Pertussis toxin suppresses dendritic cell-mediated delivery of B. pertussis into lung-draining lymph nodes

. 2022 Jun ; 18 (6) : e1010577. [epub] 20220606

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35666769
Odkazy

PubMed 35666769
PubMed Central PMC9216613
DOI 10.1371/journal.ppat.1010577
PII: PPATHOGENS-D-22-00323
Knihovny.cz E-zdroje

The adenylate cyclase (ACT) and the pertussis (PT) toxins of Bordetella pertussis exert potent immunomodulatory activities that synergize to suppress host defense in the course of whooping cough pathogenesis. We compared the mouse lung infection capacities of B. pertussis (Bp) mutants (Bp AC- or Bp PT-) producing enzymatically inactive toxoids and confirm that ACT action is required for maximal bacterial proliferation in the first days of infection, whereas PT action is crucial for persistence of B. pertussis in mouse lungs. Despite accelerated and near complete clearance from the lungs by day 14 of infection, the PT- bacteria accumulated within the lymphoid tissue of lung-draining mediastinal lymph nodes (mLNs). In contrast, the wild type or AC- bacteria colonized the lungs but did not enter into mLNs. Lung infection by the PT- mutant triggered an early arrival of migratory conventional dendritic cells with associated bacteria into mLNs, where the PT- bacteria entered the T cell-rich paracortex of mLNs by day 5 and proliferated in clusters within the B-cell zone (cortex) of mLNs by day 14, being eventually phagocytosed by infiltrating neutrophils. Finally, only infection by the PT- bacteria triggered an early production of anti-B. pertussis serum IgG antibodies already within 14 days of infection. These results reveal that action of the pertussis toxin blocks DC-mediated delivery of B. pertussis bacteria into mLNs and prevents bacterial colonization of mLNs, thus hampering early adaptive immune response to B. pertussis infection.

Zobrazit více v PubMed

Melvin JA, Scheller E V., Miller JF, Cotter PA. Bordetella pertussis pathogenesis: current and future challenges. Nat Rev Microbiol 2014 124. 2014;12: 274–288. doi: 10.1038/nrmicro3235 PubMed DOI PMC

Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clinical Microbiology Reviews. 2005. pp. 326–382. doi: 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC

Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence. 2021;12: 2608–2632. doi: 10.1080/21505594.2021.1980987 PubMed DOI PMC

Yeung KHT, Duclos P, Nelson EAS, Hutubessy RCW. An update of the global burden of pertussis in children younger than 5 years: a modelling study. Lancet Infect Dis. 2017;17: 974–980. doi: 10.1016/S1473-3099(17)30390-0 PubMed DOI

Althouse BM, Scarpino S V. Asymptomatic transmission and the resurgence of Bordetella pertussis. BMC Med. 2015;13. doi: 10.1186/s12916-015-0382-8 PubMed DOI PMC

Domenech de Cellès M, Magpantay FMG, King AA, Rohani P. The pertussis enigma: reconciling epidemiology, immunology and evolution. Proceedings. Biological sciences. Proc Biol Sci; 2016. doi: 10.1098/rspb.2015.2309 PubMed DOI PMC

Warfel JM, Zimmerman LI, Merkel TJ. Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model. Proc Natl Acad Sci U S A. 2014;111: 787–792. doi: 10.1073/pnas.1314688110 PubMed DOI PMC

Wilk MM, Borkner L, Misiak A, Curham L, Allen AC, Mills KHG. Immunization with whole cell but not acellular pertussis vaccines primes CD4 TRM cells that sustain protective immunity against nasal colonization with Bordetella pertussis. Emerg Microbes Infect. 2019;8: 169–185. doi: 10.1080/22221751.2018.1564630 PubMed DOI PMC

Allen AC, Wilk MM, Misiak A, Borkner L, Murphy D, Mills KHG. Sustained protective immunity against Bordetella pertussis nasal colonization by intranasal immunization with a vaccine-adjuvant combination that induces IL-17-secreting T RM cells. Mucosal Immunol. 2018;11: 1763–1776. doi: 10.1038/s41385-018-0080-x PubMed DOI

