Bacterial extracellular vesicles as intranasal postbiotics: Detailed characterization and interaction with airway cells

. 2024 Oct ; 13 (10) : e70004.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39429019

Grantová podpora
PPN/BAT/2021/1/00004/U/00001 Narodowa Agencja Wymiany Akademickiej
CZ.02.01.01/00/22_010/0008115 OP JAK project MSCA fellowships CZ-UK2
23-04050L Grantová Agentura České Republiky
Danube-Allergy Cluster (P17) Amt der NÖ Landesregierung
CZ 04/2024 OeAD-GmbH
CZ 07/2023 OeAD-GmbH
CZ 15/2023 OeAD-GmbH
RS 08/2022 OeAD-GmbH
10.47379/LS20025 Vienna Science and Technology Fund
LM/29/SM SciMat and qLife Priority Research Area under Strategic Programme Excellence Initiative "Laboratories for the Young"
P 34867 Austrian Science Fund
101066450 HORIZON EUROPE Marie Sklodowska-Curie Actions
CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports of the Czech Republic

Escherichia coli A0 34/86 (EcO83) is a probiotic strain used in newborns to prevent nosocomial infections and diarrhoea. This bacterium stimulates both pro- and anti-inflammatory cytokine production and its intranasal administration reduces allergic airway inflammation in mice. Despite its benefits, there are concerns about the use of live probiotic bacteria due to potential systemic infections and gene transfer. Extracellular vesicles (EVs) derived from EcO83 (EcO83-EVs) might offer a safer alternative to live bacteria. This study characterizes EcO83-EVs and investigates their interaction with host cells, highlighting their potential as postbiotic therapeutics. EcO83-EVs were isolated, purified, and characterised following the Minimal Information of Studies of Extracellular Vesicles (MISEV) guidelines. Ex vivo studies conducted in human nasal epithelial cells showed that EcO83-EVs increased the expression of proteins linked to oxidative stress and inflammation, indicating an effective interaction between EVs and the host cells. Further in vivo studies in mice demonstrated that EcO83-EVs interact with nasal-associated lymphoid tissue, are internalised by airway macrophages, and stimulate neutrophil recruitment in the lung. Mechanistically, EcO83-EVs activate the NF-κΒ signalling pathway, resulting in the nitric oxide production. EcO83-EVs demonstrate significant potential as a postbiotic alternative to live bacteria, offering a safer option for therapeutic applications. Further research is required to explore their clinical use, particularly in mucosal vaccination and targeted immunotherapy strategies.

Department of Clinical Medicine Aarhus University Aarhus Denmark

Department of Infectious Diseases Aarhus University Hospital Aarhus Denmark

Department of Medical Physics M Smoluchowski Institute of Physics Faculty of Physics Astronomy and Applied Computer Science Jagiellonian University Krakow Poland

Division of Chemistry 1 Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden

Division of Neonatology Paediatric Intensive Care and Neuropediatric Department of Paediatrics and Adolescent Medicine Comprehensive Centre for Paediatrics Medical University of Vienna Vienna Austria

Hirszfeld Institute of Immunology and Experimental Therapy Polish Academy of Sciences Wroclaw Poland

Institute of Immunology and Microbiology 1st Faculty of Medicine Charles University and General University Hospital Prague Czech Republic

Institute of Nanostructured Materials CNR ISMN Bologna Italy

Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science Prague Czech Republic

Institute of Specific Prophylaxis and Tropical Medicine Centre for Pathophysiology Infectiology and Immunology Medical University of Vienna Vienna Austria

Laboratory of Gnotobiology Institute of Microbiology of the Czech Academy of Sciences Novy Hradek Czech Republic

Proteomics Biomedicum Division of Chemistry 1 Department of Medical Biochemistry and Biophysics Karolinska Institutet Stockholm Sweden

Research Support Facilities Imaging Unit CIUS Faculty of Life Sciences University of Vienna Vienna Austria

Research Unit for Molecular Medicine Department of Clinical Medicine Aarhus University Aarhus Denmark

Zobrazit více v PubMed

Aderem, A. , & Ulevitch, R. J. (2000). Toll‐like receptors in the induction of the innate immune response. Nature, 406, 782–787. 10.1038/35021228 PubMed DOI

Andrabi, S. M. , Sharma, N. S. , Karan, A. , Shahriar, S. M. S. , Cordon, B. , Ma, B. , & Xie, J. (2023). Nitric oxide: Physiological functions, delivery, and biomedical applications. Advanced Science, 10, 2303259. 10.1002/advs.202303259 PubMed DOI PMC

Atri, C. , Guerfali, F. Z. , & Laouini, D. (2018). Role of human macrophage polarization in inflammation during infectious diseases. International Journal of Molecular Sciences, 19, 1801. 10.3390/ijms19061801 PubMed DOI PMC

Bakkari, M. A. , Valiveti, C. K. , Kaushik, R. S. , & Tummala, H. (2021). Toll‐like receptor‐4 (TLR4) agonist‐based intranasal nanovaccine delivery system for inducing systemic and mucosal immunity. Molecular Pharmaceutics, 18, 2233–2241. 10.1021/acs.molpharmaceut.0c01256 PubMed DOI

Bayarri, M. A. , Milara, J. , Estornut, C. , & Cortijo, J. (2021). Nitric oxide system and bronchial epithelium: More than a barrier. Frontiers in Physiology, 12, 687381. 10.3389/fphys.2021.687381 PubMed DOI PMC

Blenkiron, C. , Simonov, D. , Muthukaruppan, A. , Tsai, P. , Dauros, P. , Green, S. , Hong, J. , Print, C. G. , Swift, S. , & Phillips, A. R. (2016). Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS ONE, 11, e0160440. 10.1371/journal.pone.0160440 PubMed DOI PMC

Bogdan, C. (2015). Nitric oxide synthase in innate and adaptive immunity: An update. Trends in Immunology, 36, 161–178. 10.1016/j.it.2015.01.003 PubMed DOI

Brune, K. D. , Leneghan, D. B. , Brian, I. J. , Ishizuka, A. S. , Bachmann, M. F. , Draper, S. J. , Biswas, S. , & Howarth, M. (2016). Plug‐and‐display: Decoration of virus‐like Particles via isopeptide bonds for modular immunization. Scientific Reports, 6, 19234. 10.1038/srep19234 PubMed DOI PMC

Buzás, E. I. , Tóth, E. Á. , Sódar, B. W. , & Szabó‐Taylor, K. É. (2018). Molecular interactions at the surface of extracellular vesicles. Seminars in Immunopathology, 40, 453–464. 10.1007/s00281-018-0682-0 PubMed DOI PMC

da Luz, B. S. R. , de Rezende Rodovalho, V. , Nicolas, A. , Chabelskaya, S. , Jardin, J. , Briard‐Bion, V. , Loir, Y. L. , de Carvalho Azevedo, V. A. , & Guédon, É. (2022). Impact of environmental conditions on the protein content of staphylococcus aureus and its derived extracellular vesicles. Microorganisms, 10, 1808. 10.3390/microorganisms10091808 PubMed DOI PMC

Daniel, C. , Repa, A. , Wild, C. , Pollak, A. , Pot, B. , Breiteneder, H. , Wiedermann, U. , & Mercenier, A. (2006). Modulation of allergic immune responses by mucosal application of recombinant lactic acid bacteria producing the major birch pollen allergen Bet v 1. Allergy, 61, 812–819. 10.1111/j.1398-9995.2006.01071.x PubMed DOI

DePamphilis, M. L. , & Adler, J. (1971). Purification of intact flagella from Escherichia coli and Bacillus subtilis. Journal of Bacteriology, 105, 376–383. 10.1128/jb.105.1.376-383.1971 PubMed DOI PMC

Deville, S. , Berckmans, P. , Hoof, R. V. , Lambrichts, I. , Salvati, A. , & Nelissen, I. (2021). Comparison of extracellular vesicle isolation and storage methods using high‐sensitivity flow cytometry. PLoS ONE, 16, e0245835. 10.1371/journal.pone.0245835 PubMed DOI PMC

Dorrington, M. G. , & Fraser, I. D. C. (2019). NF‐κB signaling in macrophages: dynamics, crosstalk, and signal integration. Frontiers in Immunology, 10, 705. 10.3389/fimmu.2019.00705 PubMed DOI PMC

EnhancedVolcano: publication‐ready volcano plots with enhanced colouring and labeling . (n.d.). (accessed May 15, 2024) https://bioconductor.org/packages/devel/bioc/vignettes/EnhancedVolcano/inst/doc/EnhancedVolcano.html

Fábrega, M. J. , Aguilera, L. , Giménez, R. , Varela, E. , Alexandra Cañas, M. , Antolín, M. , Badía, J. , & Baldomà, L. (2016). Activation of immune and defense responses in the intestinal mucosa by outer membrane vesicles of commensal and probiotic Escherichia coli strains. Frontiers in Microbiology, 7, 705. 10.3389/fmicb.2016.00705 PubMed DOI PMC

Futata, E. A. , Fusaro, A. E. , de Brito, C. A. , & Sato, M. N. (2012). The neonatal immune system: Immunomodulation of infections in early life. Expert Review of Anti‐Infective Therapy, 10, 289–298. 10.1586/eri.12.9 PubMed DOI

Götz, S. , García‐Gómez, J. M. , Terol, J. , Williams, T. D. , Nagaraj, S. H. , Nueda, M. J. , Robles, M. , Talón, M. , Dopazo, J. , & Conesa, A. (2008). High‐throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Research, 36, 3420–3435. 10.1093/nar/gkn176 PubMed DOI PMC

Guevara, I. , Iwanejko, J. , Dembińska‐Kieć, A. , Pankiewicz, J. , Wanat, A. , Anna, P. , Gołąbek, I. , Bartuś, S. , Malczewska‐Malec, M. , & Szczudlik, A. (1998). Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clinica Chimica Acta, 274, 177–188. 10.1016/S0009-8981(98)00060-6 PubMed DOI

Güttsches, A.‐K. , Löseke, S. , Zähringer, U. , Sonnenborn, U. , Enders, C. , Gatermann, S. , & Bufe, A. (2012). Anti‐inflammatory modulation of immune response by probiotic Escherichia coli Nissle 1917 in human blood mononuclear cells. Innate Immun, 18, 204–216. 10.1177/1753425910396251 PubMed DOI

Hahn, E. , Wild, P. , Hermanns, U. , Sebbel, P. , Glockshuber, R. , Häner, M. , Taschner, N. , Burkhard, P. , Aebi, U. , & Müller, S. A. (2002). Exploring the 3D molecular architecture of Escherichia coli Type 1 Pili. Journal of Molecular Biology, 323, 845–857. 10.1016/S0022-2836(02)01005-7 PubMed DOI

Hammond, M. E. , Lapointe, G. R. , Feucht, P. H. , Hilt, S. , Gallegos, C. A. , Gordon, C. A. , Giedlin, M. A. , Mullenbach, G. , & Tekamp‐Olson, P. (1995). IL‐8 induces neutrophil chemotaxis predominantly via type I IL‐8 receptors. Journal of Immunology, 155, 1428–1433. PubMed

Hu, R. , Lin, H. , Li, J. , Zhao, Y. , Wang, M. , Sun, X. , Min, Y. , Gao, Y. , & Yang, M. (2020). Probiotic Escherichia coli Nissle 1917‐derived outer membrane vesicles enhance immunomodulation and antimicrobial activity in RAW264.7 macrophages. BMC Microbiology, 20, 268. 10.1186/s12866-020-01953-x PubMed DOI PMC

Hu, R. , Lin, H. , Wang, M. , Zhao, Y. , Liu, H. , Min, Y. , Yang, X. , Gao, Y. , & Yang, M. (2021). Lactobacillus reuteri‐derived extracellular vesicles maintain intestinal immune homeostasis against lipopolysaccharide‐induced inflammatory responses in broilers. Journal of Animal Science Biotechnology, 12, 25. 10.1186/s40104-020-00532-4 PubMed DOI PMC

Juodeikis, R. , Martins, C. , Saalbach, G. , Richardson, J. , Koev, T. , Baker, D. J. , Defernez, M. , Warren, M. , & Carding, S. R. (2024). Differential temporal release and lipoprotein loading in B. thetaiotaomicron bacterial extracellular vesicles. Journal of Extracellular Vesicles, 13, 12406. 10.1002/jev2.12406 PubMed DOI PMC

Kamińska, A. , Marzec, M. E. , & Stępień, E. Ł. (2021). Design and optimization of a biosensor surface functionalization to effectively capture urinary extracellular vesicles. Molecules (Basel, Switzerland), 26, 4764. 10.3390/molecules26164764 PubMed DOI PMC

