Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
PPN/BAT/2021/1/00004/U/00001
Narodowa Agencja Wymiany Akademickiej
CZ.02.01.01/00/22_010/0008115
OP JAK project MSCA fellowships CZ-UK2
23-04050L
Grantová Agentura České Republiky
Danube-Allergy Cluster (P17)
Amt der NÖ Landesregierung
CZ 04/2024
OeAD-GmbH
CZ 07/2023
OeAD-GmbH
CZ 15/2023
OeAD-GmbH
RS 08/2022
OeAD-GmbH
10.47379/LS20025
Vienna Science and Technology Fund
LM/29/SM
SciMat and qLife Priority Research Area under Strategic Programme Excellence Initiative "Laboratories for the Young"
P 34867
Austrian Science Fund
101066450
HORIZON EUROPE Marie Sklodowska-Curie Actions
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
39429019
PubMed Central
PMC11491762
DOI
10.1002/jev2.70004
Knihovny.cz E-zdroje
- Klíčová slova
- EVs, Ec083, NF‐κΒ signalling, bacterial extracellular vesicles, macrophage, nitric oxide, postbiotics, probiotic,
- MeSH
- aplikace intranazální * MeSH
- epitelové buňky metabolismus MeSH
- Escherichia coli * metabolismus MeSH
- extracelulární vezikuly * metabolismus MeSH
- lidé MeSH
- lymfoidní tkáň metabolismus MeSH
- makrofágy metabolismus MeSH
- myši MeSH
- NF-kappa B metabolismus MeSH
- oxidační stres MeSH
- plíce mikrobiologie metabolismus MeSH
- probiotika * aplikace a dávkování MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- NF-kappa B MeSH
Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.
Department of Clinical Medicine Aarhus University Aarhus Denmark
Department of Infectious Diseases Aarhus University Hospital Aarhus Denmark
Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences Wroclaw Poland
Institute of Nanostructured Materials CNR ISMN Bologna Italy
Zobrazit více v PubMed
Aderem, A. , & Ulevitch, R. J. (2000). Toll‐like receptors in the induction of the innate immune response. Nature, 406, 782–787. 10.1038/35021228 PubMed DOI
Andrabi, S. M. , Sharma, N. S. , Karan, A. , Shahriar, S. M. S. , Cordon, B. , Ma, B. , & Xie, J. (2023). Nitric oxide: Physiological functions, delivery, and biomedical applications. Advanced Science, 10, 2303259. 10.1002/advs.202303259 PubMed DOI PMC
Atri, C. , Guerfali, F. Z. , & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 19, 1801. 10.3390/ijms19061801 PubMed DOI PMC
Bakkari, M. A. , Valiveti, C. K. , Kaushik, R. S. , & Tummala, H. (2021). Toll‐like receptor‐4 (TLR4) agonist‐based intranasal nanovaccine delivery system for inducing systemic and mucosal immunity. Molecular Pharmaceutics, 18, 2233–2241. 10.1021/acs.molpharmaceut.0c01256 PubMed DOI
Bayarri, M. A. , Milara, J. , Estornut, C. , & Cortijo, J. (2021). Nitric oxide system and bronchial epithelium: More than a barrier. Frontiers in Physiology, 12, 687381. 10.3389/fphys.2021.687381 PubMed DOI PMC
Blenkiron, C. , Simonov, D. , Muthukaruppan, A. , Tsai, P. , Dauros, P. , Green, S. , Hong, J. , Print, C. G. , Swift, S. , & Phillips, A. R. (2016). Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS ONE, 11, e0160440. 10.1371/journal.pone.0160440 PubMed DOI PMC
Bogdan, C. (2015). Nitric oxide synthase in innate and adaptive immunity: An update. Trends in Immunology, 36, 161–178. 10.1016/j.it.2015.01.003 PubMed DOI
Brune, K. D. , Leneghan, D. B. , Brian, I. J. , Ishizuka, A. S. , Bachmann, M. F. , Draper, S. J. , Biswas, S. , & Howarth, M. (2016). Plug‐and‐display: Decoration of virus‐like Particles via isopeptide bonds for modular immunization. Scientific Reports, 6, 19234. 10.1038/srep19234 PubMed DOI PMC
Buzás, E. I. , Tóth, E. Á. , Sódar, B. W. , & Szabó‐Taylor, K. É. (2018). Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology, 40, 453–464. 10.1007/s00281-018-0682-0 PubMed DOI PMC
da Luz, B. S. R. , de Rezende Rodovalho, V. , Nicolas, A. , Chabelskaya, S. , Jardin, J. , Briard‐Bion, V. , Loir, Y. L. , de Carvalho Azevedo, V. A. , & Guédon, É. (2022). Impact of environmental conditions on the protein content of staphylococcus aureus and its derived extracellular vesicles. Microorganisms, 10, 1808. 10.3390/microorganisms10091808 PubMed DOI PMC
Daniel, C. , Repa, A. , Wild, C. , Pollak, A. , Pot, B. , Breiteneder, H. , Wiedermann, U. , & Mercenier, A. (2006). Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy, 61, 812–819. 10.1111/j.1398-9995.2006.01071.x PubMed DOI
DePamphilis, M. L. , & Adler, J. (1971). Purification of intact flagella from Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 105, 376–383. 10.1128/jb.105.1.376-383.1971 PubMed DOI PMC
Deville, S. , Berckmans, P. , Hoof, R. V. , Lambrichts, I. , Salvati, A. , & Nelissen, I. (2021). Comparison of extracellular vesicle isolation and storage methods using high‐sensitivity flow cytometry. PLoS ONE, 16, e0245835. 10.1371/journal.pone.0245835 PubMed DOI PMC
Dorrington, M. G. , & Fraser, I. D. C. (2019). NF‐κB signaling in macrophages: dynamics, crosstalk, and signal integration. Frontiers in Immunology, 10, 705. 10.3389/fimmu.2019.00705 PubMed DOI PMC
EnhancedVolcano: publication‐ready volcano plots with enhanced colouring and labeling . (n.d.). (accessed May 15, 2024) https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html
Fábrega, M. J. , Aguilera, L. , Giménez, R. , Varela, E. , Alexandra Cañas, M. , Antolín, M. , Badía, J. , & Baldomà, L. (2016). Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains. Frontiers in Microbiology, 7, 705. 10.3389/fmicb.2016.00705 PubMed DOI PMC
Futata, E. A. , Fusaro, A. E. , de Brito, C. A. , & Sato, M. N. (2012). The neonatal immune system: Immunomodulation of infections in early life. Expert Review of Anti‐Infective Therapy, 10, 289–298. 10.1586/eri.12.9 PubMed DOI
Götz, S. , García‐Gómez, J. M. , Terol, J. , Williams, T. D. , Nagaraj, S. H. , Nueda, M. J. , Robles, M. , Talón, M. , Dopazo, J. , & Conesa, A. (2008). High‐throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36, 3420–3435. 10.1093/nar/gkn176 PubMed DOI PMC
Guevara, I. , Iwanejko, J. , Dembińska‐Kieć, A. , Pankiewicz, J. , Wanat, A. , Anna, P. , Gołąbek, I. , Bartuś, S. , Malczewska‐Malec, M. , & Szczudlik, A. (1998). Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clinica Chimica Acta, 274, 177–188. 10.1016/S0009-8981(98)00060-6 PubMed DOI
Güttsches, A.‐K. , Löseke, S. , Zähringer, U. , Sonnenborn, U. , Enders, C. , Gatermann, S. , & Bufe, A. (2012). Anti‐inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun, 18, 204–216. 10.1177/1753425910396251 PubMed DOI
Hahn, E. , Wild, P. , Hermanns, U. , Sebbel, P. , Glockshuber, R. , Häner, M. , Taschner, N. , Burkhard, P. , Aebi, U. , & Müller, S. A. (2002). Exploring the 3D molecular architecture of Escherichia coli Type 1 Pili. Journal of Molecular Biology, 323, 845–857. 10.1016/S0022-2836(02)01005-7 PubMed DOI
Hammond, M. E. , Lapointe, G. R. , Feucht, P. H. , Hilt, S. , Gallegos, C. A. , Gordon, C. A. , Giedlin, M. A. , Mullenbach, G. , & Tekamp‐Olson, P. (1995). IL‐8 induces neutrophil chemotaxis predominantly via type I IL‐8 receptors. Journal of Immunology, 155, 1428–1433. PubMed