Dubois V, Chatagnon J, Thiriard A, Bauderlique-Le Roy H, Debrie AS, Coutte L, et al.. Suppression of mucosal Th17 memory responses by acellular pertussis vaccines enhances nasal Bordetella pertussis carriage. NPJ Vaccines. 2021;6. doi: 10.1038/s41541-020-00270-8 PubMed DOI PMC

Holubová J, Staněk O, Brázdilová L, Mašín J, Bumba L, Gorringe AR, et al.. Acellular pertussis vaccine inhibits Bordetella pertussis clearance from the nasal mucosa of mice. Vaccines. 2020;8: 1–20. doi: 10.3390/vaccines8040695 PubMed DOI PMC

Borkner L, Curham LM, Wilk MM, Moran B, Mills KHG. IL-17 mediates protective immunity against nasal infection with Bordetella pertussis by mobilizing neutrophils, especially Siglec-F+ neutrophils. Mucosal Immunol. 2021;14: 1183–1202. doi: 10.1038/s41385-021-00407-5 PubMed DOI PMC

Ahmad JN, Sebo P. Adenylate Cyclase Toxin Tinkering With Monocyte-Macrophage Differentiation. Front Immunol. 2020;11. doi: 10.3389/fimmu.2020.02181 PubMed DOI PMC

Ahmad JN, Sebo P. Bacterial RTX toxins and host immunity. Curr Opin Infect Dis. 2021;34: 187–196. doi: 10.1097/QCO.0000000000000726 PubMed DOI

Carbonetti NH. Contribution of pertussis toxin to the pathogenesis of pertussis disease. Pathogens and disease. Pathog Dis; 2015. p. ftv073. doi: 10.1093/femspd/ftv073 PubMed DOI PMC

Locht C, Coutte L, Mielcarek N. The ins and outs of pertussis toxin. FEBS J. 2011;278: 4668–4682. doi: 10.1111/j.1742-4658.2011.08237.x PubMed DOI

Carbonetti NH, Artamonova G V, Andreasen C, Bushar N. Pertussis Toxin and Adenylate Cyclase Toxin Provide a One-Two Punch for Establishment of. Infect Immun. 2005;73: 2698–2703. doi: 10.1128/IAI.73.5.2698-2703.2005 PubMed DOI PMC

Goodwin MSM, Weiss AA. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun. 1990;58: 3445–3447. doi: 10.1128/iai.58.10.3445-3447.1990 PubMed DOI PMC

Khelef N, Sakamoto H, Guiso N. Both adenylate cyclase and hemolytic activities are required by Bordetella pertussis to initiate infection. Microb Pathog. 1992;12: 227–235. doi: 10.1016/0882-4010(92)90057-u PubMed DOI

Skopova K, Tomalova B, Kanchev I, Rossmann P, Svedova M, Adkins I, et al.. Cyclic AMP-elevating capacity of adenylate cyclase toxin-hemolysin is sufficient for lung infection but not for full virulence of Bordetella pertussis. Infect Immun. 2017;85. doi: 10.1128/IAI.00937-16 PubMed DOI PMC

Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, et al.. RTX proteins: A highly diverse family secreted by a common mechanism. FEMS Microbiol Rev. 2010;34: 1076–1112. doi: 10.1111/j.1574-6976.2010.00231.x PubMed DOI PMC

Osicka R, Osickova A, Hasan S, Bumba L, Cerny J, Sebo P. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3. Elife. 2015;4: 1–28. doi: 10.7554/eLife.10766 PubMed DOI PMC

Guermonprez P, Khelef N, Blouin E, Rieu P, Ricciardi-Castagnoli P, Guiso N, et al.. The adenylate cyclase toxin of Bordetella pertussis binds to target cells via the αMβ2 integrin (CD11b/CD18). J Exp Med. 2001;193: 1035–1044. doi: 10.1084/jem.193.9.1035 PubMed DOI PMC

Morova J, Osicka R, Masin J, Sebo P. RTX cytotoxins recognize beta2 integrin receptors through N-linked oligosaccharides. Proc Natl Acad Sci U S A. 2008;105: 5355–60. doi: 10.1073/pnas.0711400105 PubMed DOI PMC

Hasan S, Osickova A, Bumba L, Novák P, Sebo P, Osicka R. Interaction of Bordetella adenylate cyclase toxin with complement receptor 3 involves multivalent glycan binding. FEBS Lett. 2015;589. doi: 10.1016/j.febslet.2014.12.023 PubMed DOI

Wald T, Osickova A, Masin J, Liskova PM, Petry-Podgorska I, Matousek T, et al.. Transmembrane segments of complement receptor 3 do not participate in cytotoxic activities but determine receptor structure required for action of Bordetella adenylate cyclase toxin. Pathog Dis. 2016;74. doi: 10.1093/femspd/ftw008 PubMed DOI

Masin J, Osickova A, Jurnecka D, Klimova N, Khaliq H, Sebo P, et al.. Retargeting from the CR3 to the LFA-1 receptor uncovers the adenylyl cyclase enzyme–translocating segment of Bordetella adenylate cyclase toxin. J Biol Chem. 2020;295: 9349–9365. doi: 10.1074/jbc.RA120.013630 PubMed DOI PMC

Masin J, Osicka R, Bumba L, Sebo P. Bordetella adenylate cyclase toxin: A unique combination of a pore-forming moiety with a cell-invading adenylate cyclase enzyme. Pathogens and Disease. Pathog Dis; 2015. doi: 10.1093/femspd/ftv075 PubMed DOI PMC

Novak J, Cerny O, Osickova A, Linhartova I, Masin J, Bumba L, et al.. Structure–function relationships underlying the capacity of Bordetella adenylate cyclase toxin to disarm host phagocytes. Toxins. Toxins (Basel); 2017. doi: 10.3390/toxins9100300 PubMed DOI PMC

Wolff J, Cook GH, Goldhammer AR, Berkowitz SA. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci U S A. 1980;77: 3841–3844. doi: 10.1073/pnas.77.7.3841 PubMed DOI PMC

Confer D, Eaton J. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science (80-). 1982;217: 948–950. doi: 10.1126/science.6287574 PubMed DOI

Pearson RD, Symes P, Conboy M, Weiss AA, Hewlett EL. Inhibition of monocyte oxidative responses by Bordetella pertussis adenylate cyclase toxin. J Immunol. 1987;139: 2749–2754. PubMed

Eby JC, Gray MC, Hewlett EL. Cyclic AMP-mediated suppression of neutrophil extracellular trap formation and apoptosis by the Bordetella pertussis adenylate cyclase toxin. Infect Immun. 2014;82: 5256–5269. doi: 10.1128/IAI.02487-14 PubMed DOI PMC

Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P. cAMP Signaling of Adenylate Cyclase Toxin Blocks the Oxidative Burst of Neutrophils through Epac-Mediated Inhibition of Phospholipase C Activity. J Immunol. 2017;198: 1285–1296. doi: 10.4049/jimmunol.1601309 PubMed DOI

Cerny O, Kamanova J, Masin J, Bibova I, Skopova K, Sebo P. Bordetella pertussis Adenylate Cyclase Toxin Blocks Induction of Bactericidal Nitric Oxide in Macrophages through cAMP-Dependent Activation of the SHP-1 Phosphatase. J Immunol. 2015;194: 4901–4913. doi: 10.4049/jimmunol.1402941 PubMed DOI

Mobberley-Schuman PS, Connelly B, Weiss AAA, Mobberley-Schuman PS, Connelly B, Weiss AAA. Phagocytosis of Bordetella pertussis Incubated with Convalescent Serum. J Infect Dis. 2003;187: 1646–1653. doi: 10.1086/374741 PubMed DOI

Weingart CL, Weiss AA. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect Immun. 2000;68: 1735–1739. doi: 10.1128/IAI.68.3.1735-1739.2000 PubMed DOI PMC

Weingart CL, Mobberley-Schuman PS, Hewlett EL, Gray MC, Weiss AA. Neutralizing antibodies to adenylate cyclase toxin promote phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun. 2000;68: 7152–7155. doi: 10.1128/IAI.68.12.7152-7155.2000 PubMed DOI PMC

Kamanova J, Kofronova O, Masin J, Genth H, Vojtova J, Linhartova I, et al.. Adenylate Cyclase Toxin Subverts Phagocyte Function by RhoA Inhibition and Unproductive Ruffling. J Immunol. 2008;181: 5587–5597. doi: 10.4049/jimmunol.181.8.5587 PubMed DOI

Hasan S, Rahman WU, Sebo P, Osicka R. Distinct spatiotemporal distribution of bacterial toxin-produced cellular camp differentially inhibits opsonophagocytic signaling. Toxins. Toxins (Basel); 2019. doi: 10.3390/toxins11060362 PubMed DOI PMC

Ahmad JN, Cerny O, Linhartova I, Masin J, Osicka R, Sebo P. cAMP signalling of Bordetella adenylate cyclase toxin through the SHP-1 phosphatase activates the BimEL-Bax pro-apoptotic cascade in phagocytes. Cell Microbiol. 2016;18: 384–398. doi: 10.1111/cmi.12519 PubMed DOI

Khelef N, Zychlinsky A, Guiso N. Bordetella pertussis induces apoptosis in macrophages: Role of adenylate cyclase-hemolysin. Infect Immun. 1993;61: 4064–4071. doi: 10.1128/iai.61.10.4064-4071.1993 PubMed DOI PMC

Gueirard P, Druilhe A, Pretolani M, Guiso N. Role of Adenylate Cyclase-Hemolysin in Alveolar Macrophage Apoptosis during Bordetella pertussis Infection in Vivo. Infect Immun. 1998;66: 1718–1725. doi: 10.1128/IAI.66.4.1718-1725.1998 PubMed DOI PMC

Ahmad JN, Holubova J, Benada O, Kofronova O, Stehlik L, Vasakova M, et al.. Bordetella adenylate cyclase toxin inhibits monocyte-to- macrophage transition and dedifferentiates human alveolar macrophages into monocyte-like cells. MBio. 2019;10. doi: 10.1128/mBio.01743-19 PubMed DOI PMC

Fedele G, Schiavoni I, Adkins I, Klimova N, Sebo P. Invasion of dendritic cells, macrophages and neutrophils by the Bordetella adenylate cyclase toxin: A subversive move to fool host immunity. Toxins (Basel). 2017;9. doi: 10.3390/toxins9100293 PubMed DOI PMC

Adkins I, Kamanova J, Kocourkova A, Svedova M, Tomala J, Janova H, et al.. Bordetella adenylate cyclase toxin differentially modulates toll-like receptor-stimulated activation, migration and T cell stimulatory capacity of dendritic cells. PLoS One. 2014;9. doi: 10.1371/journal.pone.0104064 PubMed DOI PMC

Carbonetti NH. Pertussis leukocytosis: Mechanisms, clinical relevance and treatment. Pathogens and Disease. Pathog Dis; 2016. doi: 10.1093/femspd/ftw087 PubMed DOI PMC

Paddock CD, Sanden GN, Cherry JD, Gal AA, Langston C, Tatti KM, et al.. Pathology and Pathogenesis of Fatal Bordetella pertussis Infection in Infants. Clin Infect Dis. 2008;47: 328–338. doi: 10.1086/589753 PubMed DOI

Scanlon KM, Chen L, Carbonetti NH. Pertussis Toxin Promotes Pulmonary Hypertension in an Infant Mouse Model of Bordetella pertussis Infection. J Infect Dis. 2022;225: 172–176. doi: 10.1093/infdis/jiab325 PubMed DOI PMC

Scanlon K, Skerry C, Carbonetti N. Association of pertussis toxin with severe pertussis disease. Toxins. Toxins (Basel); 2019. doi: 10.3390/toxins11070373 PubMed DOI PMC

Spangrude GJ, Sacchi F, Hill HR, Van Epps DE, Daynes RA. Inhibition of lymphocyte and neutrophil chemotaxis by pertussis toxin. J Immunol. 1985;135: 4135–4143. Available: https://pubmed.ncbi.nlm.nih.gov/2999238/ PubMed

Kirimanjeswara GS, Agosto LM, Kennett MJ, Bjornstad ON, Harvill ET. Pertussis toxin inhibits neutrophil recruitment to delay antibody-mediated clearance of Bordetella pertussis. J Clin Invest. 2005;115: 3594–3601. doi: 10.1172/JCI24609 PubMed DOI PMC

