Origin and spread of human mitochondrial DNA haplogroup U7
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28387361
PubMed Central
PMC5384202
DOI
10.1038/srep46044
PII: srep46044
Knihovny.cz E-resources
- MeSH
- Bayes Theorem MeSH
- Phylogeny MeSH
- Haplotypes genetics MeSH
- Humans MeSH
- DNA, Mitochondrial genetics MeSH
- Evolution, Molecular * MeSH
- Mutation genetics MeSH
- Geography MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Mitochondrial MeSH
Human mitochondrial DNA haplogroup U is among the initial maternal founders in Southwest Asia and Europe and one that best indicates matrilineal genetic continuity between late Pleistocene hunter-gatherer groups and present-day populations of Europe. While most haplogroup U subclades are older than 30 thousand years, the comparatively recent coalescence time of the extant variation of haplogroup U7 (~16-19 thousand years ago) suggests that its current distribution is the consequence of more recent dispersal events, despite its wide geographical range across Europe, the Near East and South Asia. Here we report 267 new U7 mitogenomes that - analysed alongside 100 published ones - enable us to discern at least two distinct temporal phases of dispersal, both of which most likely emanated from the Near East. The earlier one began prior to the Holocene (~11.5 thousand years ago) towards South Asia, while the later dispersal took place more recently towards Mediterranean Europe during the Neolithic (~8 thousand years ago). These findings imply that the carriers of haplogroup U7 spread to South Asia and Europe before the suggested Bronze Age expansion of Indo-European languages from the Pontic-Caspian Steppe region.
Anthropological Centre of the Croatian Academy of Sciences and Arts 10000 Zagreb Croatia
Croatian Science Foundation Zagreb 10000 Croatia
CSIR Centre for Cellular and Molecular Biology Hyderabad 500 007 India
Departamento de Biologia CBMA Universidade do Minho Braga 4710 057 Portugal
Department of Archaeology and Anthropology University of Cambridge Cambridge CB2 1QH United Kingdom
Department of Genetics and Fundamental Medicine of Bashkir State University Ufa 450076 Russia
Department of Molecular Biology Ruđer Bošković Institute Zagreb 10000 Croatia
Department of Zoology University of Calcutta Kolkata 700 019 India
Dipartimento di Biologia e Biotecnologie L Spallanzani Università di Pavia Pavia 27100 Italy
Estonian Academy of Sciences Tallinn 10130 Estonia
Evolutionary Biology Group Estonian Biocentre Tartu 51010 Estonia
Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
Foundation for Biomedical Research of the Academy of Athens Athens 115 27 Greece
Genetic Department Institute of Experimental Medicine Istanbul University Istanbul 33326 Turkey
Institute for Anthropological Research Zagreb 10000 Croatia
Institute of Cellular Biology and Pathology Nicolae Simionescu Bucharest PO Box 35 14 Romania
Institute of Cytology and Genetics SB RAS Novosibirsk 630090 Russia
Institute of Genetics and Cytology National Academy of Sciences Minsk 220072 Belarus
Institute of Internal and Preventive Medicine SB RAS Novosibirsk 630089 Russia
Instituto de Investigação e Inovação em Saúde Universidade do Porto Porto 4200 135 Portugal
Instituto de Patologia e Imunologia Molecular da Universidade do Porto Porto 4200 135 Portugal
Kharkiv Specialized Medical Genetic Centre Kharkiv 61022 Ukraine
Laboratory of Biology University of Athens School of Medicine Athens 115 27 Greece
Mediterranean Institute for Life Sciences Split 21000 Croatia
Musée de l'Homme Paris 75116 France
Novosibirsk State University Novosibirsk 630090 Russia
Russian Armenian University Yerevan 0051 Armenia
Utrecht 3523 GN The Netherlands
Vavilov Institute of General Genetics Russian Academy of Sciences Moscow 119333 Russia
See more in PubMed
Bramanti B. et al. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326, 137–140 (2009). PubMed
Brandt G. et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013). PubMed PMC
Haak W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC
Fu Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC
Posth C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial population turnover in Europe. Curr. Biol. 26, 827–833 (2016). PubMed
Behar D. M. et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82, 1130–1140 (2008). PubMed PMC
Richards M. et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am. J. Hum. Genet. 67, 1251–1276 (2000). PubMed PMC
Torroni A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996). PubMed PMC
Malyarchuk B. et al. The peopling of Europe from the mitochondrial haplogroup U5 perspective. PLoS One 5, e10285 (2010). PubMed PMC
Soares P. et al. The archaeogenetics of Europe. Curr. Biol. 20, R174–R183 (2010). PubMed
Olivieri A. et al. Mitogenomes from two uncommon haplogroups mark Late Glacial/Postglacial expansions from the Near East and Neolithic dispersals within Europe. PLoS One 8, e70492 (2013). PubMed PMC
Pala M. et al. Mitochondrial DNA signals of late glacial recolonization of Europe from Near Eastern refugia. Am. J. Hum. Genet. 90, 915–924 (2012). PubMed PMC
Richards M. B., Soares P. & Torroni A. Palaeogenomics: Mitogenomes and migrations in Europe’s past. Curr. Biol. 26, R243–R246 (2016). PubMed
Al-Zahery N. et al. Y-chromosome and mtDNA polymorphisms in Iraq, a crossroad of the early human dispersal and of post-Neolithic migrations. Mol. Phylogenet. Evol. 28, 458–472 (2003). PubMed
Al-Zahery N. et al. In search of the genetic footprints of Sumerians: a survey of Y-chromosome and mtDNA variation in the Marsh Arabs of Iraq. BMC Evol. Biol. 11, 288 (2011). PubMed PMC
Derenko M. et al. Complete mitochondrial DNA diversity in Iranians. PLoS One 8, e80673 (2013). PubMed PMC
Achilli A. et al. Saami and Berbers—an unexpected mitochondrial DNA link. Am. J. Hum. Genet. 76, 883–886 (2005). PubMed PMC
Malyarchuk B. et al. Mitochondrial DNA phylogeny in Eastern and Western Slavs. Mol. Biol. Evol. 25, 1651–1658 (2008a). PubMed
Olivieri A. et al. The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa. Science 314, 1767–1770 (2006). PubMed
Pennarun E. et al. Divorcing the Late Upper Palaeolithic demographic histories of mtDNA haplogroups M1 and U6 in Africa. BMC Evol. Biol. 12, 234 (2012). PubMed PMC
Secher B. et al. The history of the North African mitochondrial DNA haplogroup U6 gene flow into the African, Eurasian and American continents. BMC Evol. Biol. 14, 109 (2014). PubMed PMC
Badro D. A. et al. Y-chromosome and mtDNA genetics reveal significant contrasts in affinities of modern Middle Eastern populations with European and African populations. PLoS One 8, e54616 (2013). PubMed PMC
Costa M. D. et al. A substantial prehistoric European ancestry amongst Ashkenazi maternal lineages. Nat. Commun. 4, 2543 (2013). PubMed PMC
González A. M., García O., Larruga J. M. & Cabrera V. M. The mitochondrial lineage U8a reveals a Paleolithic settlement in the Basque country. BMC Genomics 7, 124 (2006). PubMed PMC
Quintana-Murci L. et al. Where West meets East: The complex mtDNA landscape of the Southwest and Central Asian corridor. Am. J. Hum. Genet. 74, 827–845 (2004). PubMed PMC
Abu-Amero K. K., González A. M., Larruga J. M., Bosley T. M. & Cabrera V. M. Eurasian and African mitochondrial DNA influences in the Saudi Arabian population. BMC Evol. Biol. 7, 32 (2007). PubMed PMC
Fornarino S. et al. Mitochondrial and Y-chromosome diversity of the Tharus (Nepal): a reservoir of genetic variation. BMC Evol. Biol. 9, 154 (2009). PubMed PMC
Kivisild T. et al. Deep common ancestry of Indian and western-Eurasian mitochondrial DNA lineages. Curr. Biol. 9, 1331–1334 (1999). PubMed
Malyarchuk B., Derenko M., Perkova M. & Vanecek T. Mitochondrial haplogroup U2d phylogeny and distribution. Hum. Biol. 80, 565–571 (2008b). PubMed
Metspalu M. et al. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genet. 5, 26 (2004). PubMed PMC
Behar D. M. et al. A ‘Copernican’ reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012). PubMed PMC
Brisighelli F. et al. The Etruscan timeline: a recent Anatolian connection. Eur. J. Hum. Genet. 17, 693–696 (2009). PubMed PMC
Palanichamy M. G. et al. West Eurasian mtDNA lineages in India: an insight into the spread of the Dravidian language and the origins of the caste system. Hum. Genet. 134, 637–647 (2015). PubMed
Lazaridis I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016). PubMed PMC
Li C. et al. Analysis of ancient human mitochondrial DNA from the Xiaohe cemetery: insights into prehistoric population movements in the Tarim Basin, China. BMC Genet. 16, 78 (2015). PubMed PMC
Gandini F. et al. Mapping human dispersals into the Horn of Africa from Arabian Ice Age refugia using mitogenomes. Sci. Rep. 6, 25472 (2016). PubMed PMC
Haak W. et al. Ancient DNA from the first European farmers in 7500-year-old Neolithic sites. Science 310, 1016–1018 (2005). PubMed
Perego U. A. et al. Distinctive Paleo-Indian migration routes from Beringia marked by two rare mtDNA haplogroups. Curr. Biol. 19, 1–8 (2009). PubMed
Beaumont M. A. et al. In defence of model-based inference in phylogeography. Mol. Ecol. 19, 436–446 (2010). PubMed PMC
Gerbault P. & Thomas M. G. In James D. Wright, International Encyclopedia of the Social & Behavioral Sciences 11, 289–296 (Elsevier, 2015).
Groucutt H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. Issues News Rev. 24, 149–164 (2015). PubMed PMC
Kivisild T. Maternal ancestry and population history from whole mitochondrial genomes. Investig. Genet. 6, 3 (2015). PubMed PMC
De Fanti S. et al. Fine dissection of human mitochondrial DNA haplogroup HV lineages reveals Paleolithic signatures from European glacial refugia. PLoS One 10, e0144391 (2015). PubMed PMC
Fernandes V. et al. The Arabian cradle: Mitochondrial relicts of the first steps along the southern route out of Africa. Am. J. Hum. Genet. 90, 347–355 (2012). PubMed PMC
Kushniarevich A. et al. Uniparental genetic heritage of Belarusians: Encounter of rare Middle Eastern matrilineages with a central European mitochondrial DNA pool. PLoS One 8, e66499 (2013). PubMed PMC
Gronenborn D. A variation on a basic theme: The transition to farming in southern central Europe. J. World Prehistory 13, 123–210 (1999).
Price T. D. Europe’s first farmers. (Cambridge University press, 2000).
Rowley-Conwy P. Westward Ho!: The spread of agriculture from Central Europe to the Atlantic. Curr. Anthropol. 52, S431–S451 (2011).
Zilhão J. Radiocarbon evidence for maritime pioneer colonization at the origins of farming in west Mediterranean Europe. Proc. Natl. Acad. Sci. USA 98, 14180–14185 (2001). PubMed PMC
Bollongino R. et al. 2000 years of parallel societies in Stone Age Central Europe. Science 342, 479–481 (2013). PubMed
Der Sarkissian C. et al. Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of North East Europe. PLoS Genet. 9, e1003296 (2013). PubMed PMC
Fu Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013). PubMed PMC
Hofmanová Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. USA 113, 6886–6891 (2016). PubMed PMC
Jones E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015). PubMed PMC
Lazaridis I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC
Malmström H. et al. Ancient DNA reveals lack of continuity between Neolithic hunter-gatherers and contemporary Scandinavians. Curr. Biol. 19, 1758–1762 (2009). PubMed
Seguin-Orlando A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014). PubMed
Szécsényi-Nagy A. et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Proc. R. Soc. Lond. B Biol. Sci. 282, 20150339 (2015). PubMed PMC
Lacan M. et al. Ancient DNA reveals male diffusion through the Neolithic Mediterranean route. Proc. Natl. Acad. Sci. USA 108, 9788–9791 (2011a). PubMed PMC
Lacan M. et al. Ancient DNA suggests the leading role played by men in the Neolithic dissemination. Proc. Natl. Acad. Sci. USA 108, 18255–18259 (2011b). PubMed PMC
Fernández E. et al. Ancient DNA analysis of 8000 B. C. Near Eastern farmers supports an Early Neolithic pioneer maritime colonization of mainland Europe through Cyprus and the Aegean islands. PLoS Genet. 10, e1004401 (2014). PubMed PMC
Richard C. et al. An mtDNA perspective of French genetic variation. Ann. Hum. Biol. 34, 68–79 (2007). PubMed
Kılınç G. M. et al. The demographic development of the first farmers in Anatolia. Curr. Biol. 0 (2016). PubMed PMC
Gamba C. et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). PubMed PMC
Günther T. et al. Ancient genomes link early farmers from Atapuerca in Spain to modern-day Basques. Proc. Natl. Acad. Sci. USA 112, 11917–11922 (2015). PubMed PMC
Mathieson I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC
Olalde I. et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014). PubMed PMC
Olalde I. et al. A common genetic origin for early farmers from Mediterranean Cardial and Central European LBK cultures. Mol. Biol. Evol. 32, 3132–3142 (2015). PubMed PMC
Sikora M. et al. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe. PLoS Genet. 10, e1004353 (2014). PubMed PMC
Skoglund P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012). PubMed
Skoglund P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014). PubMed
Allentoft M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed
Wilde S. et al. Direct evidence for positive selection of skin, hair, and eye pigmentation in Europeans during the last 5,000 y. Proc. Natl. Acad. Sci. USA 111, 4832–4837 (2014). PubMed PMC
Metspalu M. et al. Shared and unique components of human population structure and genome-wide signals of positive selection in South Asia. Am. J. Hum. Genet. 89, 731–744 (2011). PubMed PMC
Alves I. et al. Long-distance dispersal shaped patterns of human genetic diversity in Eurasia. Mol. Biol. Evol. 33, 946–958 (2016). PubMed PMC
Atkinson Q. D., Gray R. D. & Drummond A. J. mtDNA variation predicts population size in humans and reveals a major southern Asian chapter in human prehistory. Mol. Biol. Evol. 25, 468–474 (2008). PubMed
Chandrasekar A. et al. Updating phylogeny of mitochondrial DNA macrohaplogroup M in India: Dispersal of modern human in South Asian corridor. PLoS One 4, e7447 (2009). PubMed PMC
Thangaraj K. et al. PubMed PMC
Singh S. et al. Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup. Sci. Rep. 6, 19157 (2016). PubMed PMC
Ayub Q. et al. The Kalash genetic isolate: Ancient divergence, drift, and selection. Am. J. Hum. Genet. 96, 775–783 (2015). PubMed PMC
Basu Mallick C. et al. The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent. PLoS Genet. 9, e1003912 (2013). PubMed PMC
Broushaki F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016). PubMed PMC
Rieder M. J., Taylor S. L., Tobe V. O. & Nickerson D. A. Automating the identification of DNA variations using quality-based fluorescence re-sequencing: analysis of the human mitochondrial genome. Nucleic Acids Res. 26, 967–973 (1998). PubMed PMC
Torroni A. et al. Do the four clades of the mtDNA haplogroup L2 evolve at different rates? Am. J. Hum. Genet. 69, 1348–1356 (2001). PubMed PMC
Anderson S. et al. Sequence and organization of the human mitochondrial genome. Nature 290, 457–465 (1981). PubMed
Andrews R. M. et al. Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147–147 (1999). PubMed
Hall T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).
van Oven M. & Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386–E394 (2009). PubMed
Forster P., Harding R., Torroni A. & Bandelt H. J. Origin and evolution of Native American mtDNA variation: a reappraisal. Am. J. Hum. Genet. 59, 935–945 (1996). PubMed PMC
Saillard J., Forster P., Lynnerup N., Bandelt H. J. & Nørby S. mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am. J. Hum. Genet. 67, 718–726 (2000). PubMed PMC
Soares P. et al. Correcting for purifying selection: An improved human mitochondrial molecular clock. Am. J. Hum. Genet. 84, 740–759 (2009). PubMed PMC
Loogväli E.-L., Kivisild T., Margus T. & Villems R. Explaining the imperfection of the molecular clock of Hominid mitochondria. PLoS One 4, e8260 (2009). PubMed PMC
Drummond A. J., Suchard M. A., Xie D. & Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). PubMed PMC
Hasegawa M., Kishino H. & Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985). PubMed
Zuckerkandl E. & Pauling L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965). PubMed
Drummond A. J., Rambaut A., Shapiro B. & Pybus O. G. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192 (2005). PubMed
Miller M. A., Pfeiffer W. & Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE) 1–8, doi: 10.1109/GCE.2010.5676129 (2010). DOI