Filamentous Hemagglutinin of Bordetella pertussis Does Not Interact with the β2 Integrin CD11b/CD18

. 2022 Oct 20 ; 23 (20) : . [epub] 20221020

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36293453

Grantová podpora
Programme EXCELES, ID Project No. LX22NPO5103 The European Union - Next Generation EU
LM2018133 The Ministry of Education, Youth and Sports of the Czech Republic

The pertussis agent Bordetella pertussis produces a number of virulence factors, of which the filamentous hemagglutinin (FhaB) plays a role in B. pertussis adhesion to epithelial and phagocytic cells. Moreover, FhaB was recently found to play a crucial role in nasal cavity infection and B. pertussis transmission to new hosts. The 367 kDa FhaB protein translocates through an FhaC pore to the outer bacterial surface and is eventually processed to a ~220 kDa N-terminal FHA fragment by the SphB1 protease. A fraction of the mature FHA then remains associated with bacterial cell surface, while most of FHA is shed into the bacterial environment. Previously reported indirect evidence suggested that FHA, or its precursor FhaB, may bind the β2 integrin CD11b/CD18 of human macrophages. Therefore, we assessed FHA binding to various cells producing or lacking the integrin and show that purified mature FHA does not bind CD11b/CD18. Further results then revealed that the adhesion of B. pertussis to cells does not involve an interaction between the bacterial surface-associated FhaB and/or mature FHA and the β2 integrin CD11b/CD18. In contrast, FHA binding was strongly inhibited at micromolar concentrations of heparin, corroborating that the cell binding of FHA is ruled by the interaction of its heparin-binding domain with sulfated glycosaminoglycans on the cell surface.

Zobrazit více v PubMed

Mattoo S., Cherry J.D. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 2005;18:326–382. doi: 10.1128/CMR.18.2.326-382.2005. PubMed DOI PMC

Melvin J.A., Scheller E.V., Miller J.F., Cotter P.A. Bordetella pertussis pathogenesis: Current and future challenges. Nat. Rev. Microbiol. 2014;12:274–288. doi: 10.1038/nrmicro3235. PubMed DOI PMC

Yeung K.H.T., Duclos P., Nelson E.A.S., Hutubessy R.C.W. An update of the global burden of pertussis in children younger than 5 years: A modelling study. Lancet Infect. Dis. 2017;17:974–980. doi: 10.1016/S1473-3099(17)30390-0. PubMed DOI

Malandra A., Rahman W.U., Klimova N., Streparola G., Holubova J., Osickova A., Bariselli S., Sebo P., Osicka R. Bordetella Adenylate Cyclase Toxin Elicits Airway Mucin Secretion through Activation of the cAMP Response Element Binding Protein. Int. J. Mol. Sci. 2021;22:9064. doi: 10.3390/ijms22169064. PubMed DOI PMC

Novak J., Cerny O., Osickova A., Linhartova I., Masin J., Bumba L., Sebo P., Osicka R. Structure-Function Relationships Underlying the Capacity of Bordetella Adenylate Cyclase Toxin to Disarm Host Phagocytes. Toxins. 2017;9:300. doi: 10.3390/toxins9100300. PubMed DOI PMC

Masin J., Osicka R., Bumba L., Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathog. Dis. 2015;73:ftv075. doi: 10.1093/femspd/ftv075. PubMed DOI PMC

Tuomanen E., Towbin H., Rosenfelder G., Braun D., Larson G., Hansson G.C., Hill R. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J. Exp. Med. 1988;168:267–277. doi: 10.1084/jem.168.1.267. PubMed DOI PMC

Ewanowich C.A., Melton A.R., Weiss A.A., Sherburne R.K., Peppler M.S. Invasion of HeLa 229 cells by virulent Bordetella pertussis. Infect. Immun. 1989;57:2698–2704. doi: 10.1128/iai.57.9.2698-2704.1989. PubMed DOI PMC

Relman D., Tuomanen E., Falkow S., Golenbock D.T., Saukkonen K., Wright S.D. Recognition of a bacterial adhesion by an integrin: Macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990;61:1375–1382. doi: 10.1016/0092-8674(90)90701-F. PubMed DOI

