Ancient DNA reveals the prehistory of the Uralic and Yeniseian peoples
Status Publisher Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40604287
DOI
10.1038/s41586-025-09189-3
PII: 10.1038/s41586-025-09189-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The North Eurasian forest and forest-steppe zones have sustained millennia of sociocultural connections among northern peoples, but much of their history is poorly understood. In particular, the genomic formation of populations that speak Uralic and Yeniseian languages today is unknown. Here, by generating genome-wide data for 180 ancient individuals spanning this region, we show that the Early-to-Mid-Holocene hunter-gatherers harboured a continuous gradient of ancestry from fully European-related in the Baltic, to fully East Asian-related in the Transbaikal. Contemporaneous groups in Northeast Siberia were off-gradient and descended from a population that was the primary source for Native Americans, which then mixed with populations of Inland East Asia and the Amur River Basin to produce two populations whose expansion coincided with the collapse of pre-Bronze Age population structure. Ancestry from the first population, Cis-Baikal Late Neolithic-Bronze Age (Cisbaikal_LNBA), is associated with Yeniseian-speaking groups and those that admixed with them, and ancestry from the second, Yakutia Late Neolithic-Bronze Age (Yakutia_LNBA), is associated with migrations of prehistoric Uralic speakers. We show that Yakutia_LNBA first dispersed westwards from the Lena River Basin around 4,000 years ago into the Altai-Sayan region and into West Siberian communities associated with Seima-Turbino metallurgy-a suite of advanced bronze casting techniques that expanded explosively from the Altai1. The 16 Seima-Turbino period individuals were diverse in their ancestry, also harbouring DNA from Indo-Iranian-associated pastoralists and from a range of hunter-gatherer groups. Thus, both cultural transmission and migration were key to the Seima-Turbino phenomenon, which was involved in the initial spread of early Uralic-speaking communities.
5 F Voino Yasenetsky Krasnoyarsk State Medical University Krasnoyarsk Russia
Arctic Research Center of Sakha Republic Yakutia Russia
Broad Institute of MIT and Harvard Cambridge MA USA
CIAS Department of Life Sciences University of Coimbra Coimbra Portugal
Department of Anthropology Harvard University Cambridge MA USA
Department of Anthropology Washington University in St Louis St Louis MO USA
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeology Ethnography and Museology Altai State University Barnaul Russia
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Biology University of La Verne La Verne CA USA
Department of Evolutionary Anthropology University of Vienna Vienna Austria
Department of Genetics Harvard Medical School Boston MA USA
Department of Genetics Yale Medical School New Haven CT USA
Department of Historical Studies University of Gothenburg Gothenburg Sweden
Department of Human Evolutionary Biology Harvard University Cambridge MA USA
Department of Integrative Biology University of Texas Austin TX USA
Department of Statistics and Data Science University of Texas Austin TX USA
Historical Ecological and Cultural Association 'Povolzhye' Samara Russia
Howard Hughes Medical Institute Harvard Medical School Boston MA USA
Human Evolution and Archaeological Sciences University of Vienna Vienna Austria
Human Population Genetics Laboratory Research Center for Medical Genetics Moscow Russia
Ikerbasque Basque Foundation of Science Bilbao Spain
Independent Researcher Kemerovo Russia
Institute of Natural Sciences M K Ammosov North Eastern Federal University Yakutsk Russia
Institute of Parasitology Biology Centre CAS České Budějovice Czech Republic
Krasnoyarsk Regional Museum of Local Lore Krasnoyarsk Russia
Laboratory of Archaeogenetics Nazarbayev University Astana Kazakhstan
Laboratory of Human Genetics National Center for Biotechnology Astana Kazakhstan
LLC 'Archaeology of the East European Plain' Moscow Russia
National Research Tomsk State University Tomsk Russia
Samara State University of Social Sciences and Education Samara Russia
School of Archaeology University College Dublin Dublin Ireland
Servizio di Bioarcheologia Museo delle Civiltà Rome Italy
Siberian State University of Physical Education and Sport Omsk Russia
Zobrazit více v PubMed
Janhunen, J. Proto-Uralic—what, where, and when? Quasquicentennial Finno Ugrian Soc. 258, 57–78 (2009).
Tambets, K. et al. Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biol. 19, 139 (2018). PubMed DOI PMC
Lamnidis, T. C. et al. Ancient Fennoscandian genomes reveal origin and spread of Siberian ancestry in Europe. Nat. Commun. 9, 5018 (2018). PubMed DOI PMC
Saag, L. et al. The arrival of Siberian ancestry connecting the Eastern Baltic to Uralic speakers further east. Curr. Biol. 29, 1701–1711.e16 (2019). PubMed DOI PMC
Vajda, E. Dene-Yeniseian. Diachronica 35, 277–295 (2018). DOI
Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012). PubMed DOI PMC
Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019). PubMed DOI PMC
Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019). PubMed DOI PMC
Nielsen, S. V. et al. Bayesian inference of admixture graphs on Native American and Arctic populations. PLoS Genet. 19, e1010410 (2023). PubMed DOI PMC
Flegontov, P. et al. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci. Rep. 6, 20768 (2016). PubMed DOI PMC
Jeong, C. et al. The genetic history of admixture across inner Eurasia. Nat Ecol. Evol. 3, 966–976 (2019). PubMed DOI PMC
Kidd, K. K. et al. North Asian population relationships in a global context. Sci. Rep. 12, 7214 (2022). PubMed DOI PMC
Svyatko, S. V. et al. Freshwater reservoir effects in archaeological contexts of Siberia and the Eurasian Steppe. Radiocarbon 64, 377–388 (2022). DOI
Zhang, F. et al. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 599, 256–261 (2021). PubMed DOI PMC
Kılınç, G. M. et al. Human population dynamics and Yersinia pestis in ancient northeast Asia. Sci. Adv. 7, eabc4587 (2021). PubMed DOI PMC
Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with first Americans and across Eurasia. Cell 181, 1232–1245.e20 (2020). PubMed DOI
Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics 217, iyaa045 (2021). PubMed DOI PMC
Flegontova, O. et al. Performance of qpAdm-based screens for genetic admixture on graph-shaped histories and stepping-stone landscapes. Genetics 230, iyaf047 (2025). PubMed DOI PMC
Davidson, R. et al. Allelic bias when performing in-solution enrichment of ancient human DNA. Mol. Ecol. Resour. 23, 1823–1840 (2023). PubMed DOI
Grebenyuk, P. S., Fedorchenko, A. Y., Dyakonov, V. M., Lebedintsev, A. I. & Malyarchuk, B. A. in Humans in the Siberian Landscapes: Ethnocultural Dynamics and Interaction with Nature and Space (eds Bocharnikov, V. N. & Steblyanskaya, A. N.) 89–133 (Springer, 2022).
Yang, M. A. et al. Ancient DNA indicates human population shifts and admixture in northern and southern China. Science 369, 282–288 (2020). PubMed DOI
Mao, X. et al. The deep population history of northern East Asia from the Late Pleistocene to the Holocene. Cell 184, 3256–3266.e13 (2021). PubMed DOI
Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018). PubMed DOI
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018). PubMed DOI PMC
Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed DOI PMC
Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). PubMed DOI
de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science 360, eaar7711 (2018). PubMed DOI PMC
Saag, L. et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 7, eabd6535 (2021). PubMed DOI PMC
Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019). PubMed DOI PMC
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023). PubMed DOI PMC
Allentoft, M. E. et al. Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed DOI
de Barros Damgaard, P. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018). DOI
Krzewińska, M. et al. Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads. Sci. Adv. 4, eaat4457 (2018). PubMed DOI PMC
Järve, M. et al. Shifts in the genetic landscape of the Western Eurasian Steppe associated with the beginning and end of the Scythian dominance. Curr. Biol. 29, 2430–2441.e10 (2019). PubMed DOI
Wei, L.-H. et al. Paternal origin of Paleo-Indians in Siberia: insights from Y-chromosome sequences. Eur. J. Hum. Genet. 26, 1687–1696 (2018). PubMed DOI PMC
Karmin, M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466 (2015). PubMed DOI PMC
YFull. ISOGG Wiki https://isogg.org/wiki/YFull (2024).
Pakendorf, B. et al. Investigating the effects of prehistoric migrations in Siberia: genetic variation and the origins of Yakuts. Hum. Genet. 120, 334–353 (2006). PubMed DOI
Chernykh, E. N. & Kuz’minykh, S. V. Drevnyaya metallurgiya Severnoy Evrazii (Seiminsko-Turbinskiy fenomen) (Nauka, 1989).
Marchenko, Z. V., Svyatko, S. V., Molodin, V. I., Grishin, A. E. & Rykun, M. P. Radiocarbon chronology of complexes with Seima-Turbino type objects (Bronze Age) in Southwestern Siberia. Radiocarbon 59, 1381–1397 (2017). DOI
Chernykh, E. N. Formation of the Eurasian ‘Steppe Belt’ of stockbreeding cultures: viewed through the prism of archaeometallurgy and radiocarbon dating. Archaeol. Ethnol. Anthropol. Eurasia 35, 36–53 (2008). DOI
Meicun, L. & Liu, X. The origins of metallurgy in China. Antiquity 91, e6 (2017). DOI
Chernykh, E. N. in Nomadic Cultures in the Mega-Structure of the Eurasian World (eds Savinetskaya, I & Hommel, P. N.) 234–249 (Academic Studies, 2017).
Molodin, V. I., Durakov, I. A., Mylnikova, L. N. & Nesterova, M. S. The adaptation of the Seima-Turbino tradition to the Bronze Age cultures in the south of the West Siberian plain. Archaeol. Ethnol. Anthropol. Eurasia 46, 49–58 (2018). DOI
Ilumäe, A.-M. et al. Human Y chromosome haplogroup N: a non-trivial time-resolved phylogeography that cuts across language families. Am. J. Hum. Genet. 99, 163–173 (2016). PubMed DOI PMC
Kuzminykh, S. V. Seima-Turbino transcultural phenomenon: migration or diffusion of technology. In Mobility and Migration: Concepts, Methods, Results: Programme and Abstracts of the V International Scientific Symposium (eds Molodin, V. I. & Hansen, S.) 52–56 (2019).
Makarov, N. P. Khronologiya i periodizatsiya epokhi Neolita i Bronzy Krasnoyarskoy lesostepi [The chronology and periodization of the Neolithic and Bronze Krasnoyarsk forest]. Izv. Lab. Drevn. Tekhnol. 1, 149–171 (2005).
Childebayeva, A. et al. Bronze age Northern Eurasian genetics in the context of development of metallurgy and Siberian ancestry. Commun. Biol. 7, 723 (2024). PubMed DOI PMC
Kristiansen, K. The Rise of Bronze Age Peripheries and the Expansion of International Trade 1950–1100 bc. Trade and Civilisation Cambridge (eds Kristiansen, K. et al.) 87–112 (Cambridge Univ. Press, 2018).
Powell, W. et al. Tin from Uluburun shipwreck shows small-scale commodity exchange fueled continental tin supply across Late Bronze Age Eurasia. Sci. Adv. 8, eabq3766 (2022). PubMed DOI PMC
Singh, M. & Glowacki, L. Human social organization during the Late Pleistocene: Beyond the nomadic-egalitarian model. Evol. Hum. Behav. 43, 418–431 (2022). DOI
Tarasov, A. & Nordqvist, K. Made for exchange: the Russian Karelian lithic industry and hunter-fisher-gatherer exchange networks in prehistoric north-eastern Europe. Antiquity 96, 34–50 (2022). DOI
Piezonka, H. et al. The world’s oldest-known promontory fort: Amnya and the acceleration of hunter-gatherer diversity in Siberia 8000 years ago. Antiquity 97, 1381–1401 (2023). DOI
Holopainen, S. Indo-Iranian Borrowings in Uralic: Critical Overview of Sound Substitutions and Distribution Criterion. Doctoral thesis, Univ. of Helsinki (2019).
Grünthal, R. et al. Drastic demographic events triggered the Uralic spread. Diachronica 39, 490–524 (2022). DOI
Gnecchi-Ruscone, G. A. et al. Ancient genomic time transect from the Central Asian Steppe unravels the history of the Scythians. Sci. Adv. 7, eabe4414 (2021). PubMed DOI PMC
Kumar, V. et al. Genetic continuity of Bronze Age ancestry with increased Steppe-related ancestry in Late Iron Age Uzbekistan. Mol. Biol. Evol. 38, 4908–4917 (2021). PubMed DOI PMC
Guarino-Vignon, P., Marchi, N., Bendezu-Sarmiento, J., Heyer, E. & Bon, C. Genetic continuity of Indo-Iranian speakers since the Iron Age in southern Central Asia. Sci. Rep. 12, 733 (2022). PubMed DOI PMC
Kovtun, I. V. Predystoriya Indoariyskoy Mifologii (Aziya-Print, 2013).
Häkkinen, J. in Iter Polyphonicum Multilinguae (eds Hyytiäinen, T. et al.) 91–101 (2012).
Buchhorn, M. et al. Copernicus Global Land Service: land cover 100m: collection 3: epoch 2019: Globe (V3.0.1) [Data set]. Zenodo https://doi.org/10.5281/zenodo.3939050 (2020).
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 13, 2447–2461 (2018). PubMed DOI
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013). PubMed DOI PMC
Briggs, A. W. & Heyn, P. in Ancient DNA. Methods in Mol. Biol. (eds Shapiro, B. & Hofreiter, M.) https://doi.org/10.1007/978-1-61779-516-9_18 (2012).
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. B 370, 20130624 (2015). PubMed DOI PMC
Gansauge, M.-T., Aximu-Petri, A., Nagel, S. & M MEYER, Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 15, 2279–2300 (2020). PubMed DOI
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015). PubMed DOI PMC
Maricic, T., Whitten, M. & Pääbo, S. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS ONE 5, e14004 (2010). PubMed DOI PMC
Speir, M. L. et al. The UCSC Genome Browser Database: 2016 update. Nucleic Acids Res. 44, D717–D725 (2016). PubMed DOI
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010). PubMed DOI PMC
Behar, D. M. et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012). PubMed DOI PMC
Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013). PubMed DOI PMC
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014). PubMed DOI PMC
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016). PubMed DOI PMC
Lazaridis, I. et al. The genetic history of the Southern Arc: a bridge between West Asia and Europe. Science 377, eabm4247 (2022). PubMed DOI PMC
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009). PubMed DOI PMC
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). PubMed DOI PMC
Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). PubMed DOI PMC
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012). PubMed DOI PMC
Maier, R., Flegontov, P., Flegontova, O., Işıldak, U., Changmai, P. & Reich, D. On the limits of fitting complex models of population history to f-statistics. eLife 12, e85492 (2023). PubMed DOI PMC
Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017). PubMed DOI PMC
Van de Loosdrecht, M. et al. Pleistocene North African genomes link near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018). PubMed DOI
Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230–1234 (2019). PubMed DOI PMC
Monroy Kuhn, J. M., Jakobsson, M. & Günther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018). PubMed DOI PMC