Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445770

Grantová podpora
19-12695S Grantová Agentura České Republiky
19-27630X Grantová Agentura České Republiky
LM2018133 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018126 Ministerstvo Školství, Mládeže a Tělovýchovy
OP RDE CZ.02.1.01/0.0/0.0/18_046/0015861 CCP Infrastructure Upgrade II Ministerstvo Školství, Mládeže a Tělovýchovy, ESIF

The mucus layer protects airway epithelia from damage by noxious agents. Intriguingly, Bordetella pertussis bacteria provoke massive mucus production by nasopharyngeal epithelia during the initial coryza-like catarrhal stage of human pertussis and the pathogen transmits in mucus-containing aerosol droplets expelled by sneezing and post-nasal drip-triggered cough. We investigated the role of the cAMP-elevating adenylate cyclase (CyaA) and pertussis (PT) toxins in the upregulation of mucin production in B. pertussis-infected airway epithelia. Using human pseudostratified airway epithelial cell layers cultured at air-liquid interface (ALI), we show that purified CyaA and PT toxins (100 ng/mL) can trigger production of the major airway mucins Muc5AC and Muc5B. Upregulation of mucin secretion involved activation of the cAMP response element binding protein (CREB) and was blocked by the 666-15-Calbiochem inhibitor of CREB-mediated gene transcription. Intriguingly, a B. pertussis mutant strain secreting only active PT and producing the enzymatically inactive CyaA-AC- toxoid failed to trigger any important mucus production in infected epithelial cell layers in vitro or in vivo in the tracheal epithelia of intranasally infected mice. In contrast, the PT- toxoid-producing B. pertussis mutant secreting the active CyaA toxin elicited a comparable mucin production as infection of epithelial cell layers or tracheal epithelia of infected mice by the wild-type B. pertussis secreting both PT and CyaA toxins. Hence, the cAMP-elevating activity of B. pertussis-secreted CyaA was alone sufficient for activation of mucin production through a CREB-dependent mechanism in B. pertussis-infected airway epithelia in vivo.

Zobrazit více v PubMed

Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC

Althouse B.M., Scarpino S.V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13:146. doi: 10.1186/s12916-015-0382-8. PubMed DOI PMC

Domenech de Celles M., Magpantay F.M., King A.A., Rohani P. The pertussis enigma: Reconciling epidemiology, immunology and evolution. Proc. Biol. Sci. 2016;283:20152309. doi: 10.1098/rspb.2015.2309. PubMed DOI PMC

Gill C.J., Gunning C.E., MacLeod W.B., Mwananyanda L., Thea D.M., Pieciak R.C., Kwenda G., Mupila Z., Rohani P. Asymptomatic Bordetella pertussis infections in a longitudinal cohort of young African infants and their mothers. eLife. 2021;10:e65663. doi: 10.7554/eLife.65663. PubMed DOI PMC

Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI

Scanlon K., Skerry C., Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. Adv. Exp. Med. Biol. 2019;1183:35–51. doi: 10.1007/5584_2019_403. PubMed DOI PMC

Linhartova I., Bumba L., Masin J., Basler M., Osicka R., Kamanova J., Prochazkova K., Adkins I., Hejnova-Holubova J., Sadilkova L., et al. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol. Rev. 2010;34:1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x. PubMed DOI PMC

Goodwin M.S., Weiss A.A. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect. Immun. 1990;58:3445–3447. doi: 10.1128/iai.58.10.3445-3447.1990. PubMed DOI PMC

Guiso N., Rocancourt M., Szatanik M., Alonso J.M. Bordetella adenylate cyclase is a virulence associated factor and an immunoprotective antigen. Microb. Pathog. 1989;7:373–380. doi: 10.1016/0882-4010(89)90040-5. PubMed DOI

Skopova K., Tomalova B., Kanchev I., Rossmann P., Svedova M., Adkins I., Bibova I., Tomala J., Masin J., Guiso N., et al. Cyclic AMP-Elevating Capacity of Adenylate Cyclase Toxin-Hemolysin Is Sufficient for Lung Infection but Not for Full Virulence of Bordetella pertussis. Infect. Immun. 2017;85:e00937-16. doi: 10.1128/IAI.00937-16. PubMed DOI PMC

Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC

Morova J., Osicka R., Masin J., Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc. Natl. Acad. Sci. USA. 2008;105:5355–5360. doi: 10.1073/pnas.0711400105. PubMed DOI PMC

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Hasan S., Osickova A., Bumba L., Novak P., Sebo P., Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589:374–379. doi: 10.1016/j.febslet.2014.12.023. PubMed DOI

Wald T., Osickova A., Masin J., Liskova P.M., Petry-Podgorska I., Matousek T., Sebo P., Osicka R. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog. Dis. 2016;74:ftw008. doi: 10.1093/femspd/ftw008. PubMed DOI

Masin J., Osickova A., Jurnecka D., Klimova N., Khaliq H., Sebo P., Osicka R. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme-translocating segment of Bordetella adenylate cyclase toxin. J. Biol. Chem. 2020;295:9349–9365. doi: 10.1074/jbc.RA120.013630. PubMed DOI PMC

Osickova A., Masin J., Fayolle C., Krusek J., Basler M., Pospisilova E., Leclerc C., Osicka R., Sebo P. Adenylate cyclase toxin translocates across target cell membrane without forming a pore. Mol. Microbiol. 2010;75:1550–1562. doi: 10.1111/j.1365-2958.2010.07077.x. PubMed DOI

Wolff J., Cook G.H., Goldhammer A.R., Berkowitz S.A. Calmodulin activates prokaryotic adenylate cyclase. Proc. Natl. Acad. Sci. USA. 1980;77:3841–3844. doi: 10.1073/pnas.77.7.3841. PubMed DOI PMC

Confer D.L., Eaton J.W. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982;217:948–950. doi: 10.1126/science.6287574. PubMed DOI

Eby J.C., Gray M.C., Hewlett E.L. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 2014;82:5256–5269. doi: 10.1128/IAI.02487-14. PubMed DOI PMC

Cerny O., Anderson K.E., Stephens L.R., Hawkins P.T., Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J. Immunol. 2017;198:1285–1296. doi: 10.4049/jimmunol.1601309. PubMed DOI

Kamanova J., Kofronova O., Masin J., Genth H., Vojtova J., Linhartova I., Benada O., Just I., Sebo P. Adenylate cyclase toxin subverts phagocyte function by RhoA inhibition and unproductive ruffling. J. Immunol. 2008;181:5587–5597. doi: 10.4049/jimmunol.181.8.5587. PubMed DOI

Hasan S., Rahman W.U., Sebo P., Osicka R. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Toxins. 2019;11:362. doi: 10.3390/toxins11060362. PubMed DOI PMC

Gueirard P., Druilhe A., Pretolani M., Guiso N. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during Bordetella pertussis infection in vivo. Infect. Immun. 1998;66:1718–1725. doi: 10.1128/IAI.66.4.1718-1725.1998. PubMed DOI PMC

Ahmad J.N., Cerny O., Linhartova I., Masin J., Osicka R., Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell. Microbiol. 2016;18:384–398. doi: 10.1111/cmi.12519. PubMed DOI

Ahmad J.N., Holubova J., Benada O., Kofronova O., Stehlik L., Vasakova M., Sebo P. Bordetella Adenylate Cyclase Toxin Inhibits Monocyte-to-Macrophage Transition and Dedifferentiates Human Alveolar Macrophages into Monocyte-like Cells. mBio. 2019;10:e01743-19. doi: 10.1128/mBio.01743-19. PubMed DOI PMC

Ahmad J.N., Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front. Immunol. 2020;11:2181. doi: 10.3389/fimmu.2020.02181. PubMed DOI PMC

Gordon V.M., Young W.W., Jr., Lechler S.M., Gray M.C., Leppla S.H., Hewlett E.L. Adenylate cyclase toxins from Bacillus anthracis and Bordetella pertussis. Different processes for interaction with and entry into target cells. J. Biol. Chem. 1989;264:14792–14796. doi: 10.1016/S0021-9258(18)63769-X. PubMed DOI

Sheppard D. Airway epithelial integrins: Why so many? Am. J. Respir. Cell Mol. Biol. 1998;19:349–351. doi: 10.1165/ajrcmb.19.3.f144. PubMed DOI

Sheppard D. Functions of pulmonary epithelial integrins: From development to disease. Physiol. Rev. 2003;83:673–686. doi: 10.1152/physrev.00033.2002. PubMed DOI

Eby J.C., Gray M.C., Warfel J.M., Paddock C.D., Jones T.F., Day S.R., Bowden J., Poulter M.D., Donato G.M., Merkel T.J., et al. Quantification of the adenylate cyclase toxin of Bordetella pertussis in vitro and during respiratory infection. Infect. Immun. 2013;81:1390–1398. doi: 10.1128/IAI.00110-13. PubMed DOI PMC

Locht C., Coutte L., Mielcarek N. The ins and outs of pertussis toxin. FEBS J. 2011;278:4668–4682. doi: 10.1111/j.1742-4658.2011.08237.x. PubMed DOI

Armstrong G.D., Howard L.A., Peppler M.S. Use of glycosyltransferases to restore pertussis toxin receptor activity to asialoagalactofetuin. J. Biol. Chem. 1988;263:8677–8684. doi: 10.1016/S0021-9258(18)68358-9. PubMed DOI

el Baya A., Linnemann R., von Olleschik-Elbheim L., Robenek H., Schmidt M.A. Endocytosis and retrograde transport of pertussis toxin to the Golgi complex as a prerequisite for cellular intoxication. Eur. J. Cell Biol. 1997;73:40–48. PubMed

Kugler S., Bocker K., Heusipp G., Greune L., Kim K.S., Schmidt M.A. Pertussis toxin transiently affects barrier integrity, organelle organization and transmigration of monocytes in a human brain microvascular endothelial cell barrier model. Cell. Microbiol. 2007;9:619–632. doi: 10.1111/j.1462-5822.2006.00813.x. PubMed DOI

Plaut R.D., Carbonetti N.H. Retrograde transport of pertussis toxin in the mammalian cell. Cell. Microbiol. 2008;10:1130–1139. doi: 10.1111/j.1462-5822.2007.01115.x. PubMed DOI

Banerjee T., Cilenti L., Taylor M., Showman A., Tatulian S.A., Teter K. Thermal Unfolding of the Pertussis Toxin S1 Subunit Facilitates Toxin Translocation to the Cytosol by the Mechanism of Endoplasmic Reticulum-Associated Degradation. Infect. Immun. 2016;84:3388–3398. doi: 10.1128/IAI.00732-16. PubMed DOI PMC

Hazes B., Read R.J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry. 1997;36:11051–11054. doi: 10.1021/bi971383p. PubMed DOI

Ernst K., Eberhardt N., Mittler A.K., Sonnabend M., Anastasia A., Freisinger S., Schiene-Fischer C., Malesevic M., Barth H. Pharmacological Cyclophilin Inhibitors Prevent Intoxication of Mammalian Cells with Bordetella pertussis Toxin. Toxins. 2018;10:181. doi: 10.3390/toxins10050181. PubMed DOI PMC

Ernst K., Mittler A.K., Winkelmann V., Kling C., Eberhardt N., Anastasia A., Sonnabend M., Lochbaum R., Wirsching J., Sakari M., et al. Pharmacological targeting of host chaperones protects from pertussis toxin in vitro and in vivo. Sci. Rep. 2021;11:5429. doi: 10.1038/s41598-021-84817-2. PubMed DOI PMC

Katada T., Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc. Natl. Acad. Sci. USA. 1982;79:3129–3133. doi: 10.1073/pnas.79.10.3129. PubMed DOI PMC

Pittman M. The concept of pertussis as a toxin-mediated disease. Pediatric Infect. Dis. 1984;3:467–486. doi: 10.1097/00006454-198409000-00019. PubMed DOI

Mangmool S., Kurose H. G(i/o) protein-dependent and -independent actions of Pertussis Toxin (PTX) Toxins. 2011;3:884–899. doi: 10.3390/toxins3070884. PubMed DOI PMC

Carbonetti N.H. Pertussis leukocytosis: Mechanisms, clinical relevance and treatment. Pathog. Dis. 2016;74:ftw087. doi: 10.1093/femspd/ftw087. PubMed DOI PMC

Paddock C.D., Sanden G.N., Cherry J.D., Gal A.A., Langston C., Tatti K.M., Wu K.H., Goldsmith C.S., Greer P.W., Montague J.L., et al. Pathology and pathogenesis of fatal Bordetella pertussis infection in infants. Clin. Infect. Dis. 2008;47:328–338. doi: 10.1086/589753. PubMed DOI

Winter K., Zipprich J., Harriman K., Murray E.L., Gornbein J., Hammer S.J., Yeganeh N., Adachi K., Cherry J.D. Risk Factors Associated With Infant Deaths From Pertussis: A Case-Control Study. Clin. Infect. Dis. 2015;61:1099–1106. doi: 10.1093/cid/civ472. PubMed DOI

Whitsett J.A., Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 2015;16:27–35. doi: 10.1038/ni.3045. PubMed DOI PMC

Derrien M., van Passel M.W., van de Bovenkamp J.H., Schipper R.G., de Vos W.M., Dekker J. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes. 2010;1:254–268. doi: 10.4161/gmic.1.4.12778. PubMed DOI PMC

Samet J.M., Cheng P.W. The role of airway mucus in pulmonary toxicology. Env. Health Perspect. 1994;102(Suppl. 2):89–103. doi: 10.1289/ehp.9410289. PubMed DOI PMC

van Putten J.P.M., Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J. Innate Immun. 2017;9:281–299. doi: 10.1159/000453594. PubMed DOI PMC

Andrianifahanana M., Moniaux N., Batra S.K. Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Et Biophys. Acta. 2006;1765:189–222. doi: 10.1016/j.bbcan.2006.01.002. PubMed DOI

Fahy J.V., Dickey B.F. Airway mucus function and dysfunction. N. Engl. J. Med. 2010;363:2233–2247. doi: 10.1056/NEJMra0910061. PubMed DOI PMC

Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1:e24997. doi: 10.4161/tisb.24997. PubMed DOI PMC

Belcher C.E., Drenkow J., Kehoe B., Gingeras T.R., McNamara N., Lemjabbar H., Basbaum C., Relman D.A. The transcriptional responses of respiratory epithelial cells to Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. Proc. Natl. Acad. Sci. USA. 2000;97:13847–13852. doi: 10.1073/pnas.230262797. PubMed DOI PMC

Hasan S., Kulkarni N.N., Asbjarnarson A., Linhartova I., Osicka R., Sebo P., Gudmundsson G.H. Bordetella pertussis Adenylate Cyclase Toxin Disrupts Functional Integrity of Bronchial Epithelial Layers. Infect. Immun. 2018;86:e00445-17. doi: 10.1128/IAI.00445-17. PubMed DOI PMC

Barovsky K., Pedone C., Brooker G. Distinct mechanisms of forskolin-stimulated cyclic AMP accumulation and forskolin-potentiated hormone responses in C6-2B cells. Mol. Pharmacol. 1984;25:256–260. PubMed

Kim S.W., Hong J.S., Ryu S.H., Chung W.C., Yoon J.H., Koo J.S. Regulation of mucin gene expression by CREB via a nonclassical retinoic acid signaling pathway. Mol. Cell Biol. 2007;27:6933–6947. doi: 10.1128/MCB.02385-06. PubMed DOI PMC

Tyson D.R., Swarthout J.T., Partridge N.C. Increased osteoblastic c-fos expression by parathyroid hormone requires protein kinase A phosphorylation of the cyclic adenosine 3′,5′-monophosphate response element-binding protein at serine 133. Endocrinology. 1999;140:1255–1261. doi: 10.1210/endo.140.3.6567. PubMed DOI

Cerny O., Kamanova J., Masin J., Bibova I., Skopova K., Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J. Immunol. 2015;194:4901–4913. doi: 10.4049/jimmunol.1402941. PubMed DOI

Bagley K.C., Abdelwahab S.F., Tuskan R.G., Fouts T.R., Lewis G.K. Pertussis toxin and the adenylate cyclase toxin from Bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J. Leukoc. Biol. 2002;72:962–969. PubMed