Hu, R. , Lin, H. , Li, J. , Zhao, Y. , Wang, M. , Sun, X. , Min, Y. , Gao, Y. , & Yang, M. (2020). Probiotic Escherichia coli Nissle 1917‐derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in RAW264.7 macrophages. BMC Microbiology, 20, 268. 10.1186/s12866-020-01953-x PubMed DOI PMC
Hu, R. , Lin, H. , Wang, M. , Zhao, Y. , Liu, H. , Min, Y. , Yang, X. , Gao, Y. , & Yang, M. (2021). Lactobacillus reuteri‐derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide‐induced inflammatory responses in broilers. Journal of Animal Science Biotechnology, 12, 25. 10.1186/s40104-020-00532-4 PubMed DOI PMC
Juodeikis, R. , Martins, C. , Saalbach, G. , Richardson, J. , Koev, T. , Baker, D. J. , Defernez, M. , Warren, M. , & Carding, S. R. (2024). Differential temporal release and lipoprotein loading in B. thetaiotaomicron bacterial extracellular vesicles. Journal of Extracellular Vesicles, 13, 12406. 10.1002/jev2.12406 PubMed DOI PMC
Kamińska, A. , Marzec, M. E. , & Stępień, E. Ł. (2021). Design and optimization of a biosensor surface functionalization to effectively capture urinary extracellular vesicles. Molecules (Basel, Switzerland), 26, 4764. 10.3390/molecules26164764 PubMed DOI PMC
Karch, H. , Leying, H. , Büscher, K. H. , Kroll, H. P. , & Opferkuch, W. (1985). Isolation and separation of physicochemically distinct fimbrial types expressed on a single culture of Escherichia coli O7:K1:H6. Infection and Immunity, 47, 549–554. 10.1128/iai.47.2.549-554.1985 PubMed DOI PMC
Kim, J. H. , Lee, J. , Park, J. , & Gho, Y. S. (2015). Gram‐negative and Gram‐positive bacterial extracellular vesicles. Seminars in Cell & Developmental Biology, 40, 97–104. 10.1016/j.semcdb.2015.02.006 PubMed DOI
Kocourková, I. , Žádníková, R. , Žižka, J. , & Rosová, V. (2007). Effect of oral application of a probioticE. coli strain on the intestinal microflora of children of allergic mothers during the first year of life. Folia Microbiology, 52, 189–193. 10.1007/BF02932158 PubMed DOI
Kothari, D. , Patel, S. , & Kim, S.‐K. (2019). Probiotic supplements might not be universally‐effective and safe: A review. Biomedicine & Pharmacotherapy, 111, 537–547. 10.1016/j.biopha.2018.12.104 PubMed DOI
Kuipers, M. E. , Hokke, C. H. , Smits, H. H. , & Nolte‐'t Hoen, E. N. M. (2018). Pathogen‐derived extracellular vesicle‐associated molecules that affect the host immune system: An overview. Frontiers in Microbiology, 9, 2182. 10.3389/fmicb.2018.02182 PubMed DOI PMC
Lécrivain, A.‐L. , & Beckmann, B. M. (2020). Bacterial RNA in extracellular vesicles: A new regulator of host‐pathogen interactions?. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1863, 194519. 10.1016/j.bbagrm.2020.194519 PubMed DOI
Lee, E.‐Y. , Bang, J. Y. , Park, G. W. , Choi, D.‐S. , Kang, J. S. , Kim, H.‐J. , Park, K.‐S. , Lee, J.‐O. , Kim, Y.‐K. , Kwon, K.‐H. , Kim, K.‐P. , & Gho, Y. S. (2007). Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics, 7, 3143–3153. 10.1002/pmic.200700196 PubMed DOI
Loconte, L. , Arguedas, D. , El, R. , Zhou, A. , Chipont, A. , Guyonnet, L. , Guerin, C. , Piovesana, E. , Vázquez‐Ibar, J. L. , Joliot, A. , Théry, C. , & Martín‐Jaular, L. (2023). Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV‐labelling methods. Journal of Extracellular Vesicles, 12, 12384. 10.1002/jev2.12384 PubMed DOI PMC