Carbonetti NH, Artamonova G V., Andreasen C, Dudley E, Mays RM, Worthington ZEV. Suppression of serum antibody responses by pertussis toxin after respiratory tract colonization by Bordetella pertussis and identification of an immunodominant lipoprotein. Infect Immun. 2004;72: 3350–3358. doi: 10.1128/IAI.72.6.3350-3358.2004 PubMed DOI PMC

Andreasen C, Carbonetti NH. Pertussis toxin inhibits early chemokine production to delay neutrophil recruitment in response to Bordetella pertussis respiratory tract infection in mice. Infect Immun. 2008;76: 5139–48. doi: 10.1128/IAI.00895-08 PubMed DOI PMC

Carbonetti NH, Artamonova G V., Mays RM, Worthington ZEV. Pertussis Toxin Plays an Early Role in Respiratory Tract Colonization by Bordetella pertussis. Infect Immun. 2003;71: 6358–6366. doi: 10.1128/IAI.71.11.6358-6366.2003 PubMed DOI PMC

Lobet Y, Feron C, Dequesne G, Sirnoen E, Hauser P, Locht C. Site-specific alterations in the B oligomer that affect receptor-binding activities and mitogenicity of permssis toxin. J Exp Med. 1993;177: 79–87. doi: 10.1084/jem.177.1.79 PubMed DOI PMC

Nasso M, Fedele G, Spensieri F, Palazzo R, Costantino P, Rappuoli R, et al.. Genetically Detoxified Pertussis Toxin Induces Th1/Th17 Immune Response through MAPKs and IL-10-Dependent Mechanisms. J Immunol. 2009;183: 1892–1899. doi: 10.4049/jimmunol.0901071 PubMed DOI

Ryan M, McCarthy L, Rappuoll R, Mahon BP, Mills KHG. Pertussis toxin potentiates T(h)1 and T(h)2 responses to co-injected antigen: Adjuvant action is associated with enhanced regulatory cytokine production and expression of the co-stimulatory molecules B7-1, B7-2 and CD28. Int Immunol. 1998;10: 651–662. doi: 10.1093/intimm/10.5.651 PubMed DOI

Wang ZY, Yang D, Chen Q, Leifer CA, Segal DM, Su SB, et al.. Induction of dendritic cell maturation by pertussis toxin and its B subunit differentially initiate Toll-like receptor 4-dependent signal transduction pathways. Exp Hematol. 2006;34: 1115–1124. doi: 10.1016/j.exphem.2006.04.025 PubMed DOI

Teter K. Intracellular trafficking and translocation of pertussis toxin. Toxins. Toxins (Basel); 2019. doi: 10.3390/toxins11080437 PubMed DOI PMC

Bokoch GM, Katada T, Northup JK, Hewlett EL, Gilman AG. Identification of the predominant substrate for ADP-ribosylation by islet activating protein. J Biol Chem. 1983;258: 2072–2075. doi: 10.1016/s0021-9258(18)32881-3 PubMed DOI

Hsia JA, Moss J, Hewlett EL, Vaughan M. ADP-ribosylation of adenylate cyclase by pertussis toxin. Effects on inhibitory agonist binding. J Biol Chem. 1984;259: 1086–1090. doi: 10.1016/s0021-9258(17)43569-1 PubMed DOI

Mangmool S, Kurose H. G(i/o) Protein-Dependent and -Independent Actions of Pertussis Toxin (PTX). Toxins (Basel). 2011;3: 884–899. doi: 10.3390/toxins3070884 PubMed DOI PMC

Anton SE, Kayser C, Maiellaro I, Nemec K, Möller J, Koschinski A, et al.. Receptor-associated independent cAMP nanodomains mediate spatiotemporal specificity of GPCR signaling. Cell. 2022;185: 1130–1142.e11. doi: 10.1016/j.cell.2022.02.011 PubMed DOI

Zhao J, Ma L, Wu YL, Wang P, Hu W, Pei G. Chemokine receptor CCR5 functionally couples to inhibitory G proteins and undergoes desensitization. J Cell Biochem. 1998;71: 36–45. doi: 10.1002/(sici)1097-4644(19981001)71:1<36::aid-jcb4>3.0.co;2-2 PubMed DOI

Meade BD, Kind PD, Ewell JB, Mcgrath PP, Manclark CR. In vitro inhibition of murine macrophage migration by Bordetella pertussis lymphocytosis-promoting factor. Infect Immun. 1984;45: 718–725. doi: 10.1128/iai.45.3.718-725.1984 PubMed DOI PMC

Nguyen TM, Ravindra D, Kwong B, Waheed S, Ferguson R, Tarlton N, et al.. Differential Expression of Alpha 4 Integrins on Effector Memory T Helper Cells during Bordetella Infections. Delayed Responses in Bordetella pertussis. PLoS One. 2012;7: 1–14. doi: 10.1371/journal.pone.0052903 PubMed DOI PMC

Schneider OD, Weiss AA, Miller WE. Pertussis Toxin Signals through the TCR to Initiate Cross-Desensitization of the Chemokine Receptor CXCR4. J Immunol. 2009;182: 5730–5739. doi: 10.4049/jimmunol.0803114 PubMed DOI PMC

Fedele G, Bianco M, Debrie A-S, Locht C, Ausiello CM. Attenuated Bordetella pertussis Vaccine Candidate BPZE1 Promotes Human Dendritic Cell CCL21-Induced Migration and Drives a Th1/Th17 Response. J Immunol. 2011;186: 5388–5396. doi: 10.4049/jimmunol.1003765 PubMed DOI

Bindels DS, Haarbosch L, Van Weeren L, Postma M, Wiese KE, Mastop M, et al.. MScarlet: A bright monomeric red fluorescent protein for cellular imaging. Nat Methods. 2016;14: 53–56. doi: 10.1038/nmeth.4074 PubMed DOI

Holubová J, Juhasz A, Masin J, Stanek O, Jurnecka D, Osickova A, et al.. Selective enhancement of the cell-permeabilizing activity of adenylate cyclase toxin does not increase virulence of bordetella pertussis. Int J Mol Sci. 2021;22: 11655. doi: 10.3390/ijms222111655 PubMed DOI PMC

Fukui-Miyazaki A, Toshima H, Hiramatsu Y, Okada K, Nakamura K, Ishigaki K, et al.. The eukaryotic host factor 14-3-3 inactivates adenylate cyclase toxins of Bordetella bronchiseptica and B. parapertussis, but not B. pertussis. MBio. 2018;9. doi: 10.1128/mBio.00628-18 PubMed DOI PMC

Neeland MR, Elhay MJ, Nathanielsz J, Meeusen ENT, de Veer MJ. Incorporation of CpG into a Liposomal Vaccine Formulation Increases the Maturation of Antigen-Loaded Dendritic Cells and Monocytes To Improve Local and Systemic Immunity. J Immunol. 2014;192: 3666–3675. doi: 10.4049/jimmunol.1303014 PubMed DOI

Ho AWS, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE, et al.. Lung CD103 + Dendritic Cells Efficiently Transport Influenza Virus to the Lymph Node and Load Viral Antigen onto MHC Class I for Presentation to CD8 T Cells. J Immunol. 2011;187: 6011–6021. doi: 10.4049/jimmunol.1100987 PubMed DOI

Hu J, Gardner MB, Miller CJ. Simian Immunodeficiency Virus Rapidly Penetrates the Cervicovaginal Mucosa after Intravaginal Inoculation and Infects Intraepithelial Dendritic Cells. J Virol. 2000;74: 6087–6095. doi: 10.1128/jvi.74.13.6087-6095.2000 PubMed DOI PMC

Lukens M V., Kruijsen D, Coenjaerts FEJ, Kimpen JLL, van Bleek GM. Respiratory Syncytial Virus-Induced Activation and Migration of Respiratory Dendritic Cells and Subsequent Antigen Presentation in the Lung-Draining Lymph Node. J Virol. 2009;83: 7235–7243. doi: 10.1128/JVI.00452-09 PubMed DOI PMC

Cleret A, Quesnel-Hellmann A, Vallon-Eberhard A, Verrier B, Jung S, Vidal D, et al.. Lung Dendritic Cells Rapidly Mediate Anthrax Spore Entry through the Pulmonary Route. J Immunol. 2007;178: 7994–8001. doi: 10.4049/jimmunol.178.12.7994 PubMed DOI

Shetron-Rama LM, Herring-Palmer AC, Huffnagle GB, Hanna P. Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a rapid process facilitated by CD11c+ cells. Microb Pathog. 2010;49: 38–46. doi: 10.1016/j.micpath.2010.02.004 PubMed DOI

Bravo-Blas A, Utriainen L, Clay SL, Kästele V, Cerovic V, Cunningham AF, et al.. Salmonella enterica Serovar Typhimurium Travels to Mesenteric Lymph Nodes Both with Host Cells and Autonomously. J Immunol. 2019;202: 260–267. doi: 10.4049/jimmunol.1701254 PubMed DOI PMC

St.John AL, Ang WXXG, Huang MN, Kunder CA, Chan EW, Gunn MD, et al.. S1P-Dependent Trafficking of Intracellular Yersinia pestis through Lymph nodes establishes buboes and systemic infection. Immunity. 2014;41: 440–450. doi: 10.1016/j.immuni.2014.07.013 PubMed DOI PMC

Voedisch S, Koenecke C, David S, Herbrand H, Förster R, Rhen M, et al.. Mesenteric lymph nodes confine dendritic cell-mediated dissemination of Salmonella enterica serovar typhimurium and limit systemic disease in mice. Infect Immun. 2009;77: 3170–3180. doi: 10.1128/IAI.00272-09 PubMed DOI PMC

Moll H, Fuchs H, Blank C, Röllinghoff M. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur J Immunol. 1993;23: 1595–1601. doi: 10.1002/eji.1830230730 PubMed DOI

Chen M, Wang J. Programmed cell death of dendritic cells in immune regulation. Immunological Reviews. NIH Public Access; 2010. pp. 11–27. doi: 10.1111/j.1600-065X.2010.00916.x PubMed DOI PMC

Janda WM, Santos E, Stevens J, Celig D, Terrile L, Schreckenberger PC. Unexpected isolation of Bordetella pertussis from a blood culture. Journal of Clinical Microbiology. J Clin Microbiol; 1994. pp. 2851–2853. doi: 10.1128/jcm.32.11.2851-2853.1994 PubMed DOI PMC

Trøseid M, Jonassen TØ, Steinbakk M. Isolation of Bordetella pertussis in blood culture from a patient with multiple myeloma. J Infect. 2006;52. doi: 10.1016/j.jinf.2005.04.014 PubMed DOI

Eby JC, Gray MC, Warfel JM, Paddock CD, Jones TF, Day SR, et al.. Quantification of the adenylate cyclase toxin of bordetella pertussis in vitro and during respiratory infection. Infect Immun. 2013;81: 1390–1398. doi: 10.1128/IAI.00110-13 PubMed DOI PMC

Chen Q, Gray MC, Hewlett E, Stibitz S. Four single-basepair mutations in the ptx promoter of Bordetella bronchiseptica are sufficient to activate the expression of pertussis toxin. Sci Rep. 2021;11. doi: 10.1038/s41598-021-88852-x PubMed DOI PMC

Gueirard P, Ave P, Balazuc AM, Thiberge S, Huerre M, Milon G, et al.. Bordetella bronchiseptica persists in the nasal cavities of mice and triggers early delivery of dendritic cells in the lymph nodes draining the lower and upper respiratory tract. Infect Immun. 2003;71: 4137–4143. doi: 10.1128/IAI.71.7.4137-4143.2003 PubMed DOI PMC

Radcliffe C, Lier A, Doilicho N, Parikh S, Kaddouh F. Bordetella bronchiseptica: a rare cause of meningitis. BMC Infect Dis. 2020;20: 1–4. doi: 10.1186/s12879-020-05668-2 PubMed DOI PMC

Ner Z, Ross LA, Horn M V., Keens TG, MacLaughlin EF, Starnes VA, et al.. Bordetella bronchiseptica infection in pediatric lung transplant recipients. Pediatr Transplant. 2003;7: 413–417. doi: 10.1034/j.1399-3046.2003.00074.x PubMed DOI

Pittet LF, Posfay-Barbe KM. Bordetella holmesii: Still Emerging and Elusive 20 Years On. Microbiol Spectr. 2016;4. doi: 10.1128/microbiolspec.ei10-0003-2015 PubMed DOI

Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al.. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205: 105–115. doi: 10.1084/jem.20071367 PubMed DOI PMC

GeurtsvanKessel CH, Lambrecht BN. Division of labor between dendritic cell subsets of the lung. Mucosal Immunology. Mucosal Immunol; 2008. pp. 442–450. doi: 10.1038/mi.2008.39 PubMed DOI

Sung S-SJ, Fu SM, Rose CE, Gaskin F, Ju S-T, Beaty SR. A Major Lung CD103 (α E) -β 7 Integrin-Positive Epithelial Dendritic Cell Population Expressing Langerin and Tight Junction Proteins. J Immunol. 2006;176: 2161–2172. doi: 10.4049/jimmunol.176.4.2161 PubMed DOI

Eby JC, Hoffman CL, Gonyar LA, Hewlett EL. Review of the neutrophil response to Bordetella pertussis infection. Pathog Dis. 2015;73: 1–8. doi: 10.1093/femspd/ftv081 PubMed DOI PMC

Soumana IH, Linz B, Dewan KK, Sarr D, Gestal MC, Howard LK, et al.. Modeling immune evasion and vaccine limitations by targeted nasopharyngeal bordetella pertussis inoculation in Mice. Emerg Infect Dis. 2021;27: 2107–2116. doi: 10.3201/eid2708.203566 PubMed DOI PMC

Mills KHG, Barnard A, Watkins J, Redhead K. Cell-mediated immunity to Bordetella pertussis: Role of Th1 cells in bacterial clearance in a murine respiratory infection model. Infect Immun. 1993;61: 399–410. doi: 10.1128/iai.61.2.399-410.1993 PubMed DOI PMC

Pédelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS. Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol. 2006;24: 79–88. doi: 10.1038/nbt1172 PubMed DOI

Kovach ME, Phillips RW, Elzer PH, Roop RM 2nd, Peterson KM. pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994;16: 800–802. PubMed

Stibitz S, Aaronson W, Monack D, Falkow S. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature. 1989;338: 266–269. doi: 10.1038/338266a0 PubMed DOI

Ercoli G, Fernandes VE, Chung WY, Wanford JJ, Thomson S, Bayliss CD, et al.. Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nat Microbiol. 2018;3: 600–610. doi: 10.1038/s41564-018-0147-1 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: An open-source platform for biological-image analysis. Nature Methods. Nat Methods; 2012. pp. 676–682. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Peng T, Thorn K, Schroeder T, Wang L, Theis FJ, Marr C, et al.. A BaSiC tool for background and shading correction of optical microscopy images. Nat Commun. 2017;8: 1–7. doi: 10.1038/ncomms14836 PubMed DOI PMC

Osička R, Osičková A, Basar T, Guermonprez P, Rojas M, Leclerc C, et al.. Delivery of CD8+ T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: Delineation of cell invasive structures and permissive insertion sites. Infect Immun. 2000;68: 247–256. doi: 10.1128/IAI.68.1.247-256.2000 PubMed DOI PMC

Pizza M, Covacci A, Bartoloni A, Perugini M, Nencioni L, De Magistris MT, et al.. Mutants of pertussis toxin suitable for vaccine development. Science (80-). 1989;246: 497–500. doi: 10.1126/science.2683073 PubMed DOI

Bumba L, Masin J, Macek P, Wald T, Motlova L, Bibova I, et al.. Calcium-Driven Folding of RTX Domain β-Rolls Ratchets Translocation of RTX Proteins through Type I Secretion Ducts. Mol Cell. 2016;62. doi: 10.1016/j.molcel.2016.03.018 PubMed DOI

Sheng J, Chen Q, Soncin I, Ng SL, Karjalainen K, Ruedl C. A Discrete Subset of Monocyte-Derived Cells among Typical Conventional Type 2 Dendritic Cells Can Efficiently Cross-Present. Cell Rep. 2017;21: 1203–1214. doi: 10.1016/j.celrep.2017.10.024 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace