Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β2 Integrin CD11b/CD18
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5103
The European Union - Next Generation EU
LM2018133
The Ministry of Education, Youth and Sports of the Czech Republic
PubMed
36293453
PubMed Central
PMC9604300
DOI
10.3390/ijms232012598
PII: ijms232012598
Knihovny.cz E-zdroje
- Klíčová slova
- Bordetella pertussis, CD11b/CD18, adenylate cyclase toxin, filamentous hemagglutinin, heparin, integrin,
- MeSH
- antigeny CD18 MeSH
- bakteriální adheze MeSH
- bakteriální adheziny metabolismus MeSH
- Bordetella pertussis * metabolismus MeSH
- faktory virulence rodu Bordetella MeSH
- glykosaminoglykany MeSH
- hemaglutininy metabolismus MeSH
- heparin MeSH
- integriny MeSH
- lidé MeSH
- makrofágový antigen 1 MeSH
- pertuse * MeSH
- proteasy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD18 MeSH
- bakteriální adheziny MeSH
- faktory virulence rodu Bordetella MeSH
- glykosaminoglykany MeSH
- hemaglutininy MeSH
- heparin MeSH
- integriny MeSH
- makrofágový antigen 1 MeSH
- proteasy MeSH
The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the β2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the β2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.
Zobrazit více v PubMed
Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC
Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC
Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI
Malandra A., Rahman W.U., Klimova N., Streparola G., Holubova J., Osickova A., Bariselli S., Sebo P., Osicka R. Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein. Int. J. Mol. Sci. 2021;22:9064. doi: 10.3390/ijms22169064. PubMed DOI PMC
Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC
Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC
Tuomanen E., Towbin H., Rosenfelder G., Braun D., Larson G., Hansson G.C., Hill R. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J. Exp. Med. 1988;168:267–277. doi: 10.1084/jem.168.1.267. PubMed DOI PMC
Ewanowich C.A., Melton A.R., Weiss A.A., Sherburne R.K., Peppler M.S. Invasion of HeLa 229 cells by virulent Bordetella pertussis. Infect. Immun. 1989;57:2698–2704. doi: 10.1128/iai.57.9.2698-2704.1989. PubMed DOI PMC
Relman D., Tuomanen E., Falkow S., Golenbock D.T., Saukkonen K., Wright S.D. Recognition of a bacterial adhesion by an integrin: Macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990;61:1375–1382. doi: 10.1016/0092-8674(90)90701-F. PubMed DOI
Saukkonen K., Cabellos C., Burroughs M., Prasad S., Tuomanen E. Integrin-mediated localization of Bordetella pertussis within macrophages: Role in pulmonary colonization. J. Exp. Med. 1991;173:1143–1149. doi: 10.1084/jem.173.5.1143. PubMed DOI PMC
Friedman R.L., Nordensson K., Wilson L., Akporiaye E.T., Yocum D.E. Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect. Immun. 1992;60:4578–4585. doi: 10.1128/iai.60.11.4578-4585.1992. PubMed DOI PMC
Prasad S.M., Yin Y., Rodzinski E., Tuomanen E.I., Masure H.R. Identification of a carbohydrate recognition domain in filamentous hemagglutinin from Bordetella pertussis. Infect. Immun. 1993;61:2780–2785. doi: 10.1128/iai.61.7.2780-2785.1993. PubMed DOI PMC
Hazenbos W.L., van den Berg B.M., van′t Wout J.W., Mooi F.R., van Furth R. Virulence factors determine attachment and ingestion of nonopsonized and opsonized Bordetella pertussis by human monocytes. Infect. Immun. 1994;62:4818–4824. doi: 10.1128/iai.62.11.4818-4824.1994. PubMed DOI PMC
Ishibashi Y., Claus S., Relman D.A. Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD11b/CD18) J. Exp. Med. 1994;180:1225–1233. doi: 10.1084/jem.180.4.1225. PubMed DOI PMC
Bassinet L., Gueirard P., Maitre B., Housset B., Gounon P., Guiso N. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect. Immun. 2000;68:1934–1941. doi: 10.1128/IAI.68.4.1934-1941.2000. PubMed DOI PMC
Ishibashi Y., Relman D.A., Nishikawa A. Invasion of human respiratory epithelial cells by Bordetella pertussis: Possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin. Microb. Pathog. 2001;30:279–288. doi: 10.1006/mpat.2001.0432. PubMed DOI
Villarino Romero R., Osicka R., Sebo P. Filamentous hemagglutinin of Bordetella pertussis: A key adhesin with immunomodulatory properties? Future Microbiol. 2014;9:1339–1360. doi: 10.2217/fmb.14.77. PubMed DOI
Abramson T., Kedem H., Relman D.A. Proinflammatory and proapoptotic activities associated with Bordetella pertussis filamentous hemagglutinin. Infect. Immun. 2001;69:2650–2658. doi: 10.1128/IAI.69.4.2650-2658.2001. PubMed DOI PMC
Abramson T., Kedem H., Relman D.A. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin. PLoS ONE. 2008;3:e3825. doi: 10.1371/journal.pone.0003825. PubMed DOI PMC
Dieterich C., Relman D.A. Modulation of the host interferon response and ISGylation pathway by B. pertussis filamentous hemagglutinin. PLoS ONE. 2011;6:e27535. doi: 10.1371/journal.pone.0027535. PubMed DOI PMC
Henderson M.W., Inatsuka C.S., Sheets A.J., Williams C.L., Benaron D.J., Donato G.M., Gray M.C., Hewlett E.L., Cotter P.A. Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect. Immun. 2012;80:2061–2075. doi: 10.1128/IAI.00148-12. PubMed DOI PMC
McGuirk P., Mills K.H. Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous hemagglutinin from Bordetella pertussis. Eur. J. Immunol. 2000;30:415–422. doi: 10.1002/1521-4141(200002)30:2<415::AID-IMMU415>3.0.CO;2-X. PubMed DOI
McGuirk P., McCann C., Mills K.H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: A novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 2002;195:221–231. doi: 10.1084/jem.20011288. PubMed DOI PMC
Munoz J.J., Arai H., Cole R.L. Mouse-protecting and histamine-sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis. Infect. Immun. 1981;32:243–250. doi: 10.1128/iai.32.1.243-250.1981. PubMed DOI PMC
Cherry J.D., Gornbein J., Heininger U., Stehr K. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine. 1998;16:1901–1906. doi: 10.1016/S0264-410X(98)00226-6. PubMed DOI
Watanabe M., Nakase Y. Mutant of Bordetella pertussis which lacks ability to produce filamentous hemagglutinin. Infect. Immun. 1982;35:1018–1023. doi: 10.1128/iai.35.3.1018-1023.1982. PubMed DOI PMC
Poolman J.T. Shortcomings of pertussis vaccines: Why we need a third generation vaccine. Expert Rev. Vaccines. 2014;13:1159–1162. doi: 10.1586/14760584.2014.944902. PubMed DOI
Delisse-Gathoye A.M., Locht C., Jacob F., Raaschou-Nielsen M., Heron I., Ruelle J.L., de Wilde M., Cabezon T. Cloning, partial sequence, expression, and antigenic analysis of the filamentous hemagglutinin gene of Bordetella pertussis. Infect. Immun. 1990;58:2895–2905. doi: 10.1128/iai.58.9.2895-2905.1990. PubMed DOI PMC
Domenighini M., Relman D., Capiau C., Falkow S., Prugnola A., Scarlato V., Rappuoli R. Genetic characterization of Bordetella pertussis filamentous haemagglutinin: A protein processed from an unusually large precursor. Mol. Microbiol. 1990;4:787–800. doi: 10.1111/j.1365-2958.1990.tb00649.x. PubMed DOI
Lambert-Buisine C., Willery E., Locht C., Jacob-Dubuisson F. N-terminal characterization of the Bordetella pertussis filamentous haemagglutinin. Mol. Microbiol. 1998;28:1283–1293. doi: 10.1046/j.1365-2958.1998.00892.x. PubMed DOI
Mazar J., Cotter P.A. Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. Mol. Microbiol. 2006;62:641–654. doi: 10.1111/j.1365-2958.2006.05392.x. PubMed DOI
Maier T., Clantin B., Gruss F., Dewitte F., Delattre A.S., Jacob-Dubuisson F., Hiller S., Villeret V. Conserved Omp85 lid-lock structure and substrate recognition in FhaC. Nat. Commun. 2015;6:7452. doi: 10.1038/ncomms8452. PubMed DOI PMC
Guerin J., Bigot S., Schneider R., Buchanan S.K., Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front. Cell. Infect. Microbiol. 2017;7:148. doi: 10.3389/fcimb.2017.00148. PubMed DOI PMC
Coutte L., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F. Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J. 2001;20:5040–5048. doi: 10.1093/emboj/20.18.5040. PubMed DOI PMC
Jurnecka D., Man P., Sebo P., Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio. 2018;8:1256–1266. doi: 10.1002/2211-5463.12474. PubMed DOI PMC
Noel C.R., Mazar J., Melvin J.A., Sexton J.A., Cotter P.A. The prodomain of the Bordetella two-partner secretion pathway protein FhaB remains intracellular yet affects the conformation of the mature C-terminal domain. Mol. Microbiol. 2012;86:988–1006. doi: 10.1111/mmi.12036. PubMed DOI PMC
Nash Z.M., Cotter P.A. Regulated, sequential processing by multiple proteases is required for proper maturation and release of Bordetella filamentous hemagglutinin. Mol. Microbiol. 2019;112:820–836. doi: 10.1111/mmi.14318. PubMed DOI
Johnson R.M., Nash Z.M., Dedloff M.R., Shook J.C., Cotter P.A. DegP Initiates Regulated Processing of Filamentous Hemagglutinin in Bordetella bronchiseptica. mBio. 2021;12:e0146521. doi: 10.1128/mBio.01465-21. PubMed DOI PMC
Coutte L., Alonso S., Reveneau N., Willery E., Quatannens B., Locht C., Jacob-Dubuisson F. Role of adhesin release for mucosal colonization by a bacterial pathogen. J. Exp. Med. 2003;197:735–742. doi: 10.1084/jem.20021153. PubMed DOI PMC
Julio S.M., Inatsuka C.S., Mazar J., Dieterich C., Relman D.A., Cotter P.A. Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection. Mol. Microbiol. 2009;71:1574–1590. doi: 10.1111/j.1365-2958.2009.06623.x. PubMed DOI PMC
Melvin J.A., Scheller E.V., Noel C.R., Cotter P.A. New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence. mBio. 2015;6:e01189-15. doi: 10.1128/mBio.01189-15. PubMed DOI PMC
Menozzi F.D., Gantiez C., Locht C. Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol. Lett. 1991;62:59–64. doi: 10.1111/j.1574-6968.1991.tb04417.x. PubMed DOI
Makhov A.M., Hannah J.H., Brennan M.J., Trus B.L., Kocsis E., Conway J.F., Wingfield P.T., Simon M.N., Steven A.C. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta strands and turns. J. Mol. Biol. 1994;241:110–124. doi: 10.1006/jmbi.1994.1478. PubMed DOI
Hannah J.H., Menozzi F.D., Renauld G., Locht C., Brennan M.J. Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect. Immun. 1994;62:5010–5019. doi: 10.1128/iai.62.11.5010-5019.1994. PubMed DOI PMC
Menozzi F.D., Mutombo R., Renauld G., Gantiez C., Hannah J.H., Leininger E., Brennan M.J., Locht C. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infect. Immun. 1994;62:769–778. doi: 10.1128/iai.62.3.769-778.1994. PubMed DOI PMC
Ishibashi Y., Yoshimura K., Nishikawa A., Claus S., Laudanna C., Relman D.A. Role of phosphatidylinositol 3-kinase in the binding of Bordetella pertussis to human monocytes. Cell. Microbiol. 2002;4:825–833. doi: 10.1046/j.1462-5822.2002.00235.x. PubMed DOI
Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC
Arnaout M.A., Mahalingam B., Xiong J.P. Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 2005;21:381–410. doi: 10.1146/annurev.cellbio.21.090704.151217. PubMed DOI
Ulanova M., Gravelle S., Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J. Innate Immun. 2009;1:4–17. doi: 10.1159/000141865. PubMed DOI PMC
Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697. PubMed DOI
Hazenbos W.L., van den Berg B.M., Geuijen C.W., Mooi F.R., van Furth R. Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J. Immunol. 1995;155:3972–3978. PubMed
Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC
Leininger E., Ewanowich C.A., Bhargava A., Peppler M.S., Kenimer J.G., Brennan M.J. Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect. Immun. 1992;60:2380–2385. doi: 10.1128/iai.60.6.2380-2385.1992. PubMed DOI PMC
Relman D.A., Domenighini M., Tuomanen E., Rappuoli R., Falkow S. Filamentous hemagglutinin of Bordetella pertussis: Nucleotide sequence and crucial role in adherence. Proc. Natl. Acad. Sci. USA. 1989;86:2637–2641. doi: 10.1073/pnas.86.8.2637. PubMed DOI PMC
Leininger E., Kenimer J.G., Brennan M.J. Surface Proteins of Bordetella pertussis: Role in Adherence. In: Manclark C.R., editor. Proceedings of the Sixth International Symposium on Pertussis. Department of Health and Human Services, United States Public Health Service; Bethesda, MD, USA: 1990. pp. 100–105.
Irons L.I., Ashworth L.A., Wilton-Smith P. Heterogeneity of the filamentous haemagglutinin of Bordetella pertussis studied with monoclonal antibodies. J. Gen. Microbiol. 1983;129:2769–2778. doi: 10.1099/00221287-129-9-2769. PubMed DOI
Stainer D.W., Scholte M.J. A simple chemically defined medium for the production of phase I Bordetella pertussis. J. Gen. Microbiol. 1970;63:211–220. doi: 10.1099/00221287-63-2-211. PubMed DOI
Rahman W.U., Osickova A., Klimova N., Lora J., Balashova N., Osicka R. Binding of Kingella kingae RtxA Toxin Depends on Cell Surface Oligosaccharides, but Not on beta2 Integrins. Int. J. Mol. Sci. 2020;21:9092. doi: 10.3390/ijms21239092. PubMed DOI PMC
Ding Z.M., Babensee J.E., Simon S.I., Lu H., Perrard J.L., Bullard D.C., Dai X.Y., Bromley S.K., Dustin M.L., Entman M.L., et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 1999;163:5029–5038. PubMed
Coxon A., Rieu P., Barkalow F.J., Askari S., Sharpe A.H., von Andrian U.H., Arnaout M.A., Mayadas T.N. A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: A homeostatic mechanism in inflammation. Immunity. 1996;5:653–666. doi: 10.1016/S1074-7613(00)80278-2. PubMed DOI
Menck K., Behme D., Pantke M., Reiling N., Binder C., Pukrop T., Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J. Vis. Exp. JoVE. 2014;91:e51554. doi: 10.3791/51554. PubMed DOI PMC
Inatsuka C.S., Xu Q., Vujkovic-Cvijin I., Wong S., Stibitz S., Miller J.F., Cotter P.A. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect. Immun. 2010;78:2901–2909. doi: 10.1128/IAI.00188-10. PubMed DOI PMC
Klimova N., Holubova J., Streparola G., Tomala J., Brazdilova L., Stanek O., Bumba L., Sebo P. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog. 2022;18:e1010577. doi: 10.1371/journal.ppat.1010577. PubMed DOI PMC
Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC