Earliest modern human genomes constrain timing of Neanderthal admixture

. 2025 Feb ; 638 (8051) : 711-717. [epub] 20241212

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, historické články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39667410
Odkazy

PubMed 39667410
PubMed Central PMC11839475
DOI 10.1038/s41586-024-08420-x
PII: 10.1038/s41586-024-08420-x
Knihovny.cz E-zdroje

Modern humans arrived in Europe more than 45,000 years ago, overlapping at least 5,000 years with Neanderthals1-4. Limited genomic data from these early modern humans have shown that at least two genetically distinct groups inhabited Europe, represented by Zlatý kůň, Czechia3 and Bacho Kiro, Bulgaria2. Here we deepen our understanding of early modern humans by analysing one high-coverage genome and five low-coverage genomes from approximately 45,000-year-old remains from Ilsenhöhle in Ranis, Germany4, and a further high-coverage genome from Zlatý kůň. We show that distant familial relationships link the Ranis and Zlatý kůň individuals and that they were part of the same small, isolated population that represents the deepest known split from the Out-of-Africa lineage. Ranis genomes harbour Neanderthal segments that originate from a single admixture event shared with all non-Africans that we date to approximately 45,000-49,000 years ago. This implies that ancestors of all non-Africans sequenced so far resided in a common population at this time, and further suggests that modern human remains older than 50,000 years from outside Africa represent different non-African populations.

California State University Northridge Northridge CA USA

Chaire de Paléoanthropologie CIRB Collège de France Paris France

Charles University Prague Czechia

Department of Archaeology University of Reading Reading UK

Francis Crick Institute London UK

Friedrich Alexander Universität Erlangen Nürnberg Institut für Ur und Frühgeschichte Erlangen Germany

Friedrich Schiller University Jena Institute of Zoology and Evolutionary Research Jena Germany

Globe Institute University of Copenhagen Copenhagen Denmark

Institute of Computer Science Universität Leipzig Leipzig Germany

Institute of Evolutionary Biology CSIC Universitat Pompeu Fabra Barcelona Spain

Karolinska Institutet Stockholm Sweden

Landesamt für Denkmalpflege und Archäologie Sachsen Anhalt Landesmuseum für Vorgeschichte Halle Germany

Max Planck Institute for Evolutionary Anthropology Leipzig Germany

National Museum Prague Czechia

Prähistorische Archäologie Freie Universität Berlin Germany

School of Biological Sciences University of Adelaide Adelaide South Australia Australia

Thuringian State Office for the Preservation of Historical Monuments and Archaeology Weimar Germany

Tübingen University Tübingen Germany

University of Bordeaux CNRS Bordeaux INP CBMN UMR 5248 and Bordeaux Proteome Platform Bordeaux France

University of Bordeaux CNRS Ministère de la Culture PACEA Pessac France

University of Bristol Bristol UK

University of California Berkeley CA USA

University of Rochester Rochester NY USA

Weizmann Institute of Science Tel Aviv Israel

Zobrazit více v PubMed

Higham, T. et al. The timing and spatiotemporal patterning of Neanderthal disappearance. Nature512, 306–309 (2014). PubMed

Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature592, 253–257 (2021). PubMed PMC

Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol.5, 820–825 (2021). PubMed PMC

Mylopotamitaki, D. et al. Homo sapiens reached the higher latitudes of Europe by 45,000 years ago. Nature626, 341–346 (2024). PubMed PMC

Vidal-Cordasco, M., Terlato, G., Ocio, D. & Marín-Arroyo, A. B. Neanderthal coexistence with Homo sapiens in Europe was affected by herbivore carrying capacity. Sci. Adv.9, eadi4099 (2023). PubMed PMC

Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science358, 655–658 (2017). PubMed PMC

Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol.27, 3202–3208.e9 (2017). PubMed PMC

Moorjani, P. et al. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl Acad. Sci. USA113, 5652–5657 (2016). PubMed PMC

Fu, Q. et al. The genome sequence of a 45,000-year-old modern human from western Siberia. Nature514, 445–449 (2014). PubMed PMC

Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA110, 2223–2227 (2013). PubMed PMC

Hublin, J.-J. The modern human colonization of western Eurasia: when and where? Quat. Sci. Rev.118, 194–210 (2015).

Jöris, O., Neruda, P., Wiśniewski, A. & Weiss, M. The Late and Final Middle Palaeolithic of Central Europe and its contributions to the formation of the regional Upper Palaeolithic: a review and a synthesis. J. Paleolit. Archaeol.5, 17 (2022).

Flas, D. The Middle to Upper Paleolithic transition in Northern Europe: the Lincombian-Ranisian-Jerzmanowician and the issue of acculturation of the last Neanderthals. World Archaeol.43, 605–627 (2011).

Peyrégne, S. & Peter, B. M. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol.21, 246 (2020). PubMed PMC

Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature528, 499–503 (2015). PubMed PMC

Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature524, 216–219 (2015). PubMed PMC

Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature615, 117–126 (2023). PubMed PMC

Popli, D., Peyrégne, S. & Peter, B. M. KIN: a method to infer relatedness from low-coverage ancient DNA. Genome Biol.24, 10 (2023). PubMed PMC

Ringbauer, H., Huang, Y. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2024). PubMed PMC

Patterson, N. et al. Ancient admixture in human history. Genetics192, 1065–1093 (2012). PubMed PMC

Kamm, J., Terhorst, J., Durbin, R. & Song, Y. S. Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc.115, 1472–1487 (2020). PubMed PMC

Bennett, E. A. et al. Genome sequences of 36,000- to 37,000-year-old modern humans at Buran-Kaya III in Crimea. Nat. Ecol. Evol.7, 2160–2172 (2023). PubMed

Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science358, 659–662 (2017). PubMed

Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science346, 1113–1118 (2014). PubMed

Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature475, 493–496 (2011). PubMed PMC

Ringbauer, H. et al. Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet.56, 143–151 (2024). PubMed PMC

Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature505, 43–49 (2014). PubMed PMC

Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun.12, 5425 (2021). PubMed PMC

Trowsdale, J. The MHC, disease and selection. Immunol. Lett.137, 1–8 (2011). PubMed

Radwan, J., Babik, W., Kaufman, J., Lenz, T. L. & Winternitz, J. Advances in the evolutionary understanding of MHC polymorphism. Trends Genet.36, 298–311 (2020). PubMed

Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet.46, 919–925 (2014). PubMed PMC

Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl Acad. Sci. USA117, 15132–15136 (2020). PubMed PMC

Peter, B. M. 100,000 years of gene flow between Neandertals and Denisovans in the Altai mountains. Preprint at bioRxiv10.1101/2020.03.13.990523 (2020).

Iasi, L. N. M., Ringbauer, H. & Peter, B. M. An extended admixture pulse model reveals the limitations to Human-Neandertal introgression dating. Mol. Biol. Evol.38, 5156–5174 (2021). PubMed PMC

Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature507, 354–357 (2014). PubMed PMC

Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science352, 235–239 (2016). PubMed PMC

Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol.26, 1241–1247 (2016). PubMed PMC

Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature538, 201–206 (2016). PubMed PMC

Iasi, L. N. M et al. Neanderthal ancestry through time: insights from genomes of ancient and present-day humans. Science386, eadq3010 (2024). PubMed

Fenner, J. N. Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol.128, 415–423 (2005). PubMed

Wang, R. J., Al-Saffar, S. I., Rogers, J. & Hahn, M. W. Human generation times across the past 250,000 years. Sci. Adv.9, eabm7047 (2023). PubMed PMC

Smith, G. M. et al. The ecology, subsistence and diet of ~45,000-year-old Homo sapiens at Ilsenhöhle in Ranis, Germany. Nat. Ecol. Evol.8, 564–577 (2024). PubMed PMC

Hülle, W. Die Ilsenhöhle unter Burg Ranis, Thüringen: eine Paläolithische Jägerstation (Gustav Fischer, 1977).

Demidenko, Y. E. & Škrdla, P. Lincombian-Ranisian-Jerzmanowician industry and South Moravian sites: a Homo sapiens Late Initial Upper Paleolithic with Bohunician industrial generic roots in Europe. J. Paleolit. Archaeol.6, 17 (2023). PubMed PMC

Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet.8, e1002947 (2012). PubMed PMC

Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc.13, 2447–2461 (2018). PubMed

Gansauge, M. T., Aximu-Petri, A., Nagel, S. & Meyer, M. Manual and automated preparation of single-stranded DNA libraries for the sequencing of DNA from ancient biological remains and other sources of highly degraded DNA. Nat. Protoc.15, 2279–2300 (2020). PubMed

Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science356, 605–608 (2017). PubMed

Zavala, E. I. et al. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol. Ecol. Resour.22, 2196–2207 (2022). PubMed

Petr, M. et al. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science369, 1653–1656 (2020). PubMed

Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep.11, 15005 (2021). PubMed PMC

Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science338, 222–226 (2012). PubMed PMC

Renaud, G., Stenzel, U. & Kelso, J. leeHom: adaptor trimming and merging for Illumina sequencing reads. Nucleic Acids Res.42, e141 (2014). PubMed PMC

Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics25, 1754–1760 (2009). PubMed PMC

de Filippo, C., Meyer, M. & Prüfer, K. Quantifying and reducing spurious alignments for the analysis of ultra-short ancient DNA sequences. BMC Biol.16, 121 (2018). PubMed PMC

Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics25, 2078–2079 (2009). PubMed PMC

Prüfer, K. snpAD: an ancient DNA genotype caller. Bioinformatics34, 4165–4171 (2018). PubMed PMC

McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010). PubMed PMC

Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res.27, 573–580 (1999). PubMed PMC

Staab, P. R., Zhu, S., Metzler, D. & Lunter, G. scrm: efficiently simulating long sequences using the approximated coalescent with recombination. Bioinformatics31, 1680–1682 (2015). PubMed PMC

Busing, F. M. T. A., Meijer, E. & Van der Leeden, R. Delete-m jackknife for unequal m. Stat. Comput.9, 3–8 (1999).

Hinch, A. G. et al. The landscape of recombination in African Americans. Nature476, 170–175 (2011). PubMed PMC

Halldorsson, B. V. et al. Characterizing mutagenic effects of recombination through a sequence-level genetic map. Science363, eaau1043 (2019). PubMed

Salem, N. et al. Ancient DNA from the Green Sahara reveal ancestral North African lineage. Nature (in the press).

Petr, M., Pääbo, S., Kelso, J. & Vernot, B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA116, 1639–1644 (2019). PubMed PMC

Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). PubMed PMC

Y-DNA Haplogroup Tree 2019, Version 15.73, Date 11 July 2020, https://isogg.org/tree/ (International Society of Genetic Genealogy, 2020).

Pierini, F. et al. Targeted analysis of polymorphic loci from low-coverage shotgun sequence data allows accurate genotyping of HLA genes in historical human populations. Sci. Rep.10, 7339 (2020). PubMed PMC

Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). PubMed PMC

Szolek, A. et al. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics30, 3310–3316 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...