Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36859578
PubMed Central
PMC9977688
DOI
10.1038/s41586-023-05726-0
PII: 10.1038/s41586-023-05726-0
Knihovny.cz E-zdroje
- MeSH
- archeologie * MeSH
- dějiny starověku MeSH
- genetika člověka * MeSH
- genom lidský * genetika MeSH
- genomika * MeSH
- genový pool MeSH
- lidé MeSH
- lov * MeSH
- paleontologie * MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa etnologie MeSH
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Accademia dei Fisiocritici Siena Italy
Anthropologie Büro Berlin Germany
Archäologie and Münzkabinett Universalmuseum Joanneum Graz Austria
Arpa Patrimonio S L Alicante Spain
Association APRAGE Besançon France
Biogeology Department of Geosciences University of Tübingen Tübingen Germany
Brandenburg Authorities for Heritage Management and Archaeological State Museum Zossen Germany
Center for Genomic Medicine Massachusetts General Hospital Boston MA USA
Center for Isotope Research Groningen University Groningen The Netherlands
Center of Excellence 'Archaeometry' Kazan Federal University Kazan Russia
Centro Studi sul Quaternario ODV Sansepolcro Italy
Centro UCM ISCIII de Investigación sobre Evolución y Comportamiento Humanos Madrid Spain
Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain
Department of Anthropology California State University Northridge Northridge CA USA
Department of Anthropology University of New Mexico Albuquerque NM USA
Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Archaeogenetics Max Planck Institute for the Science of Human History Jena Germany
Department of Biology University of Florence Florence Italy
Department of Biology University of Padova Padova Italy
Department of Chemistry G Ciamician Alma Mater Studiorum University of Bologna Bologna Italy
Department of Cultural Heritage University of Bologna Ravenna Italy
Department of Cultures University of Helsinki Helsinki Finland
Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
Department of Human Genetics Leiden University Medical Center Leiden The Netherlands
Department of Humanities University of Ferrara Ferrara Italy
Department of Psychiatry Harvard Medical School Boston MA USA
DFG Centre for Advanced Studies 'Words Bones Genes Tools' University of Tübingen Tübingen Germany
Dipartimento di Civiltà e Forme Del Sapere Università di Pisa Pisa Italy
Estonian Biocentre Institute of Genomics University of Tartu Tartu Estonia
Faculty of Archaeology Leiden University Leiden The Netherlands
Foundation for Rzeszów Archaeological Centre Rzeszów Poland
GéoArchPal GéoArchÉon Viéville sous les Cotes France
German Archaeological Institute Berlin Germany
Groninger Instituut voor Archeologie Groningen University Groningen The Netherlands
Human Ecology and Archaeology Barcelona Spain
Inrap CIF Croissy Beaubourg France
INRAP UMR 8215 Trajectoires 21 Paris France
Institut National de Recherches Archéologiques Bertrange Luxembourg
Institute for Advanced Studies in Levant Culture and Civilization Bucharest Romania
Institute for Pre and Protohistory Kiel University Kiel Germany
Institute of Archaeology Academy of Sciences of the Republic of Tatarstan Kazan Russia
Institute of Archaeology and Ethnology Polish Academy of Science Poznań Poland
Institute of Archaeology Russian Academy of Sciences Moscow Russia
Institute of Archaeology University of Rzeszów Rzeszów Poland
Institute of Historical Research University of Girona Catalonia Spain
Institute of History Archaeology and Ethnography Dushanbe Tajikistan
Institute of Pre and Protohistory University of Tübingen Tübingen Germany
Institute of Zoology and Evolutionary Research University of Jena Jena Germany
Lower Saxony State Service for Cultural Heritage Hannover Germany
LVR LandesMuseum Bonn Bonn Germany
Musée National de Préhistoire Les Eyzies de Tayac France
Musées de Poitiers Ville de Poitiers Poitiers France
Musées Royaux d'Art et d'Histoire Bruxelles Belgium
Museum 'Das Dorf des Welan' Wöllersdorf Steinabrückl Austria
National Museum of Antiquities Leiden The Netherlands
Paléotime Villard de Lans France
PALEVOPRIM Lab UMR 7262 CNRS INEE University of Poitiers Poitiers France
Pradis Cave Museum Clauzetto Italy
Research Institute and Museum of Anthropology Moscow State University Moscow Russia
Royal Belgian Institute of Natural Sciences Brussels Belgium
Samara State University of Social Sciences and Education Samara Russia
School of Archaeology University of Oxford Oxford UK
School of Human Evolution and Social Change Arizona State University Tempe AZ USA
School of Mathematical Sciences University of Adelaide Adelaide South Australia Australia
Seminar for Pre and Protohistory Göttingen University Göttingen Germany
Service Régional de l'Archéologie de Bourgogne Franche Comté Besançon Cedex France
Sociedad de Ciencias Aranzadi Donostia San Sebastian Spain
St John's College University of Cambridge Cambridge UK
Stralsund Museum Stralsund Germany
UMR 5140 CNRS Archéologie des Sociétés Méditerranéennes Université Paul Valéry Montpellier France
UMR 8068 CNRS TEMPS Technologie et Ethnologie des Mondes Préhistoriques Nanterre Cedex France
Unité de Recherches Art Archéologie Patrimoine Université de Liège Liège Belgium
Université de Bordeaux CNRS MC PACEA UMR 5199 Pessac France
University of Bucharest Faculty of Geology and Geophysics Department of Geology Bucharest Romania
Zobrazit více v PubMed
Prüfer K, et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 2021;5:820–825. doi: 10.1038/s41559-021-01443-x. PubMed DOI PMC
Hajdinjak M, et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature. 2021;592:253–257. doi: 10.1038/s41586-021-03335-3. PubMed DOI PMC
Olalde I, Posth C. Latest trends in archaeogenetic research of west Eurasians. Curr. Opin. Genet. Dev. 2020;62:36–43. doi: 10.1016/j.gde.2020.05.021. PubMed DOI
Fu Q, et al. The genetic history of Ice Age Europe. Nature. 2016;534:200–205. doi: 10.1038/nature17993. PubMed DOI PMC
Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722. doi: 10.1126/science.1188021. PubMed DOI PMC
Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524:216–219. doi: 10.1038/nature14558. PubMed DOI PMC
Fu Q, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514:445–449. doi: 10.1038/nature13810. PubMed DOI PMC
Seguin-Orlando A, et al. Genomic structure in Europeans dating back at least 36,200 years. Science. 2014;346:1113–1118. doi: 10.1126/science.aaa0114. PubMed DOI
Vallini L, et al. Genetics and material culture support repeated expansions into Paleolithic Eurasia from a population hub out of Africa. Genome Biol. Evol. 2022;14:evac045. doi: 10.1093/gbe/evac045. PubMed DOI PMC
Maier A, Zimmermann A. Populations headed south? The Gravettian from a palaeodemographic point of view. Antiquity. 2017;91:573–588. doi: 10.15184/aqy.2017.37. DOI
Dolukhanov, P. in Cultural Transformations and Interactions in Eastern Europe (eds Chapman, J. & Dolukhanov, P.) 122–145 (Avebury, 1993).
Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M. The archaeological and genetic foundations of the European population during the Late Glacial: implications for ‘agricultural thinking’. Cambridge Archaeol. J. 2005;15:193–223. doi: 10.1017/S0959774305000107. DOI
Wren CD, Burke A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE. 2019;14:e0217996. doi: 10.1371/journal.pone.0217996. PubMed DOI PMC
Villalba-Mouco V, et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 2019;29:1169–1177.e7. doi: 10.1016/j.cub.2019.02.006. PubMed DOI
Bortolini E, et al. Early Alpine occupation backdates westward human migration in Late Glacial Europe. Curr. Biol. 2021;31:2484–2493.e7. doi: 10.1016/j.cub.2021.03.078. PubMed DOI
Feldman M, et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 2019;10:1218. doi: 10.1038/s41467-019-09209-7. PubMed DOI PMC
Petr M, Pääbo S, Kelso J, Vernot B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA. 2019;116:1639–1644. doi: 10.1073/pnas.1814338116. PubMed DOI PMC
Harris K, Nielsen R. The genetic cost of Neanderthal introgression. Genetics. 2016;203:881–891. doi: 10.1534/genetics.116.186890. PubMed DOI PMC
Kozłowski JK. The origin of the Gravettian. Quat. Int. 2015;359:3–18. doi: 10.1016/j.quaint.2014.03.025. DOI
Goutas, N. in Les Gravettiens (ed. Otte, M.) 105–160 (Errance, 2013).
Klaric, L., Goutas, N., Laccarière, J. & Banks, W. E. in Les Sociétés Gravettiennes du Nord-Ouest Européen: Nouveaux Sites, Nouvelles Données, Nouvelles Lectures (eds Touzé, O., Goutas, N., Salomon, H. & Noiret, P.) 323–266 (Presses Univ. de Liège, 2021).
Mounier A, et al. Gravettian cranial morphology and human group affinities during the European Upper Palaeolithic. Sci. Rep. 2020;10:21931. doi: 10.1038/s41598-020-78841-x. PubMed DOI PMC
Sikora M, et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science. 2017;358:659–662. doi: 10.1126/science.aao1807. PubMed DOI
Posth C, et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial Population turnover in Europe. Curr. Biol. 2016;26:827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI
Straus LG. The human occupation of southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. J. Anthropol. Res. 2015;71:465–492. doi: 10.3998/jar.0521004.0071.401. DOI
Lécuyer C, Hillaire-Marcel C, Burke A, Julien MA, Hélie JF. Temperature and precipitation regime in LGM human refugia of southwestern Europe inferred from δ13C and δ18O of large mammal remains. Quat. Sci. Rev. 2021;255:106796. doi: 10.1016/j.quascirev.2021.106796. DOI
Djindjian F. Territories and economies of hunter-gatherer groups during the last glacial maximum in Europe. Quat. Int. 2016;412:37–43. doi: 10.1016/j.quaint.2015.06.058. DOI
Ruiz-Redondo A, et al. Mid and Late Upper Palaeolithic in the Adriatic Basin: chronology, transitions and human adaptations to a changing landscape. Quat. Sci. Rev. 2022;276:107319. doi: 10.1016/j.quascirev.2021.107319. DOI
Laplace, G. Essai de Typologie Systématique (Annali dell’Università di Ferrara, 1964).
Yu H, et al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience. 2022;25:104244. doi: 10.1016/j.isci.2022.104244. PubMed DOI PMC
Palma di Cesnola, A. Le paléolithique supérieur en Italie. Série ‘Préhistoire d’Europe’ 9 (Éditions, 2001).
Peresani M, et al. Hunter-gatherers across the great Adriatic-Po region during the Last Glacial Maximum: environmental and cultural dynamics. Quat. Int. 2021;581–582:128–163. doi: 10.1016/j.quaint.2020.10.007. DOI
Otte M. Appearance, expansion and dilution of the Magdalenian civilization. Quat. Int. 2012;272–273:354–361. doi: 10.1016/j.quaint.2012.02.056. DOI
Maier, A. in The Central European Magdalenian 81–180 10.1007/978-94-017-7206-8_6 (Springer, 2015).
Kozłowski SK, Połtowicz-Bobak M, Bobak D, Terberger T. New information from Maszycka Cave and the Late Glacial recolonisation of Central Europe. Quat. Int. 2012;272:288–296. doi: 10.1016/j.quaint.2012.02.052. DOI
Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. doi: 10.1038/nature12736. PubMed DOI PMC
Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC
Mathieson I, et al. The genomic history of southeastern Europe. Nature. 2018;555:197–203. doi: 10.1038/nature25778. PubMed DOI PMC
Mittnik A, et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 2018;9:442. doi: 10.1038/s41467-018-02825-9. PubMed DOI PMC
Günther T, et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 2018;16:e2003703. doi: 10.1371/journal.pbio.2003703. PubMed DOI PMC
Charlton S, et al. Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain. Nat. Ecol. Evol. 2022;6:1658–1668. doi: 10.1038/s41559-022-01883-z. PubMed DOI PMC
Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC
Saag L, et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 2021;7:eabd6535. doi: 10.1126/sciadv.abd6535. PubMed DOI PMC
Wood RE, et al. Freshwater radiocarbon reservoir effects at the burial ground of Minino, Northwest Russia. Radiocarbon. 2013;55:163–177. doi: 10.2458/azu_js_rc.v55i1.16448. DOI
Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC
Gronenborn, D. in The Spread of the Neolithic to Central Europe (RGZM, 2010).
Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC
Roebroeks, W., Mussi, M., Svoboda, J. & Fennema, K. Hunters of the Golden Age: The Mid Upper Palaeolithic of Eurasia, 30,000-20,000 bp (Univ. of Leiden, 2000).
Kotula A, Piezonka H, Tergerger T. The Mesolithic cemetery of Groß Fredenwalde (north-eastern Germany) and its cultural affiliations. Liet. Archeol. 2020;46:65–84. doi: 10.33918/25386514-046002. DOI
Piezonka H, et al. The emergence of hunter-gatherer pottery in the Urals and West Siberia: new dating and stable isotope evidence. J. Archaeol. Sci. 2020;116:105100. doi: 10.1016/j.jas.2020.105100. DOI
Villalba-Mouco, V. et al. A 23,000-year-old southern-Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat. Ecol. Evol.,10.1038/s41559-023-01987-0 (2023) PubMed PMC
Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI
Reimer PJ, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kbp) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI
Korlević P, et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques. 2015;59:87–93. doi: 10.2144/000114320. PubMed DOI
Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2007;2:1756–1762. doi: 10.1038/nprot.2007.247. PubMed DOI
Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–63. doi: 10.1073/pnas.1314445110. PubMed DOI PMC
Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018;13:2447–2461. doi: 10.1038/s41596-018-0050-5. PubMed DOI
Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B. 2015;370:20130624. doi: 10.1098/rstb.2013.0624. PubMed DOI PMC
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:pdb.prot5448. doi: 10.1101/pdb.prot5448. PubMed DOI
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3. doi: 10.1093/nar/gkr771. PubMed DOI PMC
Gansauge M, Aximu-Petri A, Nagel S, Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020;15:2279–2300. doi: 10.1038/s41596-020-0338-0. PubMed DOI
Meyer M, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–226. doi: 10.1126/science.1224344. PubMed DOI PMC
Fu Q, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA. 2013;110:2223–2227. doi: 10.1073/pnas.1221359110. PubMed DOI PMC
Peltzer A, et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17:60. doi: 10.1186/s13059-016-0918-z. PubMed DOI PMC
Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC
Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. doi: 10.1073/pnas.1318934111. PubMed DOI PMC
Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC
Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC
Huang Y, Ringbauer H. hapCon: estimating contamination of ancient genomes by copying from reference haplotypes. Bioinformatics. 2022;38:3768–3777. doi: 10.1093/bioinformatics/btac390. PubMed DOI PMC
Nakatsuka N, et al. ContamLD: estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biol. 2020;21:199. doi: 10.1186/s13059-020-02111-2. PubMed DOI PMC
Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Catalano G, et al. Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: new archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily) Quat. Int. 2020;537:24–32. doi: 10.1016/j.quaint.2020.01.025. DOI
Jensen TZT, et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat. Commun. 2019;10:5520–10. doi: 10.1038/s41467-019-13549-9. PubMed DOI PMC
Key FM, et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 2020;4:324–333. doi: 10.1038/s41559-020-1106-9. PubMed DOI PMC
Rivollat M, et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 2020;6:eaaz5344. doi: 10.1126/sciadv.aaz5344. PubMed DOI PMC
Svensson E, et al. Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Curr. Biol. 2021;31:2973–2983.e9. doi: 10.1016/j.cub.2021.04.045. PubMed DOI
Antonio ML, et al. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science. 2019;366:708–714. doi: 10.1126/science.aay6826. PubMed DOI PMC
Brace S, et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019;3:765–771. doi: 10.1038/s41559-019-0871-9. PubMed DOI PMC
Brunel S, et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA. 2020;117:12791–12798. doi: 10.1073/pnas.1918034117. PubMed DOI PMC
Cassidy LM, et al. A dynastic elite in monumental Neolithic society. Nature. 2020;582:384–388. doi: 10.1038/s41586-020-2378-6. PubMed DOI PMC
González-Fortes G, et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 2017;27:1801–1810.e10. doi: 10.1016/j.cub.2017.05.023. PubMed DOI PMC
Jones ER, et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 2015;6:8912. doi: 10.1038/ncomms9912. PubMed DOI PMC
Jones ER, et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 2017;27:576–582. doi: 10.1016/j.cub.2016.12.060. PubMed DOI PMC
Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–413. doi: 10.1038/nature13673. PubMed DOI PMC
Lazaridis I, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–424. doi: 10.1038/nature19310. PubMed DOI PMC
Lipson M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368–372. doi: 10.1038/nature24476. PubMed DOI PMC
van de Loosdrecht M, et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science. 2018;360:548–552. doi: 10.1126/science.aar8380. PubMed DOI
Olalde I, et al. The genomic history of the Iberian Peninsula over the past 8,000 years. Science. 2019;363:1230–1234. doi: 10.1126/science.aav4040. PubMed DOI PMC
Saag L, et al. Extensive farming in Estonia started through a sex-biased migration from the steppe. Curr. Biol. 2017;27:2185–2193.e6. doi: 10.1016/j.cub.2017.06.022. PubMed DOI
Sikora M, et al. The population history of northeastern Siberia since the Pleistocene. Nature. 2019;570:182–188. doi: 10.1038/s41586-019-1279-z. PubMed DOI PMC
Skoglund P, et al. Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science. 2014;344:747–750. doi: 10.1126/science.1253448. PubMed DOI
Yang MA, et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 2017;27:3202–3208.e9. doi: 10.1016/j.cub.2017.09.030. PubMed DOI PMC
Weissensteiner H, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016;44:W58–W63. doi: 10.1093/nar/gkw233. PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Rohrlach AB, et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 2021;11:15005. doi: 10.1038/s41598-021-94491-z. PubMed DOI PMC
Martiniano R, De Sanctis B, Hallast P, Durbin R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 2022;39:msac017. doi: 10.1093/molbev/msac017. PubMed DOI PMC
Karmin M, et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 2015;25:459–466. doi: 10.1101/gr.186684.114. PubMed DOI PMC
Ringbauer H, Novembre J, Steinrücken M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 2021;12:5425. doi: 10.1038/s41467-021-25289-w. PubMed DOI PMC
Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC
Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI
Chintalapati M, Patterson N, Moorjani P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife. 2022;11:e77625. doi: 10.7554/eLife.77625. PubMed DOI PMC
The genetic origin of the Indo-Europeans
Earliest modern human genomes constrain timing of Neanderthal admixture
Widespread horse-based mobility arose around 2200 BCE in Eurasia
The Genetic Origin of the Indo-Europeans
Population genomics of post-glacial western Eurasia