Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers

. 2023 Mar ; 615 (7950) : 117-126. [epub] 20230301

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36859578
Odkazy

PubMed 36859578
PubMed Central PMC9977688
DOI 10.1038/s41586-023-05726-0
PII: 10.1038/s41586-023-05726-0
Knihovny.cz E-zdroje

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.

1 U de Investigación en Arqueología y Patrimonio Histórico University of Alicante Sant Vicent del Raspeig Alicante Spain

Accademia dei Fisiocritici Siena Italy

Amsterdam Centre of Ancient Studies and Archaeology University of Amsterdam Amsterdam The Netherlands

Anthropologie Büro Berlin Germany

Archaeo and Palaeogenetics Institute for Archaeological Sciences Department of Geosciences University of Tübingen Tübingen Germany

ArchaeoZOOlogy in Siberia and Central Asia ZooSCAn CNRS IAET SB RAS International Research Laboratory IRL 2013 Institute of Archaeology SB RAS Novosibirsk Russia

Archäologie and Münzkabinett Universalmuseum Joanneum Graz Austria

Arpa Patrimonio S L Alicante Spain

Association APRAGE Besançon France

Biogeology Department of Geosciences University of Tübingen Tübingen Germany

Brandenburg Authorities for Heritage Management and Archaeological State Museum Zossen Germany

Center for Genomic Medicine Massachusetts General Hospital Boston MA USA

Center for Isotope Research Groningen University Groningen The Netherlands

Center of Excellence 'Archaeometry' Kazan Federal University Kazan Russia

Centre de Valorisation des Collections Scientifiques Université de Poitiers Mignaloux Beauvoir France

Centro Studi sul Quaternario ODV Sansepolcro Italy

Centro UCM ISCIII de Investigación sobre Evolución y Comportamiento Humanos Madrid Spain

Departamento de Biología de Organismos y Sistemas Universidad de Oviedo Oviedo Spain

Departamento de Geología Facultad de Ciencia y Tecnología Universidad del País Vasco Euskal Herriko Unibertsitatea Leioa Spain

Department of Anatomy Histology and Anthropology Faculty of Medicine Vilnius University Vilnius Lithuania

Department of Anthropology California State University Northridge Northridge CA USA

Department of Anthropology University of New Mexico Albuquerque NM USA

Department of Archaeogenetics Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Department of Archaeogenetics Max Planck Institute for the Science of Human History Jena Germany

Department of Archeological Sciences Thuringian State Office for Monuments Preservation and Archeology Weimar Germany

Department of Biological Chemical and Pharmaceutical Sciences and Technologies University of Palermo Palermo Italy

Department of Biology University of Florence Florence Italy

Department of Biology University of Padova Padova Italy

Department of Chemistry G Ciamician Alma Mater Studiorum University of Bologna Bologna Italy

Department of Cultural Heritage University of Bologna Ravenna Italy

Department of Cultures University of Helsinki Helsinki Finland

Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany

Department of Human Genetics Leiden University Medical Center Leiden The Netherlands

Department of Humanities University of Ferrara Ferrara Italy

Department of Psychiatry Harvard Medical School Boston MA USA

DFG Centre for Advanced Studies 'Words Bones Genes Tools' University of Tübingen Tübingen Germany

Dipartimento di Civiltà e Forme Del Sapere Università di Pisa Pisa Italy

Dipartimento di Scienze Della Vita e Dell'Ambiente Sezione di Neuroscienze e Antropologia Università Degli Studi di Cagliari Cittadella Monserrato Cagliari Italy

Dipartimento di Scienze Fisiche della Terra e dell'Ambiente U R Preistoria e Antropologia Università degli Studi di Siena Siena Italy

Early Prehistory and Quaternary Ecology Department of Geosciences University of Tübingen Tübingen Germany

Estonian Biocentre Institute of Genomics University of Tartu Tartu Estonia

Faculty of Archaeology Leiden University Leiden The Netherlands

Foundation for Rzeszów Archaeological Centre Rzeszów Poland

GéoArchPal GéoArchÉon Viéville sous les Cotes France

German Archaeological Institute Berlin Germany

Groninger Instituut voor Archeologie Groningen University Groningen The Netherlands

Grupo de 1 D i EVOADAPTA Departamento de Ciencias Históricas Universidad de Cantabria Santander Spain

Human Ecology and Archaeology Barcelona Spain

Inrap CIF Croissy Beaubourg France

Inrap GE Metz France

INRAP UMR 8215 Trajectoires 21 Paris France

Institut National de Recherches Archéologiques Bertrange Luxembourg

Institute for Advanced Studies in Levant Culture and Civilization Bucharest Romania

Institute for Pre and Protohistory Kiel University Kiel Germany

Institute of Archaeology Academy of Sciences of the Republic of Tatarstan Kazan Russia

Institute of Archaeology and Ethnology Polish Academy of Science Poznań Poland

Institute of Archaeology Russian Academy of Sciences Moscow Russia

Institute of Archaeology University of Rzeszów Rzeszów Poland

Institute of Archeology at Brno Czech Academy of Sciences Centre for Palaeolithic and Paleoanthropology Brno Czechia

Institute of Historical Research University of Girona Catalonia Spain

Institute of History Archaeology and Ethnography Dushanbe Tajikistan

Institute of Pre and Protohistory University of Tübingen Tübingen Germany

Institute of Zoology and Evolutionary Research University of Jena Jena Germany

Instituto Internacional de Investigaciones Prehistóricas de Cantabria Universidad de Cantabria Gobierno de Cantabria Banco Santander Santander Spain

Instituto Universitario de Investigación en Ciencias Ambientales de Aragón IUCA Aragosaurus Zaragoza Spain

Laboratoire de Chrono Environnement UMR 6249 du CNRS UFR des Sciences et Techniques Besançon Cedex France

Lower Saxony State Service for Cultural Heritage Hannover Germany

LVR LandesMuseum Bonn Bonn Germany

Musée National de Préhistoire Les Eyzies de Tayac France

Musées de Poitiers Ville de Poitiers Poitiers France

Musées Royaux d'Art et d'Histoire Bruxelles Belgium

Museum 'Das Dorf des Welan' Wöllersdorf Steinabrückl Austria

National Museum of Antiquities Leiden The Netherlands

Paleoanthropology Institute for Archaeological Sciences Department of Geosciences University of Tübingen Tübingen Germany

Paléotime Villard de Lans France

PALEVOPRIM Lab UMR 7262 CNRS INEE University of Poitiers Poitiers France

Peter the Great Museum of Anthropology and Ethnography Russian Academy of Sciences Saint Petersburg Russia

Pradis Cave Museum Clauzetto Italy

Quaternary Environments and Humans OD Earth and History of Life Royal Belgian Institute of Natural Sciences Brussels Belgium

Research Institute and Museum of Anthropology Moscow State University Moscow Russia

Royal Belgian Institute of Natural Sciences Brussels Belgium

Samara State University of Social Sciences and Education Samara Russia

School of Archaeology University of Oxford Oxford UK

School of Human Evolution and Social Change Arizona State University Tempe AZ USA

School of Mathematical Sciences University of Adelaide Adelaide South Australia Australia

Seminar for Pre and Protohistory Göttingen University Göttingen Germany

Senckenberg Centre for Human Evolution and Palaeoenvironment at the University of Tübingen Tübingen Germany

Service Régional de l'Archéologie de Bourgogne Franche Comté Besançon Cedex France

Skeletal Biology Research Centre School of Anthropology and Conservation University of Kent Canterbury UK

Sociedad de Ciencias Aranzadi Donostia San Sebastian Spain

St John's College University of Cambridge Cambridge UK

State Key Laboratory of Protein and Plant Gene Research School of Life Sciences Peking University Beijing China

Stralsund Museum Stralsund Germany

Ulm Germany

UMR 5140 CNRS Archéologie des Sociétés Méditerranéennes Université Paul Valéry Montpellier France

UMR 7194 Histoire Naturelle de l'Homme Préhistorique Département Homme et Environnement Muséum National d'Histoire Naturelle CNRS UPVD Paris France

UMR 7206 Éco Anthropologie Équipe ABBA CNRS MNHN Université de Paris Cité Musée de l'Homme Paris France

UMR 7209 Archéozoologie et Archéobotanique Sociétés Pratiques et Environnements Muséum National d'Histoire Naturelle Paris France

UMR 8068 CNRS TEMPS Technologie et Ethnologie des Mondes Préhistoriques Nanterre Cedex France

Unité de Recherches Art Archéologie Patrimoine Université de Liège Liège Belgium

Université de Bordeaux CNRS MC PACEA UMR 5199 Pessac France

University of Bucharest Faculty of Geology and Geophysics Department of Geology Bucharest Romania

Weyhe Germany

Komentář v

PubMed

Komentář v

PubMed

Erratum v

PubMed

Zobrazit více v PubMed

Prüfer K, et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 2021;5:820–825. doi: 10.1038/s41559-021-01443-x. PubMed DOI PMC

Hajdinjak M, et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature. 2021;592:253–257. doi: 10.1038/s41586-021-03335-3. PubMed DOI PMC

Olalde I, Posth C. Latest trends in archaeogenetic research of west Eurasians. Curr. Opin. Genet. Dev. 2020;62:36–43. doi: 10.1016/j.gde.2020.05.021. PubMed DOI

Fu Q, et al. The genetic history of Ice Age Europe. Nature. 2016;534:200–205. doi: 10.1038/nature17993. PubMed DOI PMC

Green RE, et al. A draft sequence of the Neandertal genome. Science. 2010;328:710–722. doi: 10.1126/science.1188021. PubMed DOI PMC

Fu Q, et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature. 2015;524:216–219. doi: 10.1038/nature14558. PubMed DOI PMC

Fu Q, et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature. 2014;514:445–449. doi: 10.1038/nature13810. PubMed DOI PMC

Seguin-Orlando A, et al. Genomic structure in Europeans dating back at least 36,200 years. Science. 2014;346:1113–1118. doi: 10.1126/science.aaa0114. PubMed DOI

Vallini L, et al. Genetics and material culture support repeated expansions into Paleolithic Eurasia from a population hub out of Africa. Genome Biol. Evol. 2022;14:evac045. doi: 10.1093/gbe/evac045. PubMed DOI PMC

Maier A, Zimmermann A. Populations headed south? The Gravettian from a palaeodemographic point of view. Antiquity. 2017;91:573–588. doi: 10.15184/aqy.2017.37. DOI

Dolukhanov, P. in Cultural Transformations and Interactions in Eastern Europe (eds Chapman, J. & Dolukhanov, P.) 122–145 (Avebury, 1993).

Gamble C, Davies W, Pettitt P, Hazelwood L, Richards M. The archaeological and genetic foundations of the European population during the Late Glacial: implications for ‘agricultural thinking’. Cambridge Archaeol. J. 2005;15:193–223. doi: 10.1017/S0959774305000107. DOI

Wren CD, Burke A. Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. PLoS ONE. 2019;14:e0217996. doi: 10.1371/journal.pone.0217996. PubMed DOI PMC

Villalba-Mouco V, et al. Survival of Late Pleistocene hunter-gatherer ancestry in the Iberian Peninsula. Curr. Biol. 2019;29:1169–1177.e7. doi: 10.1016/j.cub.2019.02.006. PubMed DOI

Bortolini E, et al. Early Alpine occupation backdates westward human migration in Late Glacial Europe. Curr. Biol. 2021;31:2484–2493.e7. doi: 10.1016/j.cub.2021.03.078. PubMed DOI

Feldman M, et al. Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia. Nat. Commun. 2019;10:1218. doi: 10.1038/s41467-019-09209-7. PubMed DOI PMC

Petr M, Pääbo S, Kelso J, Vernot B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA. 2019;116:1639–1644. doi: 10.1073/pnas.1814338116. PubMed DOI PMC

Harris K, Nielsen R. The genetic cost of Neanderthal introgression. Genetics. 2016;203:881–891. doi: 10.1534/genetics.116.186890. PubMed DOI PMC

Kozłowski JK. The origin of the Gravettian. Quat. Int. 2015;359:3–18. doi: 10.1016/j.quaint.2014.03.025. DOI

Goutas, N. in Les Gravettiens (ed. Otte, M.) 105–160 (Errance, 2013).

