A revised timescale for human evolution based on ancient mitochondrial genomes
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 AI049334
NIAID NIH HHS - United States
R01 GM100233
NIGMS NIH HHS - United States
GM100233
NIGMS NIH HHS - United States
AI049334
NIAID NIH HHS - United States
PubMed
23523248
PubMed Central
PMC5036973
DOI
10.1016/j.cub.2013.02.044
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- demografie MeSH
- fylogeneze * MeSH
- genom lidský genetika MeSH
- genom mitochondriální genetika MeSH
- haplotypy genetika MeSH
- lidé MeSH
- lineární modely MeSH
- modely genetické * MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- sekvence nukleotidů MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zkameněliny * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
BACKGROUND: Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. RESULTS: Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. CONCLUSIONS: Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome.
Broad Institute of MIT and Harvard Cambridge MA 02142 USA
Department of Anthropology Faculty of Science Masaryk University Vinařská 5 603 00 Brno
Department of Biology Emory University Atlanta GA 30322 USA
Department of Genetics Harvard Medical School Boston MA 02115 USA
Dipartimento di Biologia Evoluzionistica Università di Firenze Firenze Italy
Dipartimento di Scienze Archeologiche Università di Pisa via Galvani 1 56126 Pisa
Human Genetics Department Medical Faculty University of Tübingen 72070 Tübingen Germany
Institute for Archaeological Sciences University of Tübingen Rümelinstr 23 Tübingen Germany
LVR Landesmuseum Bonn Bachstrasse 5 9 D 53115 Bonn Germany
ShandongMuseum 11899 Jing 10th Road Jinan Shandong 250014 P R China
Zobrazit více v PubMed
Scally A, Durbin R. Revising the human mutation rate: implications for understanding human evolution. Nat Rev Genet. 2012;13:745–753. PubMed
Awadalla P, Gauthier J, Myers RA, Casals F, Hamdan FF, Griffing AR, Cote M, Henrion E, Spiegelman D, Tarabeux J, et al. Direct measure of the de novo mutation rate in autism and schizophrenia cohorts. American journal of human genetics. 2010;87:316–324. PubMed PMC
Consortium GP. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–1073. PubMed PMC
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Wong WS, et al. Rate of de novo mutations and the importance of father's age to disease risk. Nature. 2012;488:471–475. PubMed PMC
Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT, Rowen L, Pant KP, Goodman N, Bamshad M, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science. 2010;328:636–639. PubMed PMC
Endicott P, Ho SY, Metspalu M, Stringer C. Evaluating the mitochondrial timescale of human evolution. Trends in ecology & evolution. 2009;24:515–521. PubMed
Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, et al. Natural selection shaped regional mtDNA variation in humans. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:171–176. PubMed PMC
Friedlaender J, Schurr T, Gentz F, Koki G, Friedlaender F, Horvat G, Babb P, Cerchio S, Kaestle F, Schanfield M, et al. Expanding Southwest Pacific mitochondrial haplogroups P and Q. Molecular biology and evolution. 2005;22:1506–1517. PubMed
Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S, Macaulay V, Richards MB. Correcting for purifying selection: an improved human mitochondrial molecular clock. American journal of human genetics. 2009;84:740–759. PubMed PMC
Krause J, Briggs AW, Kircher M, Maricic T, Zwyns N, Derevianko A, Paabo S. A complete mtDNA genome of an early modern human from Kostenki, Russia. Curr Biol. 2010;20:231–236. PubMed
Green RE, Malaspinas AS, Krause J, Briggs AW, Johnson PL, Uhler C, Meyer M, Good JM, Maricic T, Stenzel U, et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell. 2008;134:416–426. PubMed PMC
Briggs AW, Stenzel U, Johnson PL, Green RE, Kelso J, Prufer K, Meyer M, Krause J, Ronan MT, Lachmann M, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:14616–14621. PubMed PMC
Sawyer S, Krause J, Guschanski K, Savolainen V, Paabo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PloS one. 2012;7:e34131. PubMed PMC
Stoneking M, Krause J. Learning about human population history from ancient and modern genomes. Nature Reviews Genetics. 2011;12:603–614. PubMed
Bramanti B, Thomas MG, Haak W, Unterlaender M, Jores P, Tambets K, Antanaitis-Jacobs I, Haidle MN, Jankauskas R, Kind CJ, et al. Genetic Discontinuity Between Local Hunter-Gatherers and Central Europe's First Farmers. Science. 2009 PubMed
Henry-Gambier D. Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne): Nouvelles donnees sur leur Position chronologique et leur attribution culturelle. Bull. et Mém. de la Société d’Anthropologie de Paris. 2002;14:89–112.
Briggs AW, Good JM, Green RE, Krause J, Maricic T, Stenzel U, Lalueza-Fox C, Rudan P, Brajkovic D, Kucan Z, et al. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science. 2009;325:318–321. PubMed
Richards MB, Macaulay VA, Bandelt HJ, Sykes BC. Phylogeography of mitochondrial DNA in western Europe. Ann Hum Genet. 1998;62:241–260. PubMed
Fenner JN. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 2005;128:415–423. PubMed
Sun JX, Helgason A, Masson G, Ebenesersdottir SS, Li H, Mallick S, Gnerre S, Patterson N, Kong A, Reich D, et al. A direct characterization of human mutation based on microsatellites. Nature genetics. 2012;44:1161–1165. PubMed PMC
Hobolth A, Dutheil JY, Hawks J, Schierup MH, Mailund T. Incomplete lineage sorting patterns among human, chimpanzee, and orangutan suggest recent orangutan speciation and widespread selection. Genome research. 2011;21:349–356. PubMed PMC
Andrews P, Cronin JE. The relationships of sivapithecus and ramapithecus and the evolution of the orangutan. Nature. 1982;297:541–546. PubMed
Meyer M, Kircher M, Gansauge MT, Li H, Racimo F, Mallick S, Schraiber JG, Jay F, Prufer K, de Filippo C, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–226. PubMed PMC
van Oven M, Kayser M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat. 2009;30:E386–394. PubMed
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research. 2004;32:1792–1797. PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. 2011;28:2731–2739. PubMed PMC
Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature. 2000;408:708–713. PubMed
Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, Paabo S. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 2010;464:894–897. PubMed PMC
Fu Q, Meyer M, Gao X, Stenzel U, Burbano HA, Kelso J, Paabo S. DNA analysis of an early modern human from Tianyuan Cave, China. Proceedings of the National Academy of Sciences of the United States of America. 2013 PubMed PMC
Ermini L, Olivieri C, Rizzi E, Corti G, Bonnal R, Soares P, Luciani S, Marota I, De Bellis G, Richards MB, et al. Complete mitochondrial genome sequence of the Tyrolean Iceman. Curr Biol. 2008;18:1687–1693. PubMed
Gilbert MT, Kivisild T, Gronnow B, Andersen PK, Metspalu E, Reidla M, Tamm E, Axelsson E, Gotherstrom A, Campos PF, et al. Paleo-Eskimo mtDNA genome reveals matrilineal discontinuity in Greenland. Science. 2008;320:1787–1789. PubMed
Drummond AJ, Rambaut A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007;7:214. PubMed PMC
Posada D. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Curr Protoc Bioinformatics. 2003 Chapter 6, Unit 6 5. PubMed
Green RE, Briggs AW, Krause J, Prufer K, Burbano HA, Siebauer M, Lachmann M, Paabo S. The Neandertal genome and ancient DNA authenticity. EMBO J. 2009;28:2494–2502. PubMed PMC
The genetic origin of the Indo-Europeans
Social and genetic diversity in first farmers of central Europe
The Genetic Origin of the Indo-Europeans
The genetic history of the Southern Arc: A bridge between West Asia and Europe
The genomic origins of the world's first farmers
Ancient genomes reveal origin and rapid trans-Eurasian migration of 7th century Avar elites
Large-scale migration into Britain during the Middle to Late Bronze Age
The formation of human populations in South and Central Asia
Megalithic tombs in western and northern Neolithic Europe were linked to a kindred society
A genetic perspective on Longobard-Era migrations
The Beaker phenomenon and the genomic transformation of northwest Europe
Origin and spread of human mitochondrial DNA haplogroup U7
Hunter-Gatherers and the Origins of Religion
GENBANK
KC521454, KC521455, KC521456, KC521457, KC521458, KC521459