Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota

. 2022 ; 13 () : 1038328. [epub] 20230109

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36703968

INTRODUCTION: Probiotic administration seems to be a rational approach to promote maturation of the neonatal immune system. Mutual interaction of the microbiota with the host immune system is critical for the setting of appropriate immune responses including a tolerogenic one and thevmaintenance of homeostasis. On the other hand, our knowledge on the modes of actions of probiotics is still scarce. METHODS: In our study, probiotic strain Escherichia coli O83:K24:H31 (EcO83) was administered to neonates of allergic mothers (AMs; neonates with increased risk for allergy development) within 48 h after the delivery, and the impact of this early postnatal supplementation on allergy incidence and selected immune markers has been analyzed 10 years after the primary EcO83 administration. RESULTS: We have observed decreased allergy incidence in 10-year-old children supplemented with EcO83 (13 of 52 children were allergic) in comparison with non-supplemented children of AMs (16 of 42 children were allergic). The early postnatal EcO83 supplementation appeared to limit the allergy in the high-risk group (children of AMs) compared to that in the low-risk group (children of healthy mothers). Dendritic cells (DCs) in the peripheral blood of EcO83-supplemented children do not differ significantly in cell surface presence of CD83. The immunomodulatory capacity of EcO83 on DCs was tested in vitro as well. Both directly isolated myeloid and in vitro monocyte-derived DCs from cord blood increased CD83 expression together with interleukin (IL)-10 secretion after EcO83 stimulation. The effect of early postnatal EcO83 supplementation on the microbiota composition of 10-year-old children was characterized by next-generation sequencing, and we have not observed significant changes in the microbiota composition of EcO83-supplemented and non-supplemented children at the age of 10 years. CONCLUSIONS: Early postnatal EcO83 supplementation appears to lower allergy incidence in children of AMs. It seems that the beneficial effect of EcO83 is mediated via modulation of DC functional capacities without impacting the microbiota composition. Larger-scale studies will be necessary to confirm these preliminary findings.

Zobrazit více v PubMed

Prokešová L, Novotná O, Janatková I, Zanvit P, Žižka J, Lodinová-Žádníková R, et al. . IgE against food and respiratory allergens in healthy and allergic mothers and their children. Folia Microbiol (2008) 53:67–72. doi: 10.1007/s12223-008-0010-5 PubMed DOI

Hrdý J, Zanvit P, Novotná O, Kocourková I, Zižka ,J, Prokešová L. Cytokine expression in cord blood cells of children of healthy and allergic mothers. Folia Microbiol (2010) 55:515–9. doi: 10.1007/s12223-010-0085-7 PubMed DOI

Lohonková A, Novotná O, Petrásková P, Boráková K, Prokešová L, Hrdý J. Maternal allergy status has no impact on neonatal immune responses to allergen stimuli. Folia Biol (2019) 65:221–6. PubMed

Contreras JP, Ly NP, Gold DR, He H, Wand M, Weiss ST, et al. . Allergen-induced cytokine production, atopic disease, IgE, and wheeze in children. J Allergy Clin Immunol (2003) 112(6):1072–7. doi: 10.1016/j.jaci.2003.08.036 PubMed DOI

Pellerin L, Jenks JA, Chinthrajah S, Dominguez T, Block W, Zhou X, et al. . Peanut-specific type 1 regulatory T cells induced in vitro from allergic subjects are functionally impaired. J Allergy Clin Immunol (2018) 141(1):202–13.e8. doi: 10.1016/j.jaci.2017.05.045 PubMed DOI

Soboslay PT, Orlikowsky T, Huang X, Gille C, Spring B, Kocherscheidt L, et al. . Cellular gene expression induced by parasite antigens and allergens in neonates from parasite-infected mothers. Mol Immunol (2016) 73:98–111. doi: 10.1016/j.molimm.2016.03.015 PubMed DOI

Zizka J, Hrdy J, Lodinova-Zadnikova R, Kocourkova I, Novotna O, Sterzl I, et al. . Effect of breast milk of healthy and allergic mothers on in vitro stimulation of cord blood lymphocytes. Pediatr Allergy Immunol (2007) 18(6):486–94. doi: 10.1111/j.1399-3038.2007.00563.x PubMed DOI

Suzuki S, Campos-Alberto E, Morita Y, Yamaguchi M, Toshimitsu T, Kimura K, et al. . Low interleukin 10 production at birth is a risk factor for atopic dermatitis in neonates with bifidobacterium colonization. Int Arch Allergy Immunol (2018) 177(4):342–9. doi: 10.1159/000492130 PubMed DOI

Cerny V, Hrdy J, Novotna O, Petraskova P, Borakova K, Kolarova L, et al. . Distinct characteristics of tregs of newborns of healthy and allergic mothers. PloS One (2018) 13(11):e0207998. doi: 10.1371/journal.pone.0207998 PubMed DOI PMC

Hrdy J, Kocourkova I, Prokesova L. Impaired function of regulatory T cells in cord blood of children of allergic mothers. Clin Exp Immunol (2012) 170(1):10–7. doi: 10.1111/j.1365-2249.2012.04630.x PubMed DOI PMC

Strombeck A, Rabe H, Lundell AC, Andersson K, Johansen S, Adlerberth I, et al. . High proportions of FOXP3(+) CD25(high) T cells in neonates are positively associated with allergic sensitization later in childhood. Clin Exp Allergy (2014) 44(7):940–52. doi: 10.1111/cea.12290 PubMed DOI PMC

Asai Y, Eslami A, van Ginkel CD, Akhabir L, Wan M, Ellis G, et al. . Genome-wide association study and meta-analysis in multiple populations identifies new loci for peanut allergy and establishes C11orf30/EMSY as a genetic risk factor for food allergy. J Allergy Clin Immunol (2018) 141(3):991–1001. doi: 10.1016/j.jaci.2017.09.015 PubMed DOI

Černý V, Novotná O, Petrásková P, Hudcová K, Boráková K, Prokešová L, et al. . Lower functional and proportional characteristics of cord blood treg of Male newborns compared with female newborns. Biomedicines (2021) 9(2):170. doi: 10.3390/biomedicines9020170 PubMed DOI PMC

Hrdy J, Novotna O, Kocourkova I, Prokesova L. The effect of the colostral cells on gene expression of cytokines in cord blood cells. Folia Microbiol (Praha). (2017) 62(6):479–83. doi: 10.1007/s12223-017-0519-6 PubMed DOI

Hrdy J, Novotna O, Kocourkova I, Prokesova L. Cytokine expression in the colostral cells of healthy and allergic mothers. Folia Microbiol (Praha). (2012) 57(3):215–9. doi: 10.1007/s12223-012-0112-y PubMed DOI

Rigotti E, Piacentini GL, Ress M, Pigozzi R, Boner AL, Peroni DG. Transforming growth factor-beta and interleukin-10 in breast milk and development of atopic diseases in infants. Clin Exp Allergy (2006) 36:614–8. doi: 10.1111/j.1365-2222.2006.02483.x PubMed DOI

Prescott SL, King B, Strong TL, Holt PG. The value of perinatal immune responses in predicting allergic disease at 6 years of age. Allergy (2003) 58:1187–94. doi: 10.1034/j.1398-9995.2003.00263.x PubMed DOI

Amenyogbe N, Kollmann TR, Ben-Othman R. Early-life host-microbiome interphase: The key frontier for immune development. Front Pediatr (2017) 5:111. doi: 10.3389/fped.2017.00111 PubMed DOI PMC

Dzidic M, Boix-Amoros A, Selma-Royo M, Mira A, Collado MC. Gut microbiota and mucosal immunity in the neonate. Med Sci (Basel). (2018) 6(3):1–23. doi: 10.3390/medsci6030056 PubMed DOI PMC

Tischer C, Kirjavainen P, Matterne U, Tempes J, Willeke K, Keil T, et al. . Interplay between natural environment, human microbiota and immune system: A scoping review of interventions and future perspectives towards allergy prevention. Sci Total Environment (2022) 821:153422. doi: 10.1016/j.scitotenv.2022.153422 PubMed DOI