Klaric, L., Goutas, N., Laccarière, J. & Banks, W. E. in Les Sociétés Gravettiennes du Nord-Ouest Européen: Nouveaux Sites, Nouvelles Données, Nouvelles Lectures (eds Touzé, O., Goutas, N., Salomon, H. & Noiret, P.) 323–266 (Presses Univ. de Liège, 2021).

Mounier A, et al. Gravettian cranial morphology and human group affinities during the European Upper Palaeolithic. Sci. Rep. 2020;10:21931. doi: 10.1038/s41598-020-78841-x. PubMed DOI PMC

Sikora M, et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science. 2017;358:659–662. doi: 10.1126/science.aao1807. PubMed DOI

Posth C, et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a Late Glacial Population turnover in Europe. Curr. Biol. 2016;26:827–833. doi: 10.1016/j.cub.2016.01.037. PubMed DOI

Straus LG. The human occupation of southwestern Europe during the Last Glacial Maximum: Solutrean cultural adaptations in France and Iberia. J. Anthropol. Res. 2015;71:465–492. doi: 10.3998/jar.0521004.0071.401. DOI

Lécuyer C, Hillaire-Marcel C, Burke A, Julien MA, Hélie JF. Temperature and precipitation regime in LGM human refugia of southwestern Europe inferred from δ13C and δ18O of large mammal remains. Quat. Sci. Rev. 2021;255:106796. doi: 10.1016/j.quascirev.2021.106796. DOI

Djindjian F. Territories and economies of hunter-gatherer groups during the last glacial maximum in Europe. Quat. Int. 2016;412:37–43. doi: 10.1016/j.quaint.2015.06.058. DOI

Ruiz-Redondo A, et al. Mid and Late Upper Palaeolithic in the Adriatic Basin: chronology, transitions and human adaptations to a changing landscape. Quat. Sci. Rev. 2022;276:107319. doi: 10.1016/j.quascirev.2021.107319. DOI

Laplace, G. Essai de Typologie Systématique (Annali dell’Università di Ferrara, 1964).

Yu H, et al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience. 2022;25:104244. doi: 10.1016/j.isci.2022.104244. PubMed DOI PMC

Palma di Cesnola, A. Le paléolithique supérieur en Italie. Série ‘Préhistoire d’Europe’ 9 (Éditions, 2001).

Peresani M, et al. Hunter-gatherers across the great Adriatic-Po region during the Last Glacial Maximum: environmental and cultural dynamics. Quat. Int. 2021;581–582:128–163. doi: 10.1016/j.quaint.2020.10.007. DOI

Otte M. Appearance, expansion and dilution of the Magdalenian civilization. Quat. Int. 2012;272–273:354–361. doi: 10.1016/j.quaint.2012.02.056. DOI

Maier, A. in The Central European Magdalenian 81–180 10.1007/978-94-017-7206-8_6 (Springer, 2015).

Kozłowski SK, Połtowicz-Bobak M, Bobak D, Terberger T. New information from Maszycka Cave and the Late Glacial recolonisation of Central Europe. Quat. Int. 2012;272:288–296. doi: 10.1016/j.quaint.2012.02.052. DOI

Raghavan M, et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature. 2014;505:87–91. doi: 10.1038/nature12736. PubMed DOI PMC

Mathieson I, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015;528:499–503. doi: 10.1038/nature16152. PubMed DOI PMC

Mathieson I, et al. The genomic history of southeastern Europe. Nature. 2018;555:197–203. doi: 10.1038/nature25778. PubMed DOI PMC

Mittnik A, et al. The genetic prehistory of the Baltic Sea region. Nat. Commun. 2018;9:442. doi: 10.1038/s41467-018-02825-9. PubMed DOI PMC

Günther T, et al. Population genomics of Mesolithic Scandinavia: investigating early postglacial migration routes and high-latitude adaptation. PLoS Biol. 2018;16:e2003703. doi: 10.1371/journal.pbio.2003703. PubMed DOI PMC

Charlton S, et al. Dual ancestries and ecologies of the Late Glacial Palaeolithic in Britain. Nat. Ecol. Evol. 2022;6:1658–1668. doi: 10.1038/s41559-022-01883-z. PubMed DOI PMC

Damgaard P, et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science. 2018;360:eaar7711. doi: 10.1126/science.aar7711. PubMed DOI PMC

Saag L, et al. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. Sci. Adv. 2021;7:eabd6535. doi: 10.1126/sciadv.abd6535. PubMed DOI PMC

Wood RE, et al. Freshwater radiocarbon reservoir effects at the burial ground of Minino, Northwest Russia. Radiocarbon. 2013;55:163–177. doi: 10.2458/azu_js_rc.v55i1.16448. DOI

Narasimhan VM, et al. The formation of human populations in South and Central Asia. Science. 2019;365:eaat7487. doi: 10.1126/science.aat7487. PubMed DOI PMC

Gronenborn, D. in The Spread of the Neolithic to Central Europe (RGZM, 2010).

Schmitt T. Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front. Zool. 2007;4:11. doi: 10.1186/1742-9994-4-11. PubMed DOI PMC

Roebroeks, W., Mussi, M., Svoboda, J. & Fennema, K. Hunters of the Golden Age: The Mid Upper Palaeolithic of Eurasia, 30,000-20,000 bp (Univ. of Leiden, 2000).

Kotula A, Piezonka H, Tergerger T. The Mesolithic cemetery of Groß Fredenwalde (north-eastern Germany) and its cultural affiliations. Liet. Archeol. 2020;46:65–84. doi: 10.33918/25386514-046002. DOI

Piezonka H, et al. The emergence of hunter-gatherer pottery in the Urals and West Siberia: new dating and stable isotope evidence. J. Archaeol. Sci. 2020;116:105100. doi: 10.1016/j.jas.2020.105100. DOI

Villalba-Mouco, V. et al. A 23,000-year-old southern-Iberian individual links human groups that lived in Western Europe before and after the Last Glacial Maximum. Nat. Ecol. Evol.,10.1038/s41559-023-01987-0 (2023) PubMed PMC

Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009;51:337–360. doi: 10.1017/S0033822200033865. DOI

Reimer PJ, et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kbp) Radiocarbon. 2020;62:725–757. doi: 10.1017/RDC.2020.41. DOI

Korlević P, et al. Reducing microbial and human contamination in DNA extractions from ancient bones and teeth. Biotechniques. 2015;59:87–93. doi: 10.2144/000114320. PubMed DOI

Rohland N, Hofreiter M. Ancient DNA extraction from bones and teeth. Nat. Protoc. 2007;2:1756–1762. doi: 10.1038/nprot.2007.247. PubMed DOI

Dabney J, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA. 2013;110:15758–63. doi: 10.1073/pnas.1314445110. PubMed DOI PMC

Rohland N, Glocke I, Aximu-Petri A, Meyer M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. 2018;13:2447–2461. doi: 10.1038/s41596-018-0050-5. PubMed DOI

Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B. 2015;370:20130624. doi: 10.1098/rstb.2013.0624. PubMed DOI PMC

Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010;2010:pdb.prot5448. doi: 10.1101/pdb.prot5448. PubMed DOI

Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3. doi: 10.1093/nar/gkr771. PubMed DOI PMC

Gansauge M, Aximu-Petri A, Nagel S, Meyer M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc. 2020;15:2279–2300. doi: 10.1038/s41596-020-0338-0. PubMed DOI

Meyer M, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–226. doi: 10.1126/science.1224344. PubMed DOI PMC

Fu Q, et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA. 2013;110:2223–2227. doi: 10.1073/pnas.1221359110. PubMed DOI PMC

Peltzer A, et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 2016;17:60. doi: 10.1186/s13059-016-0918-z. PubMed DOI PMC

Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes. 2016;9:88. doi: 10.1186/s13104-016-1900-2. PubMed DOI PMC

Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Jónsson H, Ginolhac A, Schubert M, Johnson PLF, Orlando L. MapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics. 2013;29:1682–1684. doi: 10.1093/bioinformatics/btt193. PubMed DOI PMC

Skoglund P, et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA. 2014;111:2229–2234. doi: 10.1073/pnas.1318934111. PubMed DOI PMC

Renaud G, Slon V, Duggan AT, Kelso J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 2015;16:224. doi: 10.1186/s13059-015-0776-0. PubMed DOI PMC

Korneliussen TS, Albrechtsen A, Nielsen R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics. 2014;15:356. doi: 10.1186/s12859-014-0356-4. PubMed DOI PMC

Huang Y, Ringbauer H. hapCon: estimating contamination of ancient genomes by copying from reference haplotypes. Bioinformatics. 2022;38:3768–3777. doi: 10.1093/bioinformatics/btac390. PubMed DOI PMC

Nakatsuka N, et al. ContamLD: estimation of ancient nuclear DNA contamination using breakdown of linkage disequilibrium. Genome Biol. 2020;21:199. doi: 10.1186/s13059-020-02111-2. PubMed DOI PMC

Li H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC

Catalano G, et al. Late Upper Palaeolithic hunter-gatherers in the Central Mediterranean: new archaeological and genetic data from the Late Epigravettian burial Oriente C (Favignana, Sicily) Quat. Int. 2020;537:24–32. doi: 10.1016/j.quaint.2020.01.025. DOI

Jensen TZT, et al. A 5700 year-old human genome and oral microbiome from chewed birch pitch. Nat. Commun. 2019;10:5520–10. doi: 10.1038/s41467-019-13549-9. PubMed DOI PMC

Key FM, et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 2020;4:324–333. doi: 10.1038/s41559-020-1106-9. PubMed DOI PMC

Rivollat M, et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 2020;6:eaaz5344. doi: 10.1126/sciadv.aaz5344. PubMed DOI PMC

Svensson E, et al. Genome of Peştera Muierii skull shows high diversity and low mutational load in pre-glacial Europe. Curr. Biol. 2021;31:2973–2983.e9. doi: 10.1016/j.cub.2021.04.045. PubMed DOI

Antonio ML, et al. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science. 2019;366:708–714. doi: 10.1126/science.aay6826. PubMed DOI PMC

Brace S, et al. Ancient genomes indicate population replacement in Early Neolithic Britain. Nat. Ecol. Evol. 2019;3:765–771. doi: 10.1038/s41559-019-0871-9. PubMed DOI PMC

Brunel S, et al. Ancient genomes from present-day France unveil 7,000 years of its demographic history. Proc. Natl Acad. Sci. USA. 2020;117:12791–12798. doi: 10.1073/pnas.1918034117. PubMed DOI PMC

Cassidy LM, et al. A dynastic elite in monumental Neolithic society. Nature. 2020;582:384–388. doi: 10.1038/s41586-020-2378-6. PubMed DOI PMC

González-Fortes G, et al. Paleogenomic evidence for multi-generational mixing between Neolithic farmers and Mesolithic hunter-gatherers in the Lower Danube Basin. Curr. Biol. 2017;27:1801–1810.e10. doi: 10.1016/j.cub.2017.05.023. PubMed DOI PMC

Jones ER, et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 2015;6:8912. doi: 10.1038/ncomms9912. PubMed DOI PMC

Jones ER, et al. The Neolithic transition in the Baltic was not driven by admixture with early European farmers. Curr. Biol. 2017;27:576–582. doi: 10.1016/j.cub.2016.12.060. PubMed DOI PMC

Lazaridis I, et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature. 2014;513:409–413. doi: 10.1038/nature13673. PubMed DOI PMC

Lazaridis I, et al. Genomic insights into the origin of farming in the ancient Near East. Nature. 2016;536:419–424. doi: 10.1038/nature19310. PubMed DOI PMC