Xie F., Li B.X., Kassenbrock A., Xue C., Wang X., Qian D.Z., Sears R.C., Xiao X. Identification of a Potent Inhibitor of CREB-Mediated Gene Transcription with Efficacious in Vivo Anticancer Activity. J. Med. Chem. 2015;58:5075–5087. doi: 10.1021/acs.jmedchem.5b00468. PubMed DOI PMC

Li B.X., Gardner R., Xue C., Qian D.Z., Xie F., Thomas G., Kazmierczak S.C., Habecker B.A., Xiao X. Systemic Inhibition of CREB is Well-tolerated in vivo. Sci. Rep. 2016;6:34513. doi: 10.1038/srep34513. PubMed DOI PMC

Rogel A., Hanski E. Distinct steps in the penetration of adenylate cyclase toxin of Bordetella pertussis into sheep erythrocytes. Translocation of the toxin across the membrane. J. Biol. Chem. 1992;267:22599–22605. doi: 10.1016/S0021-9258(18)41715-2. PubMed DOI

Dal Molin F., Tonello F., Ladant D., Zornetta I., Zamparo I., Di Benedetto G., Zaccolo M., Montecucco C. Cell entry and cAMP imaging of anthrax edema toxin. EMBO J. 2006;25:5405–5413. doi: 10.1038/sj.emboj.7601408. PubMed DOI PMC

Teter K. Intracellular Trafficking and Translocation of Pertussis Toxin. Toxins. 2019;11:437. doi: 10.3390/toxins11080437. PubMed DOI PMC

Eby J.C., Ciesla W.P., Hamman W., Donato G.M., Pickles R.J., Hewlett E.L., Lencer W.I. Selective translocation of the Bordetella pertussis adenylate cyclase toxin across the basolateral membranes of polarized epithelial cells. J. Biol. Chem. 2010;285:10662–10670. doi: 10.1074/jbc.M109.089219. PubMed DOI PMC

Guevara C., Zhang C., Gaddy J.A., Iqbal J., Guerra J., Greenberg D.P., Decker M.D., Carbonetti N., Starner T.D., McCray P.B., Jr., et al. Highly differentiated human airway epithelial cells: A model to study host cell-parasite interactions in pertussis. Infect. Dis. 2016;48:177–188. doi: 10.3109/23744235.2015.1100323. PubMed DOI PMC

Zhu Y., Abdullah L.H., Doyle S.P., Nguyen K., Ribeiro C.M., Vasquez P.A., Forest M.G., Lethem M.I., Dickey B.F., Davis C.W. Baseline Goblet Cell Mucin Secretion in the Airways Exceeds Stimulated Secretion over Extended Time Periods, and Is Sensitive to Shear Stress and Intracellular Mucin Stores. PLoS ONE. 2015;10:e0127267. doi: 10.1371/journal.pone.0127267. PubMed DOI PMC

Stanek O., Masin J., Osicka R., Jurnecka D., Osickova A., Sebo P. Rapid Purification of Endotoxin-Free RTX Toxins. Toxins. 2019;11:336. doi: 10.3390/toxins11060336. PubMed DOI PMC

Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Pizza M., Covacci A., Bartoloni A., Perugini M., Nencioni L., De Magistris M.T., Villa L., Nucci D., Manetti R., Bugnoli M., et al. Mutants of pertussis toxin suitable for vaccine development. Science. 1989;246:497–500. doi: 10.1126/science.2683073. PubMed DOI

Bumba L., Masin J., Macek P., Wald T., Motlova L., Bibova I., Klimova N., Bednarova L., Veverka V., Kachala M., et al. Calcium-Driven Folding of RTX Domain beta-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol. Cell. 2016;62:47–62. doi: 10.1016/j.molcel.2016.03.018. PubMed DOI

Lee S.J., Gray M.C., Guo L., Sebo P., Hewlett E.L. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect. Immun. 1999;67:2090–2095. doi: 10.1128/IAI.67.5.2090-2095.1999. PubMed DOI PMC

Bankhead P., Loughrey M.B., Fernandez J.A., Dombrowski Y., McArt D.G., Dunne P.D., McQuaid S., Gray R.T., Murray L.J., Coleman H.G., et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017;7:16878. doi: 10.1038/s41598-017-17204-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...