Bordetella pertussis and Bordetella bronchiseptica filamentous hemagglutinins are processed at different sites

. 2018 Aug ; 8 (8) : 1256-1266. [epub] 20180620

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30087831

Filamentous hemagglutinin (FHA) mediates adherence and plays an important role in lower respiratory tract infections by pathogenic Bordetellae. The mature FHA proteins of B. pertussis (Bp-FHA) and the B. bronchiseptica (Bb-FHA) are generated by processing of the respective FhaB precursors by the autotransporter subtilisin-type protease SphB1. We have used bottom-up proteomics with differential 16O/18O labeling and show that despite high-sequence conservation of the corresponding FhaB segments, the mature Bp-FHA (~ 230 kDa) and Bb-FHA (~ 243 kDa) proteins are processed at different sites of FhaB, after the Ala-2348 and Lys-2479 residues, respectively. Moreover, protease surface accessibility probing by on-column (on-line) digestion of the Bp-FHA and Bb-FHA proteins yielded different peptide patterns, revealing structural differences in the N-terminal and C-terminal domains of the Bp-FHA and Bb-FHA proteins. These data indicate specific structural variations between the highly homologous FHA proteins.

Zobrazit více v PubMed

Diavatopoulos DA, Cummings CA, Schouls LM, Brinig MM, Relman DA and Mooi FR (2005) Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human‐associated lineage of B. bronchiseptica. PLoS Pathog 1, 0373–0383. PubMed PMC

Mattoo S and Cherry JD (2005) Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin Microbiol Rev 18, 326–382. PubMed PMC

Klein NP (2014) Licensed pertussis vaccines in the United States: history and current state. Hum Vaccines Immunother 10, 2684–2690. PubMed PMC

Warfel JM and Edwards KM (2015) Pertussis vaccines and the challenge of inducing durable immunity. Curr Opin Immunol 35, 48–54. PubMed

Tartof SY, Lewis M, Kenyon C, White K, Osborn A, Liko J, Zell E, Martin S, Messonnier NE, Clark TA et al (2013) Waning immunity to pertussis following 5 doses of DTaP. Pediatrics 131, e1047–e1052. PubMed

Witt MA, Arias L, Katz PH, Truong ET and Witt DJ (2013) Reduced risk of pertussis among persons ever vaccinated with whole cell pertussis vaccine compared to recipients of acellular pertussis vaccines in a large US cohort. Clin Infect Dis 56, 1248–1254. PubMed

Hazenbos WLW, Van den Berg BM, Van't Wout JW, Mooi FR and Van Furth R (1994) Virulence factors determine attachment and ingestion of nonopsonized and opsonized Bordetella pertussis by human monocytes. Infect Immun 62, 4818–4824. PubMed PMC

Makhov AM, Hannah JH, Brennan MJ, Trus BL, Kocsis E, Conway JF, Wingfield PT, Simon MN and Steven AC (1994) Filamentous hemagglutinin of Bordetella pertussis. A bacterial adhesin formed as a 50‐nm monomeric rigid rod based on a 19‐residue repeat motif rich in beta strands and turns. J Mol Biol 241, 110–124. PubMed

Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA and Miller JF (1998) Filamentous hemagglutinin of Bordetella bronchiseptica is required for efficient establishment of tracheal colonization. Infect Immun 66, 5921–5929. PubMed PMC

Mattoo S, Miller JF and Cotter PA (2000) Role of Bordetella bronchiseptica fimbriae in tracheal colonization and development of a humoral immune response. Infect Immun 68, 2024–2033. PubMed PMC

Inatsuka CS, Julio SM and Cotter PA (2005) Bordetella filamentous hemagglutinin plays a critical role in immunomodulation, suggesting a mechanism for host specificity. Proc Natl Acad Sci USA 102, 18578–18583. PubMed PMC

Villarino Romero R, Osicka R and Sebo P (2014) Filamentous hemagglutinin of Bordetella pertussis: a key adhesin with immunomodulatory properties? Future Microbiol 9, 1339–1360. PubMed

Dirix V, Mielcarek N, Debrie AS, Willery E, Alonso S, Versheure V, Mascart F and Locht C (2014) Human dendritic cell maturation and cytokine secretion upon stimulation with Bordetella pertussis filamentous haemagglutinin. Microbes Infect 16, 562–570. PubMed

McGuirk P and Mills KHG (2002) Pathogen‐specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends Immunol 23, 450–455. PubMed

Villarino Romero R, Hasan S, Faé K, Holubova J, Geurtsen J, Schwarzer M, Wiertsema S, Osicka R, Poolman J and Sebo P (2016) Bordetella pertussis filamentous hemagglutinin itself does not trigger anti‐inflammatory interleukin‐10 production by human dendritic cells. Int J Med Microbiol 306, 38–47. PubMed

Zaretzky FR, Gray MC and Hewlett EL (2002) Mechanism of association of adenylate cyclase toxin with the surface of Bordetella pertussis: a role for toxin‐filamentous haemagglutinin interaction. Mol Microbiol 45, 1589–1598. PubMed

Perez Vidakovics MLA, Lamberti Y, Van Der Pol WL, Yantorno O and Rodriguez ME (2006) Adenylate cyclase influences filamentous haemagglutinin‐mediated attachment of Bordetella pertussis to epithelial alveolar cells. FEMS Immunol Med Microbiol 48, 140–147. PubMed

Lambert‐Buisine C, Willery E, Locht C and Jacob‐Dubuisson F (1998) N‐terminal characterization of the Bordetella pertussis filamentous haemagglutinin. Mol Microbiol 28, 1283–1293. PubMed

Clantin B, Hodak H, Willery E, Locht C, Jacob‐Dubuisson F and Villeret V (2004) The crystal structure of filamentous hemagglutinin secretion domain and its implications for the two‐partner secretion pathway. Proc Natl Acad Sci USA 101, 6194–6199. PubMed PMC

Clantin B, Delattre A‐SS, Rucktooa P, Saint N, Méli AC, Locht C, Françoise J‐D and Villeret V (2007) Structure of the membrane protein FhaC: a member of the Omp85‐TpsB transporter superfamily. Science 317, 957–961. PubMed

Mazar J and Cotter PA (2006) Topology and maturation of filamentous haemagglutinin suggest a new model for two‐partner secretion. Mol Microbiol 62, 641–654. PubMed

Renauld‐Mongénie G, Cornette J, Mielcarek N, Menozzi FD and Locht C (1996) Distinct roles of the N‐terminal and C‐terminal precursor domains in the biogenesis of the Bordetella pertussis filamentous hemagglutinin. J Bacteriol 178, 1053–1060. PubMed PMC

Noël CR, Mazar J, Melvin JA, Sexton JA and Cotter PA (2012) The prodomain of the Bordetella two‐partner secretion pathway protein FhaB remains intracellular yet affects the conformation of the mature C‐terminal domain. Mol Microbiol 86, 988–1006. PubMed PMC

Melvin JA, Scheller EV, Noël CR and Cotter PA (2015) New insight into filamentous hemagglutinin secretion reveals a role for full‐length FhaB in Bordetella virulence. MBio 6, e01189–15. PubMed PMC

Coutte L, Antoine R, Drobecq H, Locht C and Jacob‐Dubuisson F (2001) Subtilisin‐like autotransporter serves as maturation protease in a bacterial secretion pathway. EMBO J 20, 5040–5048. PubMed PMC

Kadek A, Mrazek H, Halada P, Rey M, Schriemer DC and Man P (2014) Aspartic protease nepenthesin‐1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86, 4287–4294. PubMed

Vizcaíno JA, Csordas A, Del‐Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez‐Riverol Y, Reisinger F, Ternent T et al (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Res 44, D447–D456. PubMed PMC

Jacob‐Dubuisson F, Kehoe B, Willery E, Reveneau N, Locht C and Relman DA (2000) Molecular characterization of Bordetella bronchiseptica filamentous haemagglutinin and its secretion machinery. Microbiology 146, 1211–1221. PubMed

Giansanti P, Tsiatsiani L, Low TY and Heck AJR (2016) Six alternative proteases for mass spectrometry‐based proteomics beyond trypsin. Nat Protoc 11, 993–1006. PubMed

Ye X, Luke B, Andresson T and Blonder J (2009) 18O stable isotope labeling in MS‐based proteomics. Brief Funct Genomic Proteomic 8, 136–144. PubMed PMC

Coutte L, Alonso S, Reveneau N, Willery E, Quatannens B, Locht C and Jacob‐Dubuisson F (2003) Role of adhesin release for mucosal colonization by a bacterial pathogen. J Exp Med 197, 735–742. PubMed PMC

Coutte L, Willery E, Antoine R, Drobecq H, Locht C and Jacob‐Dubuisson F (2003) Surface anchoring of bacterial subtilisin important for maturation function. Mol Microbiol 49, 529–539. PubMed

Siezen RJ and Leunissen JA (1997) Subtilases: the superfamily of subtilisin‐like serine proteases. Protein Sci 6, 501–523. PubMed PMC

Julio SM, Inatsuka CS, Mazar J, Dieterich C, Relman DA and Cotter PA (2009) Natural‐host animal models indicate functional interchangeability between the filamentous haemagglutinins of Bordetella pertussis and Bordetella bronchiseptica and reveal a role for the mature C‐terminal domain, but not the RGD motif, during infection. Mol Microbiol 71, 1574–1590. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace