Earliest modern human genomes constrain timing of Neanderthal admixture
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, historické články
PubMed
39667410
PubMed Central
PMC11839475
DOI
10.1038/s41586-024-08420-x
PII: 10.1038/s41586-024-08420-x
Knihovny.cz E-zdroje
- MeSH
- časové faktory MeSH
- dějiny starověku MeSH
- fylogeneze MeSH
- genom lidský * genetika MeSH
- lidé MeSH
- migrace lidstva dějiny MeSH
- neandertálci * genetika MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- dějiny starověku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Německo MeSH
Modern humans arrived in Europe more than 45,000 years ago, overlapping at least 5,000 years with Neanderthals1-4. Limited genomic data from these early modern humans have shown that at least two genetically distinct groups inhabited Europe, represented by Zlatý kůň, Czechia3 and Bacho Kiro, Bulgaria2. Here we deepen our understanding of early modern humans by analysing one high-coverage genome and five low-coverage genomes from approximately 45,000-year-old remains from Ilsenhöhle in Ranis, Germany4, and a further high-coverage genome from Zlatý kůň. We show that distant familial relationships link the Ranis and Zlatý kůň individuals and that they were part of the same small, isolated population that represents the deepest known split from the Out-of-Africa lineage. Ranis genomes harbour Neanderthal segments that originate from a single admixture event shared with all non-Africans that we date to approximately 45,000-49,000 years ago. This implies that ancestors of all non-Africans sequenced so far resided in a common population at this time, and further suggests that modern human remains older than 50,000 years from outside Africa represent different non-African populations.
California State University Northridge Northridge CA USA
Chaire de Paléoanthropologie CIRB Collège de France Paris France
Charles University Prague Czechia
Department of Archaeology University of Reading Reading UK
Francis Crick Institute London UK
Friedrich Schiller University Jena Institute of Zoology and Evolutionary Research Jena Germany
Globe Institute University of Copenhagen Copenhagen Denmark
Institute of Computer Science Universität Leipzig Leipzig Germany
Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra Barcelona Spain
Karolinska Institutet Stockholm Sweden
Max Planck Institute for Evolutionary Anthropology Leipzig Germany
National Museum Prague Czechia
Prähistorische Archäologie Freie Universität Berlin Germany
School of Biological Sciences University of Adelaide Adelaide South Australia Australia
Thuringian State Office for the Preservation of Historical Monuments and Archaeology Weimar Germany
Tübingen University Tübingen Germany
University of Bordeaux CNRS Ministère de la Culture PACEA Pessac France
University of Bristol Bristol UK
University of California Berkeley CA USA
Zobrazit více v PubMed
Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature512, 306–309 (2014). PubMed
Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature592, 253–257 (2021). PubMed PMC
Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol.5, 820–825 (2021). PubMed PMC
Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature626, 341–346 (2024). PubMed PMC
Vidal-Cordasco, M., Terlato, G., Ocio, D. & Marín-Arroyo, A. B. Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity. Sci. Adv.9, eadi4099 (2023). PubMed PMC
Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science358, 655–658 (2017). PubMed PMC
Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol.27, 3202–3208.e9 (2017). PubMed PMC
Moorjani, P. et al. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl Acad. Sci. USA113, 5652–5657 (2016). PubMed PMC
Fu, Q. et al. The genome sequence of a 45,000-year-old modern human from western Siberia. Nature514, 445–449 (2014). PubMed PMC
Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA110, 2223–2227 (2013). PubMed PMC
Hublin, J.-J. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev.118, 194–210 (2015).
Jöris, O., Neruda, P., Wiśniewski, A. & Weiss, M. The Late and Final Middle Palaeolithic of Central Europe and its contributions to the formation of the regional Upper Palaeolithic: a review and a synthesis. J. Paleolit. Archaeol.5, 17 (2022).
Flas, D. The Middle to Upper Paleolithic transition in Northern Europe: the Lincombian-Ranisian-Jerzmanowician and the issue of acculturation of the last Neanderthals. World Archaeol.43, 605–627 (2011).
Peyrégne, S. & Peter, B. M. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol.21, 246 (2020). PubMed PMC
Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature528, 499–503 (2015). PubMed PMC
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature524, 216–219 (2015). PubMed PMC
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature615, 117–126 (2023). PubMed PMC
Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol.24, 10 (2023). PubMed PMC
Ringbauer, H., Huang, Y. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2024). PubMed PMC
Patterson, N. et al. Ancient admixture in human history. Genetics192, 1065–1093 (2012). PubMed PMC
Kamm, J., Terhorst, J., Durbin, R. & Song, Y. S. Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc.115, 1472–1487 (2020). PubMed PMC
Bennett, E. A. et al. Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nat. Ecol. Evol.7, 2160–2172 (2023). PubMed
Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science358, 659–662 (2017). PubMed
Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science346, 1113–1118 (2014). PubMed
Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature475, 493–496 (2011). PubMed PMC
Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2024). PubMed PMC
Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature505, 43–49 (2014). PubMed PMC
Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun.12, 5425 (2021). PubMed PMC
Trowsdale, J. The MHC, disease and selection. Immunol. Lett.137, 1–8 (2011). PubMed
Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet.36, 298–311 (2020). PubMed
Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet.46, 919–925 (2014). PubMed PMC
Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl Acad. Sci. USA117, 15132–15136 (2020). PubMed PMC
Peter, B. M. 100,000 years of gene flow between Neandertals and Denisovans in the Altai mountains. Preprint at bioRxiv10.1101/2020.03.13.990523 (2020).
Iasi, L. N. M., Ringbauer, H. & Peter, B. M. An extended admixture pulse model reveals the limitations to Human-Neandertal introgression dating. Mol. Biol. Evol.38, 5156–5174 (2021). PubMed PMC
Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature507, 354–357 (2014). PubMed PMC
Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science352, 235–239 (2016). PubMed PMC
Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol.26, 1241–1247 (2016). PubMed PMC
Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature538, 201–206 (2016). PubMed PMC
Iasi, L. N. M et al. Neanderthal ancestry through time: insights from genomes of ancient and present-day humans. Science386, eadq3010 (2024). PubMed
Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol.128, 415–423 (2005). PubMed
Wang, R. J., Al-Saffar, S. I., Rogers, J. & Hahn, M. W. Human generation times across the past 250,000 years. Sci. Adv.9, eabm7047 (2023). PubMed PMC
Smith, G. M. et al. The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat. Ecol. Evol.8, 564–577 (2024). PubMed PMC
Hülle, W. Die Ilsenhöhle unter Burg Ranis, Thüringen: eine Paläolithische Jägerstation (Gustav Fischer, 1977).
Demidenko, Y. E. & Škrdla, P. Lincombian-Ranisian-Jerzmanowician industry and South Moravian sites: a Homo sapiens Late Initial Upper Paleolithic with Bohunician industrial generic roots in Europe. J. Paleolit. Archaeol.6, 17 (2023). PubMed PMC
Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet.8, e1002947 (2012). PubMed PMC
Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc.13, 2447–2461 (2018). PubMed
Gansauge, M. T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc.15, 2279–2300 (2020). PubMed
Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science356, 605–608 (2017). PubMed
Zavala, E. I. et al. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol. Ecol. Resour.22, 2196–2207 (2022). PubMed
Petr, M. et al. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science369, 1653–1656 (2020). PubMed
Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep.11, 15005 (2021). PubMed PMC
Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science338, 222–226 (2012). PubMed PMC
Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res.42, e141 (2014). PubMed PMC
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC
de Filippo, C., Meyer, M. & Prüfer, K. Quantifying and reducing spurious alignments for the analysis of ultra-short ancient DNA sequences. BMC Biol.16, 121 (2018). PubMed PMC
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC
Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics34, 4165–4171 (2018). PubMed PMC
McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). PubMed PMC
Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.27, 573–580 (1999). PubMed PMC
Staab, P. R., Zhu, S., Metzler, D. & Lunter, G. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics31, 1680–1682 (2015). PubMed PMC
Busing, F. M. T. A., Meijer, E. & Van der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput.9, 3–8 (1999).
Hinch, A. G. et al. The landscape of recombination in African Americans. Nature476, 170–175 (2011). PubMed PMC
Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science363, eaau1043 (2019). PubMed
Salem, N. et al. Ancient DNA from the Green Sahara reveal ancestral North African lineage. Nature (in the press).
Petr, M., Pääbo, S., Kelso, J. & Vernot, B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA116, 1639–1644 (2019). PubMed PMC
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). PubMed PMC
Y-DNA Haplogroup Tree 2019, Version 15.73, Date 11 July 2020, https://isogg.org/tree/ (International Society of Genetic Genealogy, 2020).
Pierini, F. et al. Targeted analysis of polymorphic loci from low-coverage shotgun sequence data allows accurate genotyping of HLA genes in historical human populations. Sci. Rep.10, 7339 (2020). PubMed PMC
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC
Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics30, 3310–3316 (2014). PubMed PMC