Dogra S, Sakwinska O, Soh SE, Ngom-Bru C, Bruck WM, Berger B, et al. . Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio (2015) 6(1):1–9. doi: 10.1128/mBio.02419-14 PubMed DOI PMC

Plunkett CH, Nagler CR. The influence of the microbiome on allergic sensitization to food. J Immunol (2017) 198(2):581–9. doi: 10.4049/jimmunol.1601266 PubMed DOI PMC

Humeniuk P, Dubiela P, Hoffmann-Sommergruber K. Dendritic cells and their role in allergy: Uptake, proteolytic processing and presentation of allergens. Int J Mol Sci (2017) 18(7):1–13. doi: 10.3390/ijms18071491 PubMed DOI PMC

Bratke K, Lommatzsch M, Julius P, Kuepper M, Kleine HD, Luttmann W, et al. . Dendritic cell subsets in human bronchoalveolar lavage fluid after segmental allergen challenge. Thorax (2007) 62(2):168–75. doi: 10.1136/thx.2006.067793 PubMed DOI PMC

Farkas L, Kvale EO, Johansen FE, Jahnsen FL, Lund-Johansen F. Plasmacytoid dendritic cells activate allergen-specific TH2 memory cells: modulation by CpG oligodeoxynucleotides. J Allergy Clin Immunol (2004) 114(2):436–43. doi: 10.1016/j.jaci.2004.04.035 PubMed DOI

Peng YQ, Qin ZL, Fang SB, Xu ZB, Zhang HY, Chen D, et al. . Effects of myeloid and plasmacytoid dendritic cells on ILC2s in patients with allergic rhinitis. J Allergy Clin Immunol (2020) 145(3):855–867.e8. doi: 10.1016/j.jaci.2019.11.029 PubMed DOI

Mo JH, Chung YJ, Hayashi T, Lee J, Raz E. The role of plasmacytoid and myeloid dendritic cells in induction of asthma in a mouse model and the effect of a TLR9 agonist on dendritic cells. Allergy Asthma Immunol Res (2011) 3(3):199–204. doi: 10.4168/aair.2011.3.3.199 PubMed DOI PMC

Hashizume H, Horibe T, Yagi H, Seo N, Takigawa M. Compartmental imbalance and aberrant immune function of blood CD123+ (Plasmacytoid) and CD11c+ (Myeloid) dendritic cells in atopic dermatitis. J Immunol (2005) 174(4):2396–403. doi: 10.4049/jimmunol.174.4.2396 PubMed DOI

Lynch JP, Mazzone SB, Rogers MJ, Arikkatt JJ, Loh Z, Pritchard AL, et al. . The plasmacytoid dendritic cell: at the cross-roads in asthma. Eur Resp J (2014) 43:264–75. doi: 10.1183/09031936.00203412 PubMed DOI

Peng YQ, Chen DH, Xu ZB, Fang SB, He BX, Liu XQ, et al. . IL-33 receptor expression on myeloid and plasmacytoid dendritic cells after allergen challenge in patients with allergic rhinitis. Int Immunopharmacol (2021) 101:108233. doi: 10.1016/j.intimp.2021.108233 PubMed DOI

Morandi B, Agazzi A, D'Agostino A, Antonini F, Costa G, Sabatini F, et al. . A mixture of bacterial mechanical lysates is more efficient than single strain lysate and of bacterial-derived soluble products for the induction of an activating phenotype in human dendritic cells. Immunol Lett (2011) 138(1):86–91. doi: 10.1016/j.imlet.2011.03.006 PubMed DOI

Hrdy J, Alard J, Couturier-Maillard A, Boulard O, Boutillier D, Delacre M, et al. . Lactobacillus reuteri 5454 and bifidobacterium animalis ssp. lactis 5764 improve colitis while differentially impacting dendritic cells maturation and antimicrobial responses. Sci Rep (2020) 10(1):5345. doi: 10.1038/s41598-020-62161-1 PubMed DOI PMC

Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, et al. . Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A. (2010) 107(5):2159–64. doi: 10.1073/pnas.0904055107 PubMed DOI PMC

West CE, Hammarstrom ML, Hernell O. Probiotics during weaning reduce the incidence of eczema. Pediatr Allergy Immunol (2009) 20(5):430–7. doi: 10.1111/j.1399-3038.2009.00745.x PubMed DOI

Salehipour Z, Haghmorad D, Sankian M, Rastin M, Nosratabadi R, Soltan Dallal MM, et al. . Bifidobacterium animalis in combination with human origin of lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. BioMed Pharmacother (2017) 95:1535–48. doi: 10.1016/j.biopha.2017.08.117 PubMed DOI

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. . Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell (2009) 139(3):485–98. doi: 10.1016/j.cell.2009.09.033 PubMed DOI PMC

Tan TG, Sefik E, Geva-Zatorsky N, Kua L, Naskar D, Teng F, et al. . Identifying species of symbiont bacteria from the human gut that, alone, can induce intestinal Th17 cells in mice. Proc Natl Acad Sci U S A. (2016) 113(50):E8141–E50. doi: 10.1073/pnas.1617460113 PubMed DOI PMC

Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. . Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature (2013) 500(7461):232–6. doi: 10.1038/nature12331 PubMed DOI

Shin JH, Chung MJ, Seo JG. A multistrain probiotic formulation attenuates skin symptoms of atopic dermatitis in a mouse model through the generation of CD4(+)Foxp3(+) T cells. Food Nutr Res (2016) 60:32550. doi: 10.3402/fnr.v60.32550 PubMed DOI PMC

Lim SK, Kwon MS, Lee J, Oh YJ, Jang JY, Lee JH, et al. . Weissella cibaria WIKIM28 ameliorates atopic dermatitis-like skin lesions by inducing tolerogenic dendritic cells and regulatory T cells in BALB/c mice. Sci Rep (2017) 7:40040. doi: 10.1038/srep40040 PubMed DOI PMC

Lodinova-Zadnikova R, Cukrowska B, Tlaskalova-Hogenova H. Oral administration of probiotic escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 years). Int Arch Allergy Immunol (2003) 131(3):209–11. doi: 10.1159/000071488 PubMed DOI

Hrdy J, Kocourkova I, Lodinova-Zadnikova R, Kolarova L, Prokesova L. The effect of a probiotic escherichia coli strain on regulatory T-cells in six year-old children. Benef Microbes (2016) 7(5):639–48. doi: 10.3920/BM2016.0030 PubMed DOI

Hrdy J, Vlasakova K, Cerny V, Sukenikova L, Novotna O, Petraskova P, et al. . Decreased allergy incidence in children supplemented with e. coli O83:K24:H31 and its possible modes of action. Eur J Immunol (2018) 48(12):2015–30. doi: 10.1002/eji.201847636 PubMed DOI

Lodinova-Zadnikova R, Prokesova L, Kocourkova I, Hrdy J, Zizka J. Prevention of allergy in infants of allergic mothers by probiotic escherichia coli. Int Arch Allergy Immunol (2010) 153(2):201–6. doi: 10.1159/000312638 PubMed DOI

Hrdý J, Novotná O, Kocourková I, Prokešová L. Gene expression of subunits of the IL- 12 family cytokines in moDCs derived in vitro from the cord blood of children of healthy and allergic mothers. Folia Biol (2014) 60:74–82. PubMed

Kim PH, Kagnoff MF. Transforming growth factor beta 1 increases IgA isotype switching at the clonal level. J Immunol (1990) 145(11):3773–8. PubMed

Stavnezer J. Antibody class switching. Adv Immunol (1996) 61:79–146. doi: 10.1016/S0065-2776(08)60866-4 PubMed DOI

Hanson LA, Söderström T. Human milk: Defense against infection. Prog Clin Biol Res (1981) 61:147–59. PubMed

Wiedermann D, Wiedermannová D. The development of three major immunoglobulin serum levels in healthy children between 2 and 16 years of age with regard to sex. Physiol Bohemoslov (1981) 30(4):315–22. PubMed

Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, et al. . Plasmacytoid dendritic cells drive acute asthma exacerbations. J Allergy Clin Immunol (2018) 142(2):542–56.e12. doi: 10.1016/j.jaci.2017.08.032 PubMed DOI

