Single Atom Engineering for Nanorobotics
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39047074
PubMed Central
PMC11308777
DOI
10.1021/acsnano.4c06880
Knihovny.cz E-zdroje
- Klíčová slova
- materials science, nanorobotics, single-atom engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The fields of single atom engineering represent cutting-edge areas in nanotechnology and materials science, pushing the boundaries of how small we can go in engineering functional devices and materials. Nanorobots, or nanobots, are robotic systems scaled down to the nanometer level and designed to perform tasks at similarly small scales. Single atom engineering, on the other hand, involves manipulating individual atoms to create precise materials and devices with controlled properties and functionalities. By integrating single atom engineering into nanorobotics, we unlock the potential to enable the precise incorporation of multiple functionalities onto these minuscule machines with nanometer-level precision. In this perspective, we describe the nascent field of single atom engineering in nanorobotics.
Zobrazit více v PubMed
Karshalev E.; Esteban-Fernandez de Avila B.; Wang J. Micromotors for ″Chemistry-on-the-Fly″. J. Am. Chem. Soc. 2018, 140, 3810–3820. 10.1021/jacs.8b00088. PubMed DOI
Soto F.; et al. Smart Materials for Microrobots. Chem. Rev. 2022, 122, 5365–5403. 10.1021/acs.chemrev.0c00999. PubMed DOI
Kim K.; Guo J.; Liang Z.; Fan D. Artificial Micro/Nanomachines for Bioapplications: Biochemical Delivery and Diagnostic Sensing. Adv. Funct. Mater. 2018, 28, 170586710.1002/adfm.201705867. DOI
Oral C. M.; Pumera M. Applications of Micro/nanorobots. Nanoscale 2023, 15, 8491–8507. 10.1039/D3NR00502J. PubMed DOI
Sun B.; Kjelleberg S.; Sung J. J. Y.; Zhang L. Micro- and Nanorobots for Biofilm Eradication. Nature Reviews Bioengineering 2024, 2, 367–369. 10.1038/s44222-024-00176-3. DOI
Venugopalan P. L.; Esteban-Fernández de Ávila B.; Pal M.; Ghosh A.; Wang J. Fantastic Voyage of Nanomotors into the Cell. ACS Nano 2020, 14, 9423–9439. 10.1021/acsnano.0c05217. PubMed DOI
Ussia M.; Urso M.; Kment S.; Fialova T.; Klima K.; Dolezelikova K.; Pumera M.; et al. Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal. Small 2022, 18, 220070810.1002/smll.202200708. PubMed DOI
Molinero-Fernández Á.; Moreno-Guzmán M.; López M. Á.; Escarpa A. Biosensing Strategy for Simultaneous and Accurate Quantitative Analysis of Mycotoxins in Food Samples Using Unmodified Graphene Micromotors. Anal. Chem. 2017, 89, 10850–10857. 10.1021/acs.analchem.7b02440. PubMed DOI
Pacheco M.; Jurado-Sánchez B.; Escarpa A. Sensitive Monitoring of Enterobacterial Contamination of Food Using Self-Propelled Janus Microsensors. Anal. Chem. 2018, 90, 2912–2917. 10.1021/acs.analchem.7b05209. PubMed DOI
Li J.; et al. Water-Driven Micromotors for Rapid Photocatalytic Degradation of Biological and Chemical Warfare Agents. ACS Nano 2014, 8, 11118–11125. 10.1021/nn505029k. PubMed DOI
Urso M.; Ussia M.; Pumera M. Smart Micro- and Nanorobots for Water Purification. Nature Reviews Bioengineering 2023, 1, 236–251. 10.1038/s44222-023-00025-9. PubMed DOI PMC
Kaiser S. K.; Chen Z. P.; Faust Akl D.; Mitchell S.; Pérez-Ramírez J. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020, 120, 11703.10.1021/acs.chemrev.0c00576. PubMed DOI
Ji S.; et al. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020, 120, 11900–11955. 10.1021/acs.chemrev.9b00818. PubMed DOI
Jiao L.; Jiang H.-L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. Chem. 2019, 5, 786–804. 10.1016/j.chempr.2018.12.011. DOI
Pumera M.; Thakkar P. Single Atom Engineered Materials for Sensors. Trends in Analytical Chemistry 2024, 174, 11766010.1016/j.trac.2024.117660. DOI
Jiao L.; et al. Single-atom Catalysts Boost Signal Amplification for Biosensing. Chem. Soc. Rev. 2021, 50, 750–765. 10.1039/D0CS00367K. PubMed DOI
Fan Y.; Liu S.; