• This record comes from PubMed

Origin and spread of human mitochondrial DNA haplogroup U7

. 2017 Apr 07 ; 7 () : 46044. [epub] 20170407

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.

1st Department of Obstetrics and Gynecology University of Athens School of Medicine Athens 115 27 Greece

Anthropological Centre of the Croatian Academy of Sciences and Arts 10000 Zagreb Croatia

Clalit National Cancer Control and Personalized Medicine Program Carmel Medical Center Haifa 3436212 Israel

Croatian Science Foundation Zagreb 10000 Croatia

CSIR Centre for Cellular and Molecular Biology Hyderabad 500 007 India

Departamento de Biologia CBMA Universidade do Minho Braga 4710 057 Portugal

Department of Anthropology and Human Genetics Faculty of Science Charles University Prague 128 43 Czech Republic

Department of Archaeology and Anthropology University of Cambridge Cambridge CB2 1QH United Kingdom

Department of Biological Sciences School of Applied Sciences University of Huddersfield Huddersfield HD1 3DH United Kingdom

Department of Evolutionary Biology Institute of Molecular and Cell Biology University of Tartu Tartu 51010 Estonia

Department of Forensic Sciences and Toxicology University of Crete School of Medicine Heraklion 71110 Greece

Department of Genetics and Fundamental Medicine of Bashkir State University Ufa 450076 Russia

Department of Immunology Allergy Research Center Shiraz University of Medical Sciences Shiraz 71348 45794 Iran

Department of Medical Genetics and REMER Faculty of Medicine Medipol University Istanbul 34810 Turkey

Department of Medical Genetics National Institute of Genetic Engineering and Biotechnology Tehran 14965 161 Iran

Department of Molecular Biology Ruđer Bošković Institute Zagreb 10000 Croatia

Department of Zoology University of Calcutta Kolkata 700 019 India

Dipartimento di Biologia e Biotecnologie L Spallanzani Università di Pavia Pavia 27100 Italy

Estonian Academy of Sciences Tallinn 10130 Estonia

Evolutionary Biology Group Estonian Biocentre Tartu 51010 Estonia

Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK

Foundation for Biomedical Research of the Academy of Athens Athens 115 27 Greece

Genetic Department Institute of Experimental Medicine Istanbul University Istanbul 33326 Turkey

Human Genetics Research Group Department of Biotechnology Shri Mata Vaishno Devi University Katra 182320 India

Institute for Anthropological Research Zagreb 10000 Croatia

Institute of Biochemistry and Genetics Ufa Scientific Center of the Russian Academy of Sciences Ufa 450054 Russia

Institute of Cellular Biology and Pathology Nicolae Simionescu Bucharest PO Box 35 14 Romania

Institute of Cytology and Genetics SB RAS Novosibirsk 630090 Russia

Institute of Genetics and Cytology National Academy of Sciences Minsk 220072 Belarus

Institute of Internal and Preventive Medicine SB RAS Novosibirsk 630089 Russia

Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200 135 Portugal

Instituto de Patologia e Imunologia Molecular da Universidade do Porto Porto 4200 135 Portugal

Kharkiv Specialized Medical Genetic Centre Kharkiv 61022 Ukraine

Laboratory of Biology University of Athens School of Medicine Athens 115 27 Greece

Laboratory of Ethnogenomics Institute of Molecular Biology of National Academy of Sciences Yerevan 0014 Armenia

Mediterranean Institute for Life Sciences Split 21000 Croatia

Musée de l'Homme Paris 75116 France

Novosibirsk State University Novosibirsk 630090 Russia

Research Institute of Medical Genetics Tomsk National Research Medical Center of the Russian Academy of Sciences Tomsk 634050 Russia

Russian Armenian University Yerevan 0051 Armenia

Utrecht 3523 GN The Netherlands

Vavilov Institute of General Genetics Russian Academy of Sciences Moscow 119333 Russia

See more in PubMed

Bramanti B. et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326, 137–140 (2009). PubMed

Brandt G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013). PubMed PMC

Haak W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC

Fu Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC

Posth C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial population turnover in Europe. Curr. Biol. 26, 827–833 (2016). PubMed

Behar D. M. et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82, 1130–1140 (2008). PubMed PMC

Richards M. et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276 (2000). PubMed PMC

Torroni A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996). PubMed PMC

Malyarchuk B. et al. The peopling of Europe from the mitochondrial haplogroup U5 perspective. PLoS One 5, e10285 (2010). PubMed PMC

Soares P. et al. The archaeogenetics of Europe. Curr. Biol. 20, R174–R183 (2010). PubMed

Olivieri A. et al. Mitogenomes from two uncommon haplogroups mark Late Glacial/Postglacial expansions from the Near East and Neolithic dispersals within Europe. PLoS One 8, e70492 (2013). PubMed PMC

Pala M. et al. Mitochondrial DNA signals of late glacial recolonization of Europe from Near Eastern refugia. Am. J. Hum. Genet. 90, 915–924 (2012). PubMed PMC

Richards M. B., Soares P. & Torroni A. Palaeogenomics: Mitogenomes and migrations in Europe’s past. Curr. Biol. 26, R243–R246 (2016). PubMed

Al-Zahery N. et al. Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations. Mol. Phylogenet. Evol. 28, 458–472 (2003). PubMed

Al-Zahery N. et al. In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq. BMC Evol. Biol. 11, 288 (2011). PubMed PMC

Derenko M. et al. Complete mitochondrial DNA diversity in Iranians. PLoS One 8, e80673 (2013). PubMed PMC

Achilli A. et al. Saami and Berbers—an unexpected mitochondrial DNA link. Am. J. Hum. Genet. 76, 883–886 (2005). PubMed PMC

Malyarchuk B. et al. Mitochondrial DNA phylogeny in Eastern and Western Slavs. Mol. Biol. Evol. 25, 1651–1658 (2008a). PubMed

Olivieri A. et al. The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa. Science 314, 1767–1770 (2006). PubMed

Pennarun E. et al. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol. Biol. 12, 234 (2012). PubMed PMC

Secher B. et al. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol. Biol. 14, 109 (2014). PubMed PMC

Badro D. A. et al. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations. PLoS One 8, e54616 (2013). PubMed PMC

Costa M. D. et al. A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages. Nat. Commun. 4, 2543 (2013). PubMed PMC

González A. M., García O., Larruga J. M. & Cabrera V. M. The mitochondrial lineage U8a reveals a Paleolithic settlement in the Basque country. BMC Genomics 7, 124 (2006). PubMed PMC

Quintana-Murci L. et al. Where West meets East: The complex mtDNA landscape of the Southwest and Central Asian corridor. Am. J. Hum. Genet. 74, 827–845 (2004). PubMed PMC

Abu-Amero K. K., González A. M., Larruga J. M., Bosley T. M. & Cabrera V. M. Eurasian and African mitochondrial DNA influences in the Saudi Arabian population. BMC Evol. Biol. 7, 32 (2007). PubMed PMC

Fornarino S. et al. Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation. BMC Evol. Biol. 9, 154 (2009). PubMed PMC

Kivisild T. et al. Deep common ancestry of Indian and western-Eurasian mitochondrial DNA lineages. Curr. Biol. 9, 1331–1334 (1999). PubMed

Malyarchuk B., Derenko M., Perkova M. & Vanecek T. Mitochondrial haplogroup U2d phylogeny and distribution. Hum. Biol. 80, 565–571 (2008b). PubMed

Metspalu M. et al. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genet. 5, 26 (2004). PubMed PMC

Behar D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012). PubMed PMC

Brisighelli F. et al. The Etruscan timeline: a recent Anatolian connection. Eur. J. Hum. Genet. 17, 693–696 (2009). PubMed PMC

Palanichamy M. G. et al. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system. Hum. Genet. 134, 637–647 (2015). PubMed

Lazaridis I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016). PubMed PMC

Li C. et al. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China. BMC Genet. 16, 78 (2015). PubMed PMC

Gandini F. et al. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci. Rep. 6, 25472 (2016). PubMed PMC

Haak W. et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018 (2005). PubMed

Perego U. A. et al. Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups. Curr. Biol. 19, 1–8 (2009). PubMed

Beaumont M. A. et al. In defence of model-based inference in phylogeography. Mol. Ecol. 19, 436–446 (2010). PubMed PMC

Gerbault P. & Thomas M. G. In James D. Wright, International Encyclopedia of the Social & Behavioral Sciences 11, 289–296 (Elsevier, 2015).

Groucutt H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. Issues News Rev. 24, 149–164 (2015). PubMed PMC

Kivisild T. Maternal ancestry and population history from whole mitochondrial genomes. Investig. Genet. 6, 3 (2015). PubMed PMC

De Fanti S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals Paleolithic signatures from European glacial refugia. PLoS One 10, e0144391 (2015). PubMed PMC

Fernandes V. et al. The Arabian cradle: Mitochondrial relicts of the first steps along the southern route out of Africa. Am. J. Hum. Genet. 90, 347–355 (2012). PubMed PMC

Kushniarevich A. et al. Uniparental genetic heritage of Belarusians: Encounter of rare Middle Eastern matrilineages with a central European mitochondrial DNA pool. PLoS One 8, e66499 (2013). PubMed PMC

Gronenborn D. A variation on a basic theme: The transition to farming in southern central Europe. J. World Prehistory 13, 123–210 (1999).

Price T. D. Europe’s first farmers. (Cambridge University press, 2000).

Rowley-Conwy P. Westward Ho!: The spread of agriculture from Central Europe to the Atlantic. Curr. Anthropol. 52, S431–S451 (2011).

Zilhão J. Radiocarbon evidence for maritime pioneer colonization at the origins of farming in west Mediterranean Europe. Proc. Natl. Acad. Sci. USA 98, 14180–14185 (2001). PubMed PMC

Bollongino R. et al. 2000 years of parallel societies in Stone Age Central Europe. Science 342, 479–481 (2013). PubMed

Der Sarkissian C. et al. Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of North East Europe. PLoS Genet. 9, e1003296 (2013). PubMed PMC

Fu Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013). PubMed PMC

Hofmanová Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 113, 6886–6891 (2016). PubMed PMC

Jones E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015). PubMed PMC

Lazaridis I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC

Malmström H. et al. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Curr. Biol. 19, 1758–1762 (2009). PubMed

Seguin-Orlando A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014). PubMed

Szécsényi-Nagy A. et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150339 (2015). PubMed PMC

Lacan M. et al. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. USA 108, 9788–9791 (2011a). PubMed PMC

Lacan M. et al. Ancient DNA suggests the leading role played by men in the Neolithic dissemination. Proc. Natl. Acad. Sci. USA 108, 18255–18259 (2011b). PubMed PMC

Fernández E. et al. Ancient DNA analysis of 8000 B. C. Near Eastern farmers supports an Early Neolithic pioneer maritime colonization of mainland Europe through Cyprus and the Aegean islands. PLoS Genet. 10, e1004401 (2014). PubMed PMC

Richard C. et al. An mtDNA perspective of French genetic variation. Ann. Hum. Biol. 34, 68–79 (2007). PubMed

Kılınç G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 0 (2016). PubMed PMC

Gamba C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). PubMed PMC

Günther T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl. Acad. Sci. USA 112, 11917–11922 (2015). PubMed PMC

Mathieson I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC

Olalde I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014). PubMed PMC

Olalde I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015). PubMed PMC

Sikora M. et al. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 10, e1004353 (2014). PubMed PMC

Skoglund P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012). PubMed

Skoglund P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014). PubMed

Allentoft M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed

Wilde S. et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA 111, 4832–4837 (2014). PubMed PMC

Metspalu M. et al. Shared and unique components of human population structure and genome-wide signals of positive selection in South Asia. Am. J. Hum. Genet. 89, 731–744 (2011). PubMed PMC

Alves I. et al. Long-distance dispersal shaped patterns of human genetic diversity in Eurasia. Mol. Biol. Evol. 33, 946–958 (2016). PubMed PMC

Atkinson Q. D., Gray R. D. & Drummond A. J. mtDNA variation predicts population size in humans and reveals a major southern Asian chapter in human prehistory. Mol. Biol. Evol. 25, 468–474 (2008). PubMed

Chandrasekar A. et al. Updating phylogeny of mitochondrial DNA macrohaplogroup M in India: Dispersal of modern human in South Asian corridor. PLoS One 4, e7447 (2009). PubMed PMC

Thangaraj K. et al. PubMed PMC

Singh S. et al. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup. Sci. Rep. 6, 19157 (2016). PubMed PMC

Ayub Q. et al. The Kalash genetic isolate: Ancient divergence, drift, and selection. Am. J. Hum. Genet. 96, 775–783 (2015). PubMed PMC

Basu Mallick C. et al. The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent. PLoS Genet. 9, e1003912 (2013). PubMed PMC

Broushaki F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016). PubMed PMC

Rieder M. J., Taylor S. L., Tobe V. O. & Nickerson D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 (1998). PubMed PMC

Torroni A. et al. Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am. J. Hum. Genet. 69, 1348–1356 (2001). PubMed PMC

Anderson S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981). PubMed

Andrews R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147–147 (1999). PubMed

Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).

van Oven M. & Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009). PubMed

Forster P., Harding R., Torroni A. & Bandelt H. J. Origin and evolution of Native American mtDNA variation: a reappraisal. Am. J. Hum. Genet. 59, 935–945 (1996). PubMed PMC

Saillard J., Forster P., Lynnerup N., Bandelt H. J. & Nørby S. mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am. J. Hum. Genet. 67, 718–726 (2000). PubMed PMC

Soares P. et al. Correcting for purifying selection: An improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759 (2009). PubMed PMC

Loogväli E.-L., Kivisild T., Margus T. & Villems R. Explaining the imperfection of the molecular clock of Hominid mitochondria. PLoS One 4, e8260 (2009). PubMed PMC

Drummond A. J., Suchard M. A., Xie D. & Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). PubMed PMC

Hasegawa M., Kishino H. & Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985). PubMed

Zuckerkandl E. & Pauling L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965). PubMed

Drummond A. J., Rambaut A., Shapiro B. & Pybus O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005). PubMed

Miller M. A., Pfeiffer W. & Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8, doi: 10.1109/GCE.2010.5676129 (2010). DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...