Wopereis H, Sim K, Shaw A, Warner JO, Knol J, Kroll JS. Intestinal microbiota in infants at high risk for allergy: Effects of prebiotics and role in eczema development. J Allergy Clin Immunol (2018) 141(4):1334–42.e5. doi: 10.1016/j.jaci.2017.05.054 PubMed DOI

Fuseini H, Newcomb DC. Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep (2017) 17(3):19. doi: 10.1007/s11882-017-0686-1 PubMed DOI PMC

Pinart M, Keller T, Reich A, Fröhlich M, Cabieses B, Hohmann C, et al. . Sex-related allergic rhinitis prevalence switch from childhood to adulthood: A systematic review and meta-analysis. Int Arch Allergy Immunol (2017) 172(4):224–35. doi: 10.1159/000464324 PubMed DOI

Loh W, Tang MLK. The epidemiology of food allergy in the global context. Int J Environ Res Public Health (2018) 15(9):1–8. doi: 10.3390/ijerph15092043 PubMed DOI PMC

Lee S, Hess EP, Lohse C, Gilani W, Chamberlain AM, Campbell RL. Trends, characteristics, and incidence of anaphylaxis in 2001-2010: A population-based study. J Allergy Clin Immunol (2017) 139(1):182–8.e2. doi: 10.1016/j.jaci.2016.04.029 PubMed DOI PMC

Akdis CA, Akdis M. Mechanisms of allergen-specific immunotherapy and immune tolerance to allergens. World Allergy Organ J (2015) 8(1):17. doi: 10.1186/s40413-015-0063-2 PubMed DOI PMC

Akdis CA, Akdis M. Mechanisms of immune tolerance to allergens: role of IL-10 and tregs. J Clin Invest. (2014) 124(11):4678–80. doi: 10.1172/JCI78891 PubMed DOI PMC

Gunaydin NC, Azarsiz E, Susluer SY, Kutukculer N, Gunduz C, Gulen F, et al. . Immunological changes during desensitization with cow's milk: how differ from natural tolerance or nonallergic state? Ann allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol (2022) 128(6):P751–757. doi: 10.1016/j.anai.2022.07.022 PubMed DOI

Navas A, Ruiz-Leon B, Serrano P, Martí M, Espinazo ML, Blanco N, et al. . Natural and induced tolerance to hymenoptera venom: A single mechanism? Toxins (2022) 14(7):1–17. doi: 10.3390/toxins14070426 PubMed DOI PMC

Wisniewski J, Agrawal R, Woodfolk JA. Mechanisms of tolerance induction in allergic disease: integrating current and emerging concepts. Clin Exp Allergy (2013) 43(2):164–76. doi: 10.1111/cea.12016 PubMed DOI PMC

Sierra S, Lara-Villoslada F, Sempere L, Olivares M, Boza J, Xaus J. Intestinal and immunological effects of daily oral administration of lactobacillus salivarius CECT5713 to healthy adults. Anaerobe (2010) 16(3):195–200. doi: 10.1016/j.anaerobe.2010.02.001 PubMed DOI

Pessi T, Sütas Y, Hurme M, Isolauri E. Interleukin-10 generation in AtopicChildren following oral lactobacillus rhamnosus GG. Clin Exp Allergy (2000) 30:1804–8. doi: 10.1046/j.1365-2222.2000.00948.x PubMed DOI

Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. . Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science (2015) 350(6264):1084–9. doi: 10.1126/science.aac4255 PubMed DOI PMC

Górska A, Przystupski D, Niemczura MJ, Kulbacka J. Probiotic bacteria: APromising tool in cancer prevention and therapy. Curr Microbiol (2019) 76:939–49. doi: 10.1007/s00284-019-01679-8 PubMed DOI PMC

Groele L, Szajewska H, Szypowska A. Effects of lactobacillus rhamnosus GG and bifidobacterium lactis Bb12 on beta-cell function in children with newly diagnosed type 1 diabetes: protocol of a randomised controlled trial. BMJ Open (2017) 7(10):e017178. doi: 10.1136/bmjopen-2017-017178 PubMed DOI PMC

Kalliomäki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet (2001) 357(9262):1076–9. doi: 10.1016/S0140-6736(00)04259-8 PubMed DOI

Ouwehand AC, Nermes M, Collado MC, Rautonen N, Salminen S, Isolauri E. Specific probiotics alleviate allergic rhinitis during the birch pollen season. World J Gastroenterol (2009) 15(26):3261–8. doi: 10.3748/wjg.15.3261 PubMed DOI PMC

Abdel-Gadir A, Massoud AH, Chatila TA. Antigen-specific treg cells in immunological tolerance: implications for allergic diseases. F1000Res (2018) 7:38. doi: 10.12688/f1000research.12650.1 PubMed DOI PMC

Holvoet S, Zuercher AW, Julien-Javaux F, Perrot M, Mercenier A. Characterization ofcandidate anti-allergic probiotic strains in a model of th2-skewed human peripheral bloodmononuclear cells. Int Arch Allergy Immunol (2013) 161(2):142–54. doi: 10.1159/000343703 PubMed DOI

Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, et al. . Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells. Gut (2012) 61(3):354–66. doi: 10.1136/gutjnl-2011-300936 PubMed DOI

Kim J, Lee BS, Kim B, Na I, Lee J, Lee JY, et al. . Identification of atopic dermatitis phenotypes with good responses to probiotics (Lactobacillus plantarum CJLP133) in children. Benef Microbes (2017) 8(5):755–61. doi: 10.3920/BM2017.0034 PubMed DOI

Hartl D, Koller B, Mehlhorn AT, Reinhardt D, Nicolai T, Schendel DJ, et al. . Quantitative and functional impairment of pulmonary CD4+CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol (2007) 119(5):1258–66. doi: 10.1016/j.jaci.2007.02.023 PubMed DOI

Provoost S, Maes T, Van Durme YM, Gevaert P, Bachert C, Schmidt-Weber CB, et al. . Decreased FOXP3 protein expression in patients with asthma. Allergy (2009) 64(10):1539–46. doi: 10.1111/j.1398-9995.2009.02056.x PubMed DOI

Stelmaszczyk-Emmel A, Zawadzka-Krajewska A, Szypowska A, Kulus M, Demkow U. Frequency and activation of CD4+CD25high FoxP3+ regulatory T cells in peripheral blood from children with atopic allergy. Int Arch Allergy Immunol (2013) 162(1):16–24. doi: 10.1159/000350769 PubMed DOI

Maggi L, Santarlasci V, Liotta F, Frosali F, Angeli R, Cosmi L, et al. . Demonstration of circulating allergen-specific CD4+CD25highFoxp3+ T-regulatory cells in both nonatopic and atopic individuals. J Allergy Clin Immunol (2007) 120(2):429–36. doi: 10.1016/j.jaci.2007.05.002 PubMed DOI

Roesner LM, Floess S, Witte T, Olek S, Huehn J, Werfel T. Foxp3(+) regulatory T cells are expanded in severe atopic dermatitis patients. Allergy (2015) 70(12):1656–60. doi: 10.1111/all.12712 PubMed DOI

Raedler D, Ballenberger N, Klucker E, Böck A, Otto R, Prazeres da Costa O, et al. . Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J Allergy Clin Immunol (2015) 135(1):81–91. doi: 10.1016/j.jaci.2014.07.046 PubMed DOI

Dang TD, Allen KJ D, JJ K, PV L, Tang ML. Food-allergic infants have impaired regulatory T-cell responses following in vivo allergen exposure. Pediatr Allergy Immunol (2016) 27(1):35–43. doi: 10.1111/pai.12498 PubMed DOI

Durant L, Watford WT, Ramos HL, Laurence A, Vahedi G, Wei L, et al. . Diverse targets of the transcription factor STAT3 contribute to T cell pathogenicity and homeostasis. Immunity (2010) 32(5):605–15. doi: 10.1016/j.immuni.2010.05.003 PubMed DOI PMC

Mobs C, Ipsen H, Mayer L, Slotosch C, Petersen A, Wurtzen PA, et al. . Birch pollen immunotherapy results in long-term loss of bet v 1-specific TH2 responses, transient TR1 activation, and synthesis of IgE-blocking antibodies. J Allergy Clin Immunol (2012) 130(5):1108–16.e6. doi: 10.1016/j.jaci.2012.07.056 PubMed DOI