Lodinová‐Zádníková, R. , Cukrowska, B. , & Tlaskalova‐Hogenova, H. (2003). Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 Years). International Archives of Allergy and Immunology, 131, 209–211. 10.1159/000071488 PubMed DOI
Lodinová‐Žádníková, R. , Prokešová, L. , Kocourková, I. , Hrdý, J. , & Žižka, J. (2010). Prevention of allergy in infants of allergic mothers by probiotic Escherichia coli. International Archives of Allergy and Immunology, 153, 201–206. 10.1159/000312638 PubMed DOI
Lodinová‐Zádníková, R. , Tlaskalová, H. , Korych, B. , & Bartáková, Z. (1995). The antibody response in infants after oral administration of inactivated and living E. coli vaccines and their protective effect against nosocomial infections. Advances in Experimental Medicine and Biology, 371B, 1431–1438. PubMed
Lundberg, J. O. , & Weitzberg, E. (2022). Nitric oxide signaling in health and disease. Cell, 185, 2853–2878. 10.1016/j.cell.2022.06.010 PubMed DOI
Martens, A. , Amann, G. , Schmidt, K. , Gaupmann, R. , Böhm, B. , Dehlink, E. , Szépfalusi, Z. , Förster‐Waldl, E. , Berger, A. , Fyhrquist, N. , Alenius, H. , & Wisgrill, L. (2019). An optimized, robust and reproducible protocol to generate well‐differentiated primary nasal epithelial models from extremely premature infants. Scientific Reports, 9, 20069. 10.1038/s41598-019-56737-9 PubMed DOI PMC
Marzec, M. E. , Rząca, C. , Moskal, P. , & Stępień, E. Ł. (2022). Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using TOF‐SIMS. Biochemical and Biophysical Research Communications, 622, 30–36. 10.1016/j.bbrc.2022.07.020 PubMed DOI
Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology, 152, 36–51. 10.1016/j.jsb.2005.07.007 PubMed DOI
Midekessa, G. , Godakumara, K. , Ord, J. , Viil, J. , Lättekivi, F. , Dissanayake, K. , Kopanchuk, S. , Rinken, A. , Andronowska, A. , Bhattacharjee, S. , Rinken, T. , & Fazeli, A. (2020). Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega, 5, 16701–16710. 10.1021/acsomega.0c01582 PubMed DOI PMC
Montecalvo, A. , Larregina, A. T. , Shufesky, W. J. , Beer Stolz, D. , Sullivan, M. L. G. , Karlsson, J. M. , Baty, C. J. , Gibson, G. A. , Erdos, G. , Wang, Z. , Milosevic, J. , Tkacheva, O. A. , Divito, S. J. , Jordan, R. , Lyons‐Weiler, J. , Watkins, S. C. , & Morelli, A. E. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119, 756–766. 10.1182/blood-2011-02-338004 PubMed DOI PMC
Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. 10.1016/0022-1759(83)90303-4 PubMed DOI
Munhoz da Rocha, I. F. , Amatuzzi, R. F. , Lucena, A. C. R. , Faoro, H. , & Alves, L. R. (2020). Cross‐kingdom extracellular vesicles EV‐RNA communication as a mechanism for host–pathogen interaction. Frontiers in Cellular and Infection Microbiology, 10, 593160. 10.3389/fcimb.2020.593160 PubMed DOI PMC
Narciso, A. R. , & Aschtgen, M.‐S. (2023). Strategies to Isolate Extracellular Vesicles from Gram‐Negative and Gram‐Positive Bacteria. in Nordenfelt P., & Collin M., Eds., Bacterial Pathogenesis: Methods and Protocols. (pp. 61–70) Springer US. 10.1007/978-1-0716-3243-7_4 PubMed DOI
Nathan, C. , & Xie, Q. (1994). Nitric oxide synthases: Roles, tolls, and controls. Cell, 78, 915–918. 10.1016/0092-8674(94)90266-6 PubMed DOI
Nathan, C. F. , & Hibbs, J. B. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology, 3, 65–70. 10.1016/0952-7915(91)90079-G PubMed DOI
Nečas, D. , & Klapetek, P. (2012). Gwyddion: An open‐source software for SPM data analysis. Open Physics, 10, 181–188. 10.2478/s11534-011-0096-2 DOI
Ngo, V. L. , Lieber, C. M. , Kang, H.‐J. , Sakamoto, K. , Kuczma, M. , Plemper, R. K. , & Gewirtz, A. T. (2024). Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host & Microbe, 32, 335–348.e8. 10.1016/j.chom.2024.01.002 PubMed DOI PMC
Peñaloza, H. F. , Nieto, P. A. , Muñoz‐Durango, N. , Salazar‐Echegarai, F. J. , Torres, J. , Parga, M. J. , Alvarez‐Lobos, M. , Riedel, C. A. , Kalergis, A. M. , & Bueno, S. M. (2015). Interleukin‐10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology, 146, 100–112. 10.1111/imm.12486 PubMed DOI PMC
Peng, Y. , Yin, S. , & Wang, M. (2021). Extracellular vesicles of bacteria as potential targets for immune interventions. Human Vaccines & Immunotherapeutics, 17, 897–903. 10.1080/21645515.2020.1799667 PubMed DOI PMC
Perez‐Riverol, Y. , Bai, J. , Bandla, C. , García‐Seisdedos, D. , Hewapathirana, S. , Kamatchinathan, S. , Kundu, D. J. , Prakash, A. , Frericks‐Zipper, A. , Eisenacher, M. , Walzer, M. , Wang, S. , Brazma, A. , & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552. 10.1093/nar/gkab1038 PubMed DOI PMC
Przetak, M. , Chow, J. , Cheng, H. , Rose, J. , Hawkins, L. D. , & Ishizaka, S. T. (2003). Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine, 21, 961–970. 10.1016/S0264-410X(02)00737-5 PubMed DOI
Ridolfi, A. , Brucale, M. , Montis, C. , Caselli, L. , Paolini, L. , Borup, A. , Boysen, A. T. , Loria, F. , van Herwijnen, M. J. C. , Kleinjan, M. , Nejsum, P. , Zarovni, N. , Wauben, M. H. M. , Berti, D. , Bergese, P. , & Valle, F. (2020). AFM‐based high‐throughput nanomechanical screening of single extracellular vesicles. Analytical Chemistry, 92, 10274–10282. 10.1021/acs.analchem.9b05716 PubMed DOI
Ridolfi, A. , Conti, L. , Brucale, M. , Frigerio, R. , Cardellini, J. , Musicò, A. , Romano, M. , Zendrini, A. , Polito, L. , Bergamaschi, G. , Gori, A. , Montis, C. , Panella, S. , Barile, L. , Berti, D. , Radeghieri, A. , Bergese, P. , Cretich, M. , & Valle, F. (2023). Particle profiling of EV‐lipoprotein mixtures by AFM nanomechanical imaging. Journal of Extracellular Vesicles, 12, 12349. 10.1002/jev2.12349 PubMed DOI PMC
Ritchie, M. E. , Phipson, B. , Wu, D. , Hu, Y. , Law, C. W. , Shi, W. , & Smyth, G. K. (2015). limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Research, 43, e47. 10.1093/nar/gkv007 PubMed DOI PMC
Robinson, M. D. , McCarthy, D. J. , & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC
Salim, T. , Sershen, C. L. , & May, E. E. (2016). Investigating the role of TNF‐α and IFN‐γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS ONE, 11, e0153289. 10.1371/journal.pone.0153289 PubMed DOI PMC
Sarate, P. J. , Heinl, S. , Poiret, S. , Drinić, M. , Zwicker, C. , Schabussova, I. , Daniel, C. , Wiedermann, U. , & coli, E. (2019). Nissle 1917 is a safe mucosal delivery vector for a birch‐grass pollen chimera to prevent allergic poly‐sensitization. Mucosal Immunology, 12, 132–144. 10.1038/s41385-018-0084-6 PubMed DOI
Sarate, P. J. , Srutkova, D. , Geissler, N. , Schwarzer, M. , Schabussova, I. , Inic‐Kanada, A. , Kozakova, H. , & Wiedermann, U. (2021). Pre‐ and neonatal imprinting on immunological homeostasis and epithelial barrier integrity by escherichia coli nissle 1917 prevents allergic poly‐sensitization in mice. Frontiers in Immunology, 11, 612775. 10.3389/fimmu.2020.612775 PubMed DOI PMC
Schabussova, I. , Hufnagl, K. , Wild, C. , Nutten, S. , Zuercher, A. W. , Mercenier, A. , & Wiedermann, U. (2011). Distinctive anti‐allergy properties of two probiotic bacterial strains in a mouse model of allergic poly‐sensitization. Vaccine, 29, 1981–1990. 10.1016/j.vaccine.2010.12.101 PubMed DOI
Schmid, A. M. , Razim, A. , Wysmołek, M. , Kerekes, D. , Haunstetter, M. , Kohl, P. , Brazhnikov, G. , Geissler, N. , Thaler, M. , Krčmářová, E. , Šindelář, M. , Weinmayer, T. , Hrdý, J. , Schmidt, K. , Nejsum, P. , Whitehead, B. , Palmfeldt, J. , Schild, S. , Inić‐Kanada, A. , … Schabussova, I. (2023). Extracellular vesicles of the probiotic bacteria E. coli O83 activate innate immunity and prevent allergy in mice. Cell Communication and Signaling, 21, 297. 10.1186/s12964-023-01329-4 PubMed DOI PMC
Sharma, J. N. , Al‐Omran, A. , & Parvathy, S. S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacol, 15, 252–259. 10.1007/s10787-007-0013-x PubMed DOI
Spandidos, A. , Wang, X. , Wang, H. , & Seed, B. (2010). PrimerBank: A resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Research, 38, D792–D799. 10.1093/nar/gkp1005 PubMed DOI PMC
Súkeníková, L. , Černý, V. , Novotná, O. , Petrásková, P. , Boráková, K. , Kolářová, L. , Prokešová, L. , & Hrdý, J. (2017). Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31. Immunology Letters, 189, 82–89. 10.1016/j.imlet.2017.05.013 PubMed DOI
Súkeníková, L. , Černý, V. , Thon, T. , Roubalová, R. , Jirásková Zákostelská, Z. , Novotná, O. , Petrásková, P. , Boráková, K. , Kocourková, I. , Lodinová‐Žádníková, R. , Musil, Z. , Kolářová, L. , Prokešová, L. , Valenta, Z. , & Hrdý, J. (2023). Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota. Frontiers in immunology, 13, 1038328. 10.3389/fimmu.2022.1038328 PubMed DOI PMC
Súkeníková, L. , Černý, V. , Věcek, J. , Petrásková, P. , Novotná, O. , Vobruba, Š. , Michalčíková, T. , Procházka, J. , Kolářová, L. , Prokešová, L. , & Hrdý, J. (2022). The Impact of Escherichia coli Probiotic Strain O83:K24:H31 on the maturation of dendritic cells and immunoregulatory functions in vitro and in vivo. Cells, 11, 1624. 10.3390/cells11101624 PubMed DOI PMC
Szklarczyk, D. , Kirsch, R. , Koutrouli, M. , Nastou, K. , Mehryary, F. , Hachilif, R. , Gable, A. L. , Fang, T. , Doncheva, N. T. , Pyysalo, S. , Bork, P. , Jensen, L. J. , & von Mering, C. (2023). The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51, D638–D646. 10.1093/nar/gkac1000 PubMed DOI PMC
Tang, J. , Xu, L. , Zeng, Y. , & Gong, F. (2021). Effect of gut microbiota on LPS‐induced acute lung injury by regulating the TLR4/NF‐kB signaling pathway. International Immunopharmacology, 91, 107272. 10.1016/j.intimp.2020.107272 PubMed DOI
Toyofuku, M. , Schild, S. , Kaparakis‐Liaskos, M. , & Eberl, L. (2023). Composition and functions of bacterial membrane vesicles. Nature Reviews Microbiology, 21, 415–430. 10.1038/s41579-023-00875-5 PubMed DOI
Trush, E. A. , Poluektova, E. A. , Beniashvilli, A. G. , Shifrin, O. S. , Poluektov, Y. M. , & Ivashkin, V. T. (2020). The evolution of human probiotics: Challenges and prospects. Probiotics and Antimicrobial Proteins, 12, 1291–1299. 10.1007/s12602-019-09628-4 PubMed DOI
Tyanova, S. , Temu, T. , & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics. Nature Protocols, 11, 2301–2319. 10.1038/nprot.2016.136 PubMed DOI
Valledor, A. F. , Comalada, M. , Xaus, J. , & Celada, A. (2000). The differential time‐course of extracellular‐regulated kinase activity correlates with the macrophage response toward proliferation or activation *. Journal of Biological Chemistry, 275, 7403–7409. 10.1074/jbc.275.10.7403 PubMed DOI
Valledor, A. F. , Sánchez‐Tilló, E. , Arpa, L. , Park, J. M. , Caelles, C. , Lloberas, J. , & Celada, A. (2008). Selective roles of MAPKs during the macrophage response to IFN‐γ1. The Journal of Immunology, 180, 4523–4529. 10.4049/jimmunol.180.7.4523 PubMed DOI
Van Deun, J. , Mestdagh, P. , Agostinis, P. , Akay, Ö. , Anand, S. , Anckaert, J. , Martinez, Z. A. , Baetens, T. , Beghein, E. , Bertier, L. , Berx, G. , Boere, J. , Boukouris, S. , Bremer, M. , Buschmann, D. , Byrd, J. B. , Casert, C. , Cheng, L. , Cmoch, A. , … & Hendrix, A. (2017). EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228–232. 10.1038/nmeth.4185 PubMed DOI
Visnovitz, T. , Osteikoetxea, X. , Sódar, B. W. , Mihály, J. , Lőrincz, P. , Vukman, K. V. , Tóth, E. Á. , Koncz, A. , Székács, I. , Horváth, R. , Varga, Z. , & Buzás, E. I. (2019). An improved 96 well plate format lipid quantification assay for standardisation of experiments with extracellular vesicles. Journal of Extracellular Vesicles, 8, 1565263. 10.1080/20013078.2019.1565263 PubMed DOI PMC
Wan, M. L.‐Y. , Chen, Z. , Shah, N. P. , & El‐Nezami, H. (2018). Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 Cell‐Free Supernatants on Modulation of Mucin and Cytokine Secretion on Human Intestinal Epithelial HT29‐MTX Cells. Journal of Food Science, 83, 1999–2007. 10.1111/1750-3841.14168 PubMed DOI
Wassenaar, T. M. (2016). Insights from 100 years of research with probiotic E. coli. European Journal of Microbiology and Immunology, 6, 147–161. 10.1556/1886.2016.00029 PubMed DOI PMC
Welsh, J. A. , Goberdhan, D. C. I. , O'Driscoll, L. , Buzas, E. I. , Blenkiron, C. , Bussolati, B. , Cai, H. , Di Vizio, D. , Driedonks, T. A. P. , Erdbrügger, U. , Falcon‐Perez, J. M. , Fu, Q.‐L. , Hill, A. F. , Lenassi, M. , Lim, S. K. , Mahoney, M. G. , Mohanty, S. , Möller, A. , Nieuwland, R. , … & Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, 13, e12404. 10.1002/jev2.12404 PubMed DOI PMC
Xie, J. , Li, Q. , & Nie, S. (2024). Bacterial extracellular vesicles: An emerging postbiotic. Trends in Food Science & Technology, 143, 104275. 10.1016/j.tifs.2023.104275 DOI
Zabłocka, A. , Jakubczyk, D. , Leszczyńska, K. , Pacyga‐Prus, K. , Macała, J. , & Górska, S. (2024). Studies of the impact of the bifidobacterium species on inducible nitric oxide synthase expression and nitric oxide production in murine macrophages of the BMDM cell line. Probiotics and Antimicrobial Proteins, 16, 1012–1025. 10.1007/s12602-023-10093-3 PubMed DOI PMC
Zaph, C. , Troy, A. E. , Taylor, B. C. , Berman‐Booty, L. D. , Guild, K. J. , Du, Y. , Yost, E. A. , Gruber, A. D. , May, M. J. , Greten, F. R. , Eckmann, L. , Karin, M. , & Artis, D. (2007). Epithelial‐cell‐intrinsic IKK‐β expression regulates intestinal immune homeostasis. Nature, 446, 552–556. 10.1038/nature05590 PubMed DOI
Zwicker, C. , Sarate, P. , Drinić, M. , Ambroz, K. , Korb, E. , Smole, U. , Köhler, C. , Wilson, M. S. , Kozakova, H. , Sebo, P. , Kverka, M. , Wiedermann, U. , & Schabussova, I. (2018). Prophylactic and therapeutic inhibition of allergic airway inflammation by probiotic Escherichia coli O83. Journal of Allergy and Clinical Immunology, 142, 1987–1990.e7. 10.1016/j.jaci.2018.07.029 PubMed DOI