J., Sakari M., et al. Pharmacological targeting of host chaperones protects from pertussis toxin in vitro and in vivo. Sci. Rep. 2021;11:5429. doi: 10.1038/s41598-021-84817-2. PubMed DOI PMC
Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA. 1982;79:3129–3133. doi: 10.1073/pnas.79.10.3129. PubMed DOI PMC
Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatric Infect. Dis. 1984;3:467–486. doi: 10.1097/00006454-198409000-00019. PubMed DOI
Mangmool S., Kurose H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX) Toxins. 2011;3:884–899. doi: 10.3390/toxins3070884. PubMed DOI PMC
Carbonetti N.H. Pertussis leukocytosis: Mechanisms, clinical relevance and treatment. Pathog. Dis. 2016;74:ftw087. doi: 10.1093/femspd/ftw087. PubMed DOI PMC
Paddock C.D., Sanden G.N., Cherry J.D., Gal A.A., Langston C., Tatti K.M., Wu K.H., Goldsmith C.S., Greer P.W., Montague J.L., et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin. Infect. Dis. 2008;47:328–338. doi: 10.1086/589753. PubMed DOI
Winter K., Zipprich J., Harriman K., Murray E.L., Gornbein J., Hammer S.J., Yeganeh N., Adachi K., Cherry J.D. Risk Factors Associated With Infant Deaths From Pertussis: A Case-Control Study. Clin. Infect. Dis. 2015;61:1099–1106. doi: 10.1093/cid/civ472. PubMed DOI
Whitsett J.A., Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 2015;16:27–35. doi: 10.1038/ni.3045. PubMed DOI PMC
Derrien M., van Passel M.W., van de Bovenkamp J.H., Schipper R.G., de Vos W.M., Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1:254–268. doi: 10.4161/gmic.1.4.12778. PubMed DOI PMC
Samet J.M., Cheng P.W. The role of airway mucus in pulmonary toxicology. Env. Health Perspect. 1994;102(Suppl. 2):89–103. doi: 10.1289/ehp.9410289. PubMed DOI PMC
van Putten J.P.M., Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J. Innate Immun. 2017;9:281–299. doi: 10.1159/000453594. PubMed DOI PMC
Andrianifahanana M., Moniaux N., Batra S.K. Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Et Biophys. Acta. 2006;1765:189–222. doi: 10.1016/j.bbcan.2006.01.002. PubMed DOI
Fahy J.V., Dickey B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010;363:2233–2247. doi: 10.1056/NEJMra0910061. PubMed DOI PMC
Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1:e24997. doi: 10.4161/tisb.24997. PubMed DOI PMC
Belcher C.E., Drenkow J., Kehoe B., Gingeras T.R., McNamara N., Lemjabbar H., Basbaum C., Relman D.A. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl. Acad. Sci. USA. 2000;97:13847–13852. doi: 10.1073/pnas.230262797. PubMed DOI PMC
Hasan S., Kulkarni N.N., Asbjarnarson A., Linhartova I., Osicka R., Sebo P., Gudmundsson G.H. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect. Immun. 2018;86:e00445-17. doi: 10.1128/IAI.00445-17. PubMed DOI PMC
Barovsky K., Pedone C., Brooker G. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells. Mol. Pharmacol. 1984;25:256–260. PubMed
Kim S.W., Hong J.S., Ryu S.H., Chung W.C., Yoon J.H., Koo J.S. Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol. Cell Biol. 2007;27:6933–6947. doi: 10.1128/MCB.02385-06. PubMed DOI PMC
Tyson D.R., Swarthout J.T., Partridge N.C. Increased osteoblastic c-fos expression by parathyroid hormone requires protein kinase A phosphorylation of the cyclic adenosine 3′,5′-monophosphate response element-binding protein at serine 133. Endocrinology. 1999;140:1255–1261. doi: 10.1210/endo.140.3.6567. PubMed DOI
Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J. Immunol. 2015;194:4901–4913. doi: 10.4049/jimmunol.1402941. PubMed DOI
Bagley K.C., Abdelwahab S.F., Tuskan R.G., Fouts T.R., Lewis G.K. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J. Leukoc. Biol. 2002;72:962–969. PubMed
Xie F., Li B.X., Kassenbrock A., Xue C., Wang X., Qian D.Z., Sears R.C., Xiao X. Identification of a Potent Inhibitor of CREB-Mediated Gene Transcription with Efficacious in Vivo Anticancer Activity. J. Med. Chem. 2015;58:5075–5087. doi: 10.1021/acs.jmedchem.5b00468. PubMed DOI PMC
Li B.X., Gardner R., Xue C., Qian D.Z., Xie F., Thomas G., Kazmierczak S.C., Habecker B.A., Xiao X. Systemic Inhibition of CREB is Well-tolerated in vivo. Sci. Rep. 2016;6:34513. doi: 10.1038/srep34513. PubMed DOI PMC
Rogel A., Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J. Biol. Chem. 1992;267:22599–22605. doi: 10.1016/S0021-9258(18)41715-2. PubMed DOI
Dal Molin F., Tonello F., Ladant D., Zornetta I., Zamparo I., Di Benedetto G., Zaccolo M., Montecucco C. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J. 2006;25:5405–5413. doi: 10.1038/sj.emboj.7601408. PubMed DOI PMC
Teter K. Intracellular Trafficking and Translocation of Pertussis Toxin. Toxins. 2019;11:437. doi: 10.3390/toxins11080437. PubMed DOI PMC
Eby J.C., Ciesla W.P., Hamman W., Donato G.M., Pickles R.J., Hewlett E.L., Lencer W.I. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J. Biol. Chem. 2010;285:10662–10670. doi: 10.1074/jbc.M109.089219. PubMed DOI PMC
Guevara C., Zhang C., Gaddy J.A., Iqbal J., Guerra J., Greenberg D.P., Decker M.D., Carbonetti N., Starner T.D., McCray P.B., Jr., et al. Highly differentiated human airway epithelial cells: A model to study host cell-parasite interactions in pertussis. Infect. Dis. 2016;48:177–188. doi: 10.3109/23744235.2015.1100323. PubMed DOI PMC
Zhu Y., Abdullah L.H., Doyle S.P., Nguyen K., Ribeiro C.M., Vasquez P.A., Forest M.G., Lethem M.I., Dickey B.F., Davis C.W. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS ONE. 2015;10:e0127267. doi: 10.1371/journal.pone.0127267. PubMed DOI PMC
Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid Purification of Endotoxin-Free RTX Toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC
Pizza M., Covacci A., Bartoloni A., Perugini M., Nencioni L., De Magistris M.T., Villa L., Nucci D., Manetti R., Bugnoli M., et al. Mutants of pertussis toxin suitable for vaccine development. Science. 1989;246:497–500. doi: 10.1126/science.2683073. PubMed DOI
Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., et al. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol. Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI
Lee S.J., Gray M.C., Guo L., Sebo P., Hewlett E.L. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 1999;67:2090–2095. doi: 10.1128/IAI.67.5.2090-2095.1999. PubMed DOI PMC
Bankhead P., Loughrey M.B., Fernandez J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC
Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β2 Integrin CD11b/CD18