Pietruczuk M, Eusebio M, Kraszula L, Kupczyk M, Kuna P. Phenotypic characterization of ex vivo CD4+CD25highCD127low immune regulatory T cells in allergic asthma: pathogenesis relevance of their FoxP3, GITR, CTLA-4 and FAS expressions. J Biol regulators homeostatic agents. (2012) 26(4):627–39. PubMed

Girtsman T, Jaffar Z, Ferrini M, Shaw P, Roberts K. Natural Foxp3(+) regulatory T cells inhibit Th2 polarization but are biased toward suppression of Th17-driven lung inflammation. J leukocyte Biol (2010) 88(3):537–46. doi: 10.1189/jlb.0110044 PubMed DOI PMC

Rosskopf S, Jahn-Schmid B, Schmetterer KG, Zlabinger GJ, Steinberger P. PD-1 has a unique capacity to inhibit allergen-specific human CD4(+) T cell responses. Sci Rep (2018) 8(1):13543. doi: 10.1038/s41598-018-31757-z PubMed DOI PMC

Gianchecchi E, Fierabracci A. Inhibitory receptors and pathways of lymphocytes: The role of PD-1 in treg development and their involvement in autoimmunity onset and cancer progression. Front Immunol (2018) 9:2374. doi: 10.3389/fimmu.2018.02374 PubMed DOI PMC

Boonpiyathad T, Satitsuksanoa P, Akdis M, Akdis CA. Il-10 producing T and b cells in allergy. Semin Immunol . (2019) 44:101326. doi: 10.1016/j.smim.2019.101326 PubMed DOI

Bilbao A, Pérez-Garay R, Rius I, Irurzun A, Terrén I, Orrantia A, et al. . Increased frequency of CTLA-4 and PD-1 expressing regulatory T cells and basophils with an activating profile in infants with moderate-to-severe atopic dermatitis hypersensitized to food allergens. Front Pediatr (2021) 9:734645. doi: 10.3389/fped.2021.734645 PubMed DOI PMC

Sukenikova L, Cerny V, Novotna O, Petraskova P, Borakova K, Kolarova L, et al. . Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain e. coli O83:K24:H31. Immunol Lett (2017) 189:82–9. doi: 10.1016/j.imlet.2017.05.013 PubMed DOI

Jaffar ZH, Stanciu L, Pandit A, Lordan J, Holgate ST, Roberts K. Essential role for both CD80 and CD86 costimulation, but not CD40 interactions, in allergen-induced Th2 cytokine production from asthmatic bronchial tissue: role for alphabeta, but not gammadelta, T cells. J Immunol (1999) 163(11):6283–91. PubMed

Mark DA, Donovan CE, De Sanctis GT, He HZ, Cernadas M, Kobzik L, et al. . B7-1 (CD80) and B7-2 (CD86) have complementary roles in mediating allergic pulmonary inflammation and airway hyperresponsiveness. Am J Respir Cell Mol Biol (2000) 22(3):265–71. doi: 10.1165/ajrcmb.22.3.3747 PubMed DOI

Súkeníková L, Černý V, Věcek J, Petrásková P, Novotná O, Vobruba Š, et al. . The impact of escherichia coli probiotic strain O83:K24:H31 on the maturation of dendritic cells and immunoregulatory functions in vitro and In vivo . Cells (2022) 11(10):1–18. doi: 10.3390/cells11101624 PubMed DOI PMC

Froidure A, Shen C, Pilette C. Dendritic cells revisited in human allergic rhinitis and asthma. Allergy (2016) 71(2):137–48. doi: 10.1111/all.12770 PubMed DOI

Yang X, Gao X. Role of dendritic cells: a step forward for the hygiene hypothesis. Cell Mol Immunol (2011) 8(1):12–8. doi: 10.1038/cmi.2010.51 PubMed DOI PMC

Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S, et al. . Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell (2018) 174(6):1388–405.e21. doi: 10.1016/j.cell.2018.08.041 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...