Saukkonen K., Cabellos C., Burroughs M., Prasad S., Tuomanen E. Integrin-mediated localization of Bordetella pertussis within macrophages: Role in pulmonary colonization. J. Exp. Med. 1991;173:1143–1149. doi: 10.1084/jem.173.5.1143. PubMed DOI PMC

Friedman R.L., Nordensson K., Wilson L., Akporiaye E.T., Yocum D.E. Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect. Immun. 1992;60:4578–4585. doi: 10.1128/iai.60.11.4578-4585.1992. PubMed DOI PMC

Prasad S.M., Yin Y., Rodzinski E., Tuomanen E.I., Masure H.R. Identification of a carbohydrate recognition domain in filamentous hemagglutinin from Bordetella pertussis. Infect. Immun. 1993;61:2780–2785. doi: 10.1128/iai.61.7.2780-2785.1993. PubMed DOI PMC

Hazenbos W.L., van den Berg B.M., van′t Wout J.W., Mooi F.R., van Furth R. Virulence factors determine attachment and ingestion of nonopsonized and opsonized Bordetella pertussis by human monocytes. Infect. Immun. 1994;62:4818–4824. doi: 10.1128/iai.62.11.4818-4824.1994. PubMed DOI PMC

Ishibashi Y., Claus S., Relman D.A. Bordetella pertussis filamentous hemagglutinin interacts with a leukocyte signal transduction complex and stimulates bacterial adherence to monocyte CR3 (CD11b/CD18) J. Exp. Med. 1994;180:1225–1233. doi: 10.1084/jem.180.4.1225. PubMed DOI PMC

Bassinet L., Gueirard P., Maitre B., Housset B., Gounon P., Guiso N. Role of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect. Immun. 2000;68:1934–1941. doi: 10.1128/IAI.68.4.1934-1941.2000. PubMed DOI PMC

Ishibashi Y., Relman D.A., Nishikawa A. Invasion of human respiratory epithelial cells by Bordetella pertussis: Possible role for a filamentous hemagglutinin Arg-Gly-Asp sequence and alpha5beta1 integrin. Microb. Pathog. 2001;30:279–288. doi: 10.1006/mpat.2001.0432. PubMed DOI

Villarino Romero R., Osicka R., Sebo P. Filamentous hemagglutinin of Bordetella pertussis: A key adhesin with immunomodulatory properties? Future Microbiol. 2014;9:1339–1360. doi: 10.2217/fmb.14.77. PubMed DOI

Abramson T., Kedem H., Relman D.A. Proinflammatory and proapoptotic activities associated with Bordetella pertussis filamentous hemagglutinin. Infect. Immun. 2001;69:2650–2658. doi: 10.1128/IAI.69.4.2650-2658.2001. PubMed DOI PMC

Abramson T., Kedem H., Relman D.A. Modulation of the NF-kappaB pathway by Bordetella pertussis filamentous hemagglutinin. PLoS ONE. 2008;3:e3825. doi: 10.1371/journal.pone.0003825. PubMed DOI PMC

Dieterich C., Relman D.A. Modulation of the host interferon response and ISGylation pathway by B. pertussis filamentous hemagglutinin. PLoS ONE. 2011;6:e27535. doi: 10.1371/journal.pone.0027535. PubMed DOI PMC

Henderson M.W., Inatsuka C.S., Sheets A.J., Williams C.L., Benaron D.J., Donato G.M., Gray M.C., Hewlett E.L., Cotter P.A. Contribution of Bordetella filamentous hemagglutinin and adenylate cyclase toxin to suppression and evasion of interleukin-17-mediated inflammation. Infect. Immun. 2012;80:2061–2075. doi: 10.1128/IAI.00148-12. PubMed DOI PMC

McGuirk P., Mills K.H. Direct anti-inflammatory effect of a bacterial virulence factor: IL-10-dependent suppression of IL-12 production by filamentous hemagglutinin from Bordetella pertussis. Eur. J. Immunol. 2000;30:415–422. doi: 10.1002/1521-4141(200002)30:2<415::AID-IMMU415>3.0.CO;2-X. PubMed DOI

McGuirk P., McCann C., Mills K.H. Pathogen-specific T regulatory 1 cells induced in the respiratory tract by a bacterial molecule that stimulates interleukin 10 production by dendritic cells: A novel strategy for evasion of protective T helper type 1 responses by Bordetella pertussis. J. Exp. Med. 2002;195:221–231. doi: 10.1084/jem.20011288. PubMed DOI PMC

Munoz J.J., Arai H., Cole R.L. Mouse-protecting and histamine-sensitizing activities of pertussigen and fimbrial hemagglutinin from Bordetella pertussis. Infect. Immun. 1981;32:243–250. doi: 10.1128/iai.32.1.243-250.1981. PubMed DOI PMC

Cherry J.D., Gornbein J., Heininger U., Stehr K. A search for serologic correlates of immunity to Bordetella pertussis cough illnesses. Vaccine. 1998;16:1901–1906. doi: 10.1016/S0264-410X(98)00226-6. PubMed DOI

Watanabe M., Nakase Y. Mutant of Bordetella pertussis which lacks ability to produce filamentous hemagglutinin. Infect. Immun. 1982;35:1018–1023. doi: 10.1128/iai.35.3.1018-1023.1982. PubMed DOI PMC

Poolman J.T. Shortcomings of pertussis vaccines: Why we need a third generation vaccine. Expert Rev. Vaccines. 2014;13:1159–1162. doi: 10.1586/14760584.2014.944902. PubMed DOI

Delisse-Gathoye A.M., Locht C., Jacob F., Raaschou-Nielsen M., Heron I., Ruelle J.L., de Wilde M., Cabezon T. Cloning, partial sequence, expression, and antigenic analysis of the filamentous hemagglutinin gene of Bordetella pertussis. Infect. Immun. 1990;58:2895–2905. doi: 10.1128/iai.58.9.2895-2905.1990. PubMed DOI PMC

Domenighini M., Relman D., Capiau C., Falkow S., Prugnola A., Scarlato V., Rappuoli R. Genetic characterization of Bordetella pertussis filamentous haemagglutinin: A protein processed from an unusually large precursor. Mol. Microbiol. 1990;4:787–800. doi: 10.1111/j.1365-2958.1990.tb00649.x. PubMed DOI

Lambert-Buisine C., Willery E., Locht C., Jacob-Dubuisson F. N-terminal characterization of the Bordetella pertussis filamentous haemagglutinin. Mol. Microbiol. 1998;28:1283–1293. doi: 10.1046/j.1365-2958.1998.00892.x. PubMed DOI

Mazar J., Cotter P.A. Topology and maturation of filamentous haemagglutinin suggest a new model for two-partner secretion. Mol. Microbiol. 2006;62:641–654. doi: 10.1111/j.1365-2958.2006.05392.x. PubMed DOI

Maier T., Clantin B., Gruss F., Dewitte F., Delattre A.S., Jacob-Dubuisson F., Hiller S., Villeret V. Conserved Omp85 lid-lock structure and substrate recognition in FhaC. Nat. Commun. 2015;6:7452. doi: 10.1038/ncomms8452. PubMed DOI PMC

Guerin J., Bigot S., Schneider R., Buchanan S.K., Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front. Cell. Infect. Microbiol. 2017;7:148. doi: 10.3389/fcimb.2017.00148. PubMed DOI PMC

Coutte L., Antoine R., Drobecq H., Locht C., Jacob-Dubuisson F. Subtilisin-like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J. 2001;20:5040–5048. doi: 10.1093/emboj/20.18.5040. PubMed DOI PMC

Jurnecka D., Man P., Sebo P., Bumba L. Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites. FEBS Open Bio. 2018;8:1256–1266. doi: 10.1002/2211-5463.12474. PubMed DOI PMC

Noel C.R., Mazar J., Melvin J.A., Sexton J.A., Cotter P.A. The prodomain of the Bordetella two-partner secretion pathway protein FhaB remains intracellular yet affects the conformation of the mature C-terminal domain. Mol. Microbiol. 2012;86:988–1006. doi: 10.1111/mmi.12036. PubMed DOI PMC

Nash Z.M., Cotter P.A. Regulated, sequential processing by multiple proteases is required for proper maturation and release of Bordetella filamentous hemagglutinin. Mol. Microbiol. 2019;112:820–836. doi: 10.1111/mmi.14318. PubMed DOI

Johnson R.M., Nash Z.M., Dedloff M.R., Shook J.C., Cotter P.A. DegP Initiates Regulated Processing of Filamentous Hemagglutinin in Bordetella bronchiseptica. mBio. 2021;12:e0146521. doi: 10.1128/mBio.01465-21. PubMed DOI PMC

Coutte L., Alonso S., Reveneau N., Willery E., Quatannens B., Locht C., Jacob-Dubuisson F. Role of adhesin release for mucosal colonization by a bacterial pathogen. J. Exp. Med. 2003;197:735–742. doi: 10.1084/jem.20021153. PubMed DOI PMC

Julio S.M., Inatsuka C.S., Mazar J., Dieterich C., Relman D.A., Cotter P.A. Natural-host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C-terminal domain, but not the RGD motif, during infection. Mol. Microbiol. 2009;71:1574–1590. doi: 10.1111/j.1365-2958.2009.06623.x. PubMed DOI PMC

Melvin J.A., Scheller E.V., Noel C.R., Cotter P.A. New Insight into Filamentous Hemagglutinin Secretion Reveals a Role for Full-Length FhaB in Bordetella Virulence. mBio. 2015;6:e01189-15. doi: 10.1128/mBio.01189-15. PubMed DOI PMC

Menozzi F.D., Gantiez C., Locht C. Interaction of the Bordetella pertussis filamentous hemagglutinin with heparin. FEMS Microbiol. Lett. 1991;62:59–64. doi: 10.1111/j.1574-6968.1991.tb04417.x. PubMed DOI

Makhov A.M., Hannah J.H., Brennan M.J., Trus B.L., Kocsis E., Conway J.F., Wingfield P.T., Simon M.N., Steven A.C. Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta strands and turns. J. Mol. Biol. 1994;241:110–124. doi: 10.1006/jmbi.1994.1478. PubMed DOI

Hannah J.H., Menozzi F.D., Renauld G., Locht C., Brennan M.J. Sulfated glycoconjugate receptors for the Bordetella pertussis adhesin filamentous hemagglutinin (FHA) and mapping of the heparin-binding domain on FHA. Infect. Immun. 1994;62:5010–5019. doi: 10.1128/iai.62.11.5010-5019.1994. PubMed DOI PMC

Menozzi F.D., Mutombo R., Renauld G., Gantiez C., Hannah J.H., Leininger E., Brennan M.J., Locht C. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infect. Immun. 1994;62:769–778. doi: 10.1128/iai.62.3.769-778.1994. PubMed DOI PMC

Ishibashi Y., Yoshimura K., Nishikawa A., Claus S., Laudanna C., Relman D.A. Role of phosphatidylinositol 3-kinase in the binding of Bordetella pertussis to human monocytes. Cell. Microbiol. 2002;4:825–833. doi: 10.1046/j.1462-5822.2002.00235.x. PubMed DOI

Osicka R., Osickova A., Hasan S., Bumba L., Cerny J., Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. eLife. 2015;4:e10766. doi: 10.7554/eLife.10766. PubMed DOI PMC

Arnaout M.A., Mahalingam B., Xiong J.P. Integrin structure, allostery, and bidirectional signaling. Annu. Rev. Cell Dev. Biol. 2005;21:381–410. doi: 10.1146/annurev.cellbio.21.090704.151217. PubMed DOI

Ulanova M., Gravelle S., Barnes R. The role of epithelial integrin receptors in recognition of pulmonary pathogens. J. Innate Immun. 2009;1:4–17. doi: 10.1159/000141865. PubMed DOI PMC

Ruoslahti E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 1996;12:697–715. doi: 10.1146/annurev.cellbio.12.1.697. PubMed DOI

Hazenbos W.L., van den Berg B.M., Geuijen C.W., Mooi F.R., van Furth R. Binding of FimD on Bordetella pertussis to very late antigen-5 on monocytes activates complement receptor type 3 via protein tyrosine kinases. J. Immunol. 1995;155:3972–3978. PubMed

Guermonprez P., Khelef N., Blouin E., Rieu P., Ricciardi-Castagnoli P., Guiso N., Ladant D., Leclerc C. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the alpha(M)beta(2) integrin (CD11b/CD18) J. Exp. Med. 2001;193:1035–1044. doi: 10.1084/jem.193.9.1035. PubMed DOI PMC

Leininger E., Ewanowich C.A., Bhargava A., Peppler M.S., Kenimer J.G., Brennan M.J. Comparative roles of the Arg-Gly-Asp sequence present in the Bordetella pertussis adhesins pertactin and filamentous hemagglutinin. Infect. Immun. 1992;60:2380–2385. doi: 10.1128/iai.60.6.2380-2385.1992. PubMed DOI PMC

Relman D.A., Domenighini M., Tuomanen E., Rappuoli R., Falkow S. Filamentous hemagglutinin of Bordetella pertussis: Nucleotide sequence and crucial role in adherence. Proc. Natl. Acad. Sci. USA. 1989;86:2637–2641. doi: 10.1073/pnas.86.8.2637. PubMed DOI PMC

Leininger E., Kenimer J.G., Brennan M.J. Surface Proteins of Bordetella pertussis: Role in Adherence. In: Manclark C.R., editor. Proceedings of the Sixth International Symposium on Pertussis. Department of Health and Human Services, United States Public Health Service; Bethesda, MD, USA: 1990. pp. 100–105.

Irons L.I., Ashworth L.A., Wilton-Smith P. Heterogeneity of the filamentous haemagglutinin of Bordetella pertussis studied with monoclonal antibodies. J. Gen. Microbiol. 1983;129:2769–2778. doi: 10.1099/00221287-129-9-2769. PubMed DOI

Stainer D.W., Scholte M.J. A simple chemically defined medium for the production of phase I Bordetella pertussis. J. Gen. Microbiol. 1970;63:211–220. doi: 10.1099/00221287-63-2-211. PubMed DOI

Rahman W.U., Osickova A., Klimova N., Lora J., Balashova N., Osicka R. Binding of Kingella kingae RtxA Toxin Depends on Cell Surface Oligosaccharides, but Not on beta2 Integrins. Int. J. Mol. Sci. 2020;21:9092. doi: 10.3390/ijms21239092. PubMed DOI PMC

Ding Z.M., Babensee J.E., Simon S.I., Lu H., Perrard J.L., Bullard D.C., Dai X.Y., Bromley S.K., Dustin M.L., Entman M.L., et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J. Immunol. 1999;163:5029–5038. PubMed

Coxon A., Rieu P., Barkalow F.J., Askari S., Sharpe A.H., von Andrian U.H., Arnaout M.A., Mayadas T.N. A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: A homeostatic mechanism in inflammation. Immunity. 1996;5:653–666. doi: 10.1016/S1074-7613(00)80278-2. PubMed DOI

Menck K., Behme D., Pantke M., Reiling N., Binder C., Pukrop T., Klemm F. Isolation of human monocytes by double gradient centrifugation and their differentiation to macrophages in teflon-coated cell culture bags. J. Vis. Exp. JoVE. 2014;91:e51554. doi: 10.3791/51554. PubMed DOI PMC

Inatsuka C.S., Xu Q., Vujkovic-Cvijin I., Wong S., Stibitz S., Miller J.F., Cotter P.A. Pertactin is required for Bordetella species to resist neutrophil-mediated clearance. Infect. Immun. 2010;78:2901–2909. doi: 10.1128/IAI.00188-10. PubMed DOI PMC

Klimova N., Holubova J., Streparola G., Tomala J., Brazdilova L., Stanek O., Bumba L., Sebo P. Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes. PLoS Pathog. 2022;18:e1010577. doi: 10.1371/journal.ppat.1010577. PubMed DOI PMC

Osicka R., Osickova A., Basar T., Guermonprez P., Rojas M., Leclerc C., Sebo P. Delivery of CD8(+) T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect. Immun. 2000;68:247–256. doi: 10.1128/IAI.68.1.247-256.2000. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...