Lipson M, et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature. 2017;551:368–372. doi: 10.1038/nature24476. PubMed DOI PMC

van de Loosdrecht M, et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science. 2018;360:548–552. doi: 10.1126/science.aar8380. PubMed DOI

Olalde I, et al. The genomic history of the Iberian Peninsula over the past 8,000 years. Science. 2019;363:1230–1234. doi: 10.1126/science.aav4040. PubMed DOI PMC

Saag L, et al. Extensive farming in Estonia started through a sex-biased migration from the steppe. Curr. Biol. 2017;27:2185–2193.e6. doi: 10.1016/j.cub.2017.06.022. PubMed DOI

Sikora M, et al. The population history of northeastern Siberia since the Pleistocene. Nature. 2019;570:182–188. doi: 10.1038/s41586-019-1279-z. PubMed DOI PMC

Skoglund P, et al. Genomic diversity and admixture differs for stone-age Scandinavian foragers and farmers. Science. 2014;344:747–750. doi: 10.1126/science.1253448. PubMed DOI

Yang MA, et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 2017;27:3202–3208.e9. doi: 10.1016/j.cub.2017.09.030. PubMed DOI PMC

Weissensteiner H, et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 2016;44:W58–W63. doi: 10.1093/nar/gkw233. PubMed DOI PMC

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Rohrlach AB, et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 2021;11:15005. doi: 10.1038/s41598-021-94491-z. PubMed DOI PMC

Martiniano R, De Sanctis B, Hallast P, Durbin R. Placing ancient DNA sequences into reference phylogenies. Mol. Biol. Evol. 2022;39:msac017. doi: 10.1093/molbev/msac017. PubMed DOI PMC

Karmin M, et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 2015;25:459–466. doi: 10.1101/gr.186684.114. PubMed DOI PMC

Ringbauer H, Novembre J, Steinrücken M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 2021;12:5425. doi: 10.1038/s41467-021-25289-w. PubMed DOI PMC

Patterson N, Price AL, Reich D. Population structure and eigenanalysis. PLoS Genet. 2006;2:e190. doi: 10.1371/journal.pgen.0020190. PubMed DOI PMC

Patterson N, et al. Ancient admixture in human history. Genetics. 2012;192:1065–1093. doi: 10.1534/genetics.112.145037. PubMed DOI PMC

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–290. doi: 10.1093/bioinformatics/btg412. PubMed DOI

Chintalapati M, Patterson N, Moorjani P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife. 2022;11:e77625. doi: 10.7554/eLife.77625. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Mobility and community at Mesolithic Lake Onega, Karelia, north-west Russia: insights from strontium isotope analysis

. 2025 ; 17 (1) : 17. [epub] 20241230

Large scale and regional demographic responses to climatic changes in Europe during the Final Palaeolithic

. 2025 ; 20 (4) : e0310942. [epub] 20250402

The genetic origin of the Indo-Europeans

. 2025 Mar ; 639 (8053) : 132-142. [epub] 20250205

Performance of qpAdm-based screens for genetic admixture on admixture-graph-shaped histories and stepping-stone landscapes

. 2025 Feb 03 ; () : . [epub] 20250203

Earliest modern human genomes constrain timing of Neanderthal admixture

. 2025 Feb ; 638 (8051) : 711-717. [epub] 20241212

Widespread horse-based mobility arose around 2200 BCE in Eurasia

. 2024 Jul ; 631 (8022) : 819-825. [epub] 20240606

The Genetic Origin of the Indo-Europeans

. 2024 Apr 18 ; () : . [epub] 20240418

A quantitative analysis of Final Palaeolithic/earliest Mesolithic cultural taxonomy and evolution in Europe

. 2024 ; 19 (3) : e0299512. [epub] 20240311

Population genomics of post-glacial western Eurasia

. 2024 Jan ; 625 (7994) : 301-311. [epub] 20240110

Modeling of African population history using f-statistics is biased when applying all previously proposed SNP ascertainment schemes

. 2023 Sep ; 19 (9) : e1010931. [epub] 20230907

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...