Karch, H. , Leying, H. , Büscher, K. H. , Kroll, H. P. , & Opferkuch, W. (1985). Isolation and separation of physicochemically distinct fimbrial types expressed on a single culture of Escherichia coli O7:K1:H6. Infection and Immunity, 47, 549–554. 10.1128/iai.47.2.549-554.1985 PubMed DOI PMC

Kim, J. H. , Lee, J. , Park, J. , & Gho, Y. S. (2015). Gram‐negative and Gram‐positive bacterial extracellular vesicles. Seminars in Cell & Developmental Biology, 40, 97–104. 10.1016/j.semcdb.2015.02.006 PubMed DOI

Kocourková, I. , Žádníková, R. , Žižka, J. , & Rosová, V. (2007). Effect of oral application of a probioticE. coli strain on the intestinal microflora of children of allergic mothers during the first year of life. Folia Microbiology, 52, 189–193. 10.1007/BF02932158 PubMed DOI

Kothari, D. , Patel, S. , & Kim, S.‐K. (2019). Probiotic supplements might not be universally‐effective and safe: A review. Biomedicine & Pharmacotherapy, 111, 537–547. 10.1016/j.biopha.2018.12.104 PubMed DOI

Kuipers, M. E. , Hokke, C. H. , Smits, H. H. , & Nolte‐'t Hoen, E. N. M. (2018). Pathogen‐derived extracellular vesicle‐associated molecules that affect the host immune system: An overview. Frontiers in Microbiology, 9, 2182. 10.3389/fmicb.2018.02182 PubMed DOI PMC

Lécrivain, A.‐L. , & Beckmann, B. M. (2020). Bacterial RNA in extracellular vesicles: A new regulator of host‐pathogen interactions?. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1863, 194519. 10.1016/j.bbagrm.2020.194519 PubMed DOI

Lee, E.‐Y. , Bang, J. Y. , Park, G. W. , Choi, D.‐S. , Kang, J. S. , Kim, H.‐J. , Park, K.‐S. , Lee, J.‐O. , Kim, Y.‐K. , Kwon, K.‐H. , Kim, K.‐P. , & Gho, Y. S. (2007). Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics, 7, 3143–3153. 10.1002/pmic.200700196 PubMed DOI

Loconte, L. , Arguedas, D. , El, R. , Zhou, A. , Chipont, A. , Guyonnet, L. , Guerin, C. , Piovesana, E. , Vázquez‐Ibar, J. L. , Joliot, A. , Théry, C. , & Martín‐Jaular, L. (2023). Detection of the interactions of tumour derived extracellular vesicles with immune cells is dependent on EV‐labelling methods. Journal of Extracellular Vesicles, 12, 12384. 10.1002/jev2.12384 PubMed DOI PMC

Lodinová‐Zádníková, R. , Cukrowska, B. , & Tlaskalova‐Hogenova, H. (2003). Oral administration of probiotic Escherichia coli after birth reduces frequency of allergies and repeated infections later in life (after 10 and 20 Years). International Archives of Allergy and Immunology, 131, 209–211. 10.1159/000071488 PubMed DOI

Lodinová‐Žádníková, R. , Prokešová, L. , Kocourková, I. , Hrdý, J. , & Žižka, J. (2010). Prevention of allergy in infants of allergic mothers by probiotic Escherichia coli. International Archives of Allergy and Immunology, 153, 201–206. 10.1159/000312638 PubMed DOI

Lodinová‐Zádníková, R. , Tlaskalová, H. , Korych, B. , & Bartáková, Z. (1995). The antibody response in infants after oral administration of inactivated and living E. coli vaccines and their protective effect against nosocomial infections. Advances in Experimental Medicine and Biology, 371B, 1431–1438. PubMed

Lundberg, J. O. , & Weitzberg, E. (2022). Nitric oxide signaling in health and disease. Cell, 185, 2853–2878. 10.1016/j.cell.2022.06.010 PubMed DOI

Martens, A. , Amann, G. , Schmidt, K. , Gaupmann, R. , Böhm, B. , Dehlink, E. , Szépfalusi, Z. , Förster‐Waldl, E. , Berger, A. , Fyhrquist, N. , Alenius, H. , & Wisgrill, L. (2019). An optimized, robust and reproducible protocol to generate well‐differentiated primary nasal epithelial models from extremely premature infants. Scientific Reports, 9, 20069. 10.1038/s41598-019-56737-9 PubMed DOI PMC

Marzec, M. E. , Rząca, C. , Moskal, P. , & Stępień, E. Ł. (2022). Study of the influence of hyperglycemia on the abundance of amino acids, fatty acids, and selected lipids in extracellular vesicles using TOF‐SIMS. Biochemical and Biophysical Research Communications, 622, 30–36. 10.1016/j.bbrc.2022.07.020 PubMed DOI

Mastronarde, D. N. (2005). Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology, 152, 36–51. 10.1016/j.jsb.2005.07.007 PubMed DOI

Midekessa, G. , Godakumara, K. , Ord, J. , Viil, J. , Lättekivi, F. , Dissanayake, K. , Kopanchuk, S. , Rinken, A. , Andronowska, A. , Bhattacharjee, S. , Rinken, T. , & Fazeli, A. (2020). Zeta potential of extracellular vesicles: Toward understanding the attributes that determine colloidal stability. ACS Omega, 5, 16701–16710. 10.1021/acsomega.0c01582 PubMed DOI PMC

Montecalvo, A. , Larregina, A. T. , Shufesky, W. J. , Beer Stolz, D. , Sullivan, M. L. G. , Karlsson, J. M. , Baty, C. J. , Gibson, G. A. , Erdos, G. , Wang, Z. , Milosevic, J. , Tkacheva, O. A. , Divito, S. J. , Jordan, R. , Lyons‐Weiler, J. , Watkins, S. C. , & Morelli, A. E. (2012). Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood, 119, 756–766. 10.1182/blood-2011-02-338004 PubMed DOI PMC

Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. 10.1016/0022-1759(83)90303-4 PubMed DOI

Munhoz da Rocha, I. F. , Amatuzzi, R. F. , Lucena, A. C. R. , Faoro, H. , & Alves, L. R. (2020). Cross‐kingdom extracellular vesicles EV‐RNA communication as a mechanism for host–pathogen interaction. Frontiers in Cellular and Infection Microbiology, 10, 593160. 10.3389/fcimb.2020.593160 PubMed DOI PMC

Narciso, A. R. , & Aschtgen, M.‐S. (2023). Strategies to Isolate Extracellular Vesicles from Gram‐Negative and Gram‐Positive Bacteria. in Nordenfelt P., & Collin M., Eds., Bacterial Pathogenesis: Methods and Protocols. (pp. 61–70) Springer US. 10.1007/978-1-0716-3243-7_4 PubMed DOI

Nathan, C. , & Xie, Q. (1994). Nitric oxide synthases: Roles, tolls, and controls. Cell, 78, 915–918. 10.1016/0092-8674(94)90266-6 PubMed DOI

Nathan, C. F. , & Hibbs, J. B. (1991). Role of nitric oxide synthesis in macrophage antimicrobial activity. Current Opinion in Immunology, 3, 65–70. 10.1016/0952-7915(91)90079-G PubMed DOI

Nečas, D. , & Klapetek, P. (2012). Gwyddion: An open‐source software for SPM data analysis. Open Physics, 10, 181–188. 10.2478/s11534-011-0096-2 DOI

Ngo, V. L. , Lieber, C. M. , Kang, H.‐J. , Sakamoto, K. , Kuczma, M. , Plemper, R. K. , & Gewirtz, A. T. (2024). Intestinal microbiota programming of alveolar macrophages influences severity of respiratory viral infection. Cell Host & Microbe, 32, 335–348.e8. 10.1016/j.chom.2024.01.002 PubMed DOI PMC

Peñaloza, H. F. , Nieto, P. A. , Muñoz‐Durango, N. , Salazar‐Echegarai, F. J. , Torres, J. , Parga, M. J. , Alvarez‐Lobos, M. , Riedel, C. A. , Kalergis, A. M. , & Bueno, S. M. (2015). Interleukin‐10 plays a key role in the modulation of neutrophils recruitment and lung inflammation during infection by Streptococcus pneumoniae. Immunology, 146, 100–112. 10.1111/imm.12486 PubMed DOI PMC

Peng, Y. , Yin, S. , & Wang, M. (2021). Extracellular vesicles of bacteria as potential targets for immune interventions. Human Vaccines & Immunotherapeutics, 17, 897–903. 10.1080/21645515.2020.1799667 PubMed DOI PMC

Perez‐Riverol, Y. , Bai, J. , Bandla, C. , García‐Seisdedos, D. , Hewapathirana, S. , Kamatchinathan, S. , Kundu, D. J. , Prakash, A. , Frericks‐Zipper, A. , Eisenacher, M. , Walzer, M. , Wang, S. , Brazma, A. , & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–D552. 10.1093/nar/gkab1038 PubMed DOI PMC

Przetak, M. , Chow, J. , Cheng, H. , Rose, J. , Hawkins, L. D. , & Ishizaka, S. T. (2003). Novel synthetic LPS receptor agonists boost systemic and mucosal antibody responses in mice. Vaccine, 21, 961–970. 10.1016/S0264-410X(02)00737-5 PubMed DOI

Ridolfi, A. , Brucale, M. , Montis, C. , Caselli, L. , Paolini, L. , Borup, A. , Boysen, A. T. , Loria, F. , van Herwijnen, M. J. C. , Kleinjan, M. , Nejsum, P. , Zarovni, N. , Wauben, M. H. M. , Berti, D. , Bergese, P. , & Valle, F. (2020). AFM‐based high‐throughput nanomechanical screening of single extracellular vesicles. Analytical Chemistry, 92, 10274–10282. 10.1021/acs.analchem.9b05716 PubMed DOI

Ridolfi, A. , Conti, L. , Brucale, M. , Frigerio, R. , Cardellini, J. , Musicò, A. , Romano, M. , Zendrini, A. , Polito, L. , Bergamaschi, G. , Gori, A. , Montis, C. , Panella, S. , Barile, L. , Berti, D. , Radeghieri, A. , Bergese, P. , Cretich, M. , & Valle, F. (2023). Particle profiling of EV‐lipoprotein mixtures by AFM nanomechanical imaging. Journal of Extracellular Vesicles, 12, 12349. 10.1002/jev2.12349 PubMed DOI PMC

Ritchie, M. E. , Phipson, B. , Wu, D. , Hu, Y. , Law, C. W. , Shi, W. , & Smyth, G. K. (2015). limma powers differential expression analyses for RNA‐sequencing and microarray studies. Nucleic Acids Research, 43, e47. 10.1093/nar/gkv007 PubMed DOI PMC

Robinson, M. D. , McCarthy, D. J. , & Smyth, G. K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140. 10.1093/bioinformatics/btp616 PubMed DOI PMC

Salim, T. , Sershen, C. L. , & May, E. E. (2016). Investigating the role of TNF‐α and IFN‐γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS ONE, 11, e0153289. 10.1371/journal.pone.0153289 PubMed DOI PMC

Sarate, P. J. , Heinl, S. , Poiret, S. , Drinić, M. , Zwicker, C. , Schabussova, I. , Daniel, C. , Wiedermann, U. , & coli, E. (2019). Nissle 1917 is a safe mucosal delivery vector for a birch‐grass pollen chimera to prevent allergic poly‐sensitization. Mucosal Immunology, 12, 132–144. 10.1038/s41385-018-0084-6 PubMed DOI

Sarate, P. J. , Srutkova, D. , Geissler, N. , Schwarzer, M. , Schabussova, I. , Inic‐Kanada, A. , Kozakova, H. , & Wiedermann, U. (2021). Pre‐ and neonatal imprinting on immunological homeostasis and epithelial barrier integrity by escherichia coli nissle 1917 prevents allergic poly‐sensitization in mice. Frontiers in Immunology, 11, 612775. 10.3389/fimmu.2020.612775 PubMed DOI PMC

Schabussova, I. , Hufnagl, K. , Wild, C. , Nutten, S. , Zuercher, A. W. , Mercenier, A. , & Wiedermann, U. (2011). Distinctive anti‐allergy properties of two probiotic bacterial strains in a mouse model of allergic poly‐sensitization. Vaccine, 29, 1981–1990. 10.1016/j.vaccine.2010.12.101 PubMed DOI

Schmid, A. M. , Razim, A. , Wysmołek, M. , Kerekes, D. , Haunstetter, M. , Kohl, P. , Brazhnikov, G. , Geissler, N. , Thaler, M. , Krčmářová, E. , Šindelář, M. , Weinmayer, T. , Hrdý, J. , Schmidt, K. , Nejsum, P. , Whitehead, B. , Palmfeldt, J. , Schild, S. , Inić‐Kanada, A. , … Schabussova, I. (2023). Extracellular vesicles of the probiotic bacteria E. coli O83 activate innate immunity and prevent allergy in mice. Cell Communication and Signaling, 21, 297. 10.1186/s12964-023-01329-4 PubMed DOI PMC

Sharma, J. N. , Al‐Omran, A. , & Parvathy, S. S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacol, 15, 252–259. 10.1007/s10787-007-0013-x PubMed DOI

Spandidos, A. , Wang, X. , Wang, H. , & Seed, B. (2010). PrimerBank: A resource of human and mouse PCR primer pairs for gene expression detection and quantification. Nucleic Acids Research, 38, D792–D799. 10.1093/nar/gkp1005 PubMed DOI PMC

Súkeníková, L. , Černý, V. , Novotná, O. , Petrásková, P. , Boráková, K. , Kolářová, L. , Prokešová, L. , & Hrdý, J. (2017). Different capacity of in vitro generated myeloid dendritic cells of newborns of healthy and allergic mothers to respond to probiotic strain E. coli O83:K24:H31. Immunology Letters, 189, 82–89. 10.1016/j.imlet.2017.05.013 PubMed DOI

Súkeníková, L. , Černý, V. , Thon, T. , Roubalová, R. , Jirásková Zákostelská, Z. , Novotná, O. , Petrásková, P. , Boráková, K. , Kocourková, I. , Lodinová‐Žádníková, R. , Musil, Z. , Kolářová, L. , Prokešová, L. , Valenta, Z. , & Hrdý, J. (2023). Effect of early postnatal supplementation of newborns with probiotic strain E. coli O83:K24:H31 on allergy incidence, dendritic cells, and microbiota. Frontiers in immunology, 13, 1038328. 10.3389/fimmu.2022.1038328 PubMed DOI PMC

Súkeníková, L. , Černý, V. , Věcek, J. , Petrásková, P. , Novotná, O. , Vobruba, Š. , Michalčíková, T. , Procházka, J. , Kolářová, L. , Prokešová, L. , & Hrdý, J. (2022). The Impact of Escherichia coli Probiotic Strain O83:K24:H31 on the maturation of dendritic cells and immunoregulatory functions in vitro and in vivo. Cells, 11, 1624. 10.3390/cells11101624 PubMed DOI PMC

Szklarczyk, D. , Kirsch, R. , Koutrouli, M. , Nastou, K. , Mehryary, F. , Hachilif, R. , Gable, A. L. , Fang, T. , Doncheva, N. T. , Pyysalo, S. , Bork, P. , Jensen, L. J. , & von Mering, C. (2023). The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51, D638–D646. 10.1093/nar/gkac1000 PubMed DOI PMC

Tang, J. , Xu, L. , Zeng, Y. , & Gong, F. (2021). Effect of gut microbiota on LPS‐induced acute lung injury by regulating the TLR4/NF‐kB signaling pathway. International Immunopharmacology, 91, 107272. 10.1016/j.intimp.2020.107272 PubMed DOI

Toyofuku, M. , Schild, S. , Kaparakis‐Liaskos, M. , & Eberl, L. (2023). Composition and functions of bacterial membrane vesicles. Nature Reviews Microbiology, 21, 415–430. 10.1038/s41579-023-00875-5 PubMed DOI

Trush, E. A. , Poluektova, E. A. , Beniashvilli, A. G. , Shifrin, O. S. , Poluektov, Y. M. , & Ivashkin, V. T. (2020). The evolution of human probiotics: Challenges and prospects. Probiotics and Antimicrobial Proteins, 12, 1291–1299. 10.1007/s12602-019-09628-4 PubMed DOI

Tyanova, S. , Temu, T. , & Cox, J. (2016). The MaxQuant computational platform for mass spectrometry‐based shotgun proteomics. Nature Protocols, 11, 2301–2319. 10.1038/nprot.2016.136 PubMed DOI

Valledor, A. F. , Comalada, M. , Xaus, J. , & Celada, A. (2000). The differential time‐course of extracellular‐regulated kinase activity correlates with the macrophage response toward proliferation or activation *. Journal of Biological Chemistry, 275, 7403–7409. 10.1074/jbc.275.10.7403 PubMed DOI

Valledor, A. F. , Sánchez‐Tilló, E. , Arpa, L. , Park, J. M. , Caelles, C. , Lloberas, J. , & Celada, A. (2008). Selective roles of MAPKs during the macrophage response to IFN‐γ1. The Journal of Immunology, 180, 4523–4529. 10.4049/jimmunol.180.7.4523 PubMed DOI

Van Deun, J. , Mestdagh, P. , Agostinis, P. , Akay, Ö. , Anand, S. , Anckaert, J. , Martinez, Z. A. , Baetens, T. , Beghein, E. , Bertier, L. , Berx, G. , Boere, J. , Boukouris, S. , Bremer, M. , Buschmann, D. , Byrd, J. B. , Casert, C. , Cheng, L. , Cmoch, A. , … & Hendrix, A. (2017). EV‐TRACK: Transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods, 14, 228–232. 10.1038/nmeth.4185 PubMed DOI

Visnovitz, T. , Osteikoetxea, X. , Sódar, B. W. , Mihály, J. , Lőrincz, P. , Vukman, K. V. , Tóth, E. Á. , Koncz, A. , Székács, I. , Horváth, R. , Varga, Z. , & Buzás, E. I. (2019). An improved 96 well plate format lipid quantification assay for standardisation of experiments with extracellular vesicles. Journal of Extracellular Vesicles, 8, 1565263. 10.1080/20013078.2019.1565263 PubMed DOI PMC

Wan, M. L.‐Y. , Chen, Z. , Shah, N. P. , & El‐Nezami, H. (2018). Effects of Lactobacillus rhamnosus GG and Escherichia coli Nissle 1917 Cell‐Free Supernatants on Modulation of Mucin and Cytokine Secretion on Human Intestinal Epithelial HT29‐MTX Cells. Journal of Food Science, 83, 1999–2007. 10.1111/1750-3841.14168 PubMed DOI

Wassenaar, T. M. (2016). Insights from 100 years of research with probiotic E. coli. European Journal of Microbiology and Immunology, 6, 147–161. 10.1556/1886.2016.00029 PubMed DOI PMC

Welsh, J. A. , Goberdhan, D. C. I. , O'Driscoll, L. , Buzas, E. I. , Blenkiron, C. , Bussolati, B. , Cai, H. , Di Vizio, D. , Driedonks, T. A. P. , Erdbrügger, U. , Falcon‐Perez, J. M. , Fu, Q.‐L. , Hill, A. F. , Lenassi, M. , Lim, S. K. , Mahoney, M. G. , Mohanty, S. , Möller, A. , Nieuwland, R. , … & Witwer, K. W. (2024). Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. Journal of Extracellular Vesicles, 13, e12404. 10.1002/jev2.12404 PubMed DOI PMC

Xie, J. , Li, Q. , & Nie, S. (2024). Bacterial extracellular vesicles: An emerging postbiotic. Trends in Food Science & Technology, 143, 104275. 10.1016/j.tifs.2023.104275 DOI

Zabłocka, A. , Jakubczyk, D. , Leszczyńska, K. , Pacyga‐Prus, K. , Macała, J. , & Górska, S. (2024). Studies of the impact of the bifidobacterium species on inducible nitric oxide synthase expression and nitric oxide production in murine macrophages of the BMDM cell line. Probiotics and Antimicrobial Proteins, 16, 1012–1025. 10.1007/s12602-023-10093-3 PubMed DOI PMC

Zaph, C. , Troy, A. E. , Taylor, B. C. , Berman‐Booty, L. D. , Guild, K. J. , Du, Y. , Yost, E. A. , Gruber, A. D. , May, M. J. , Greten, F. R. , Eckmann, L. , Karin, M. , & Artis, D. (2007). Epithelial‐cell‐intrinsic IKK‐β expression regulates intestinal immune homeostasis. Nature, 446, 552–556. 10.1038/nature05590 PubMed DOI

Zwicker, C. , Sarate, P. , Drinić, M. , Ambroz, K. , Korb, E. , Smole, U. , Köhler, C. , Wilson, M. S. , Kozakova, H. , Sebo, P. , Kverka, M. , Wiedermann, U. , & Schabussova, I. (2018). Prophylactic and therapeutic inhibition of allergic airway inflammation by probiotic Escherichia coli O83. Journal of Allergy and Clinical Immunology, 142, 1987–1990.e7. 10.1016/j.jaci.2018.07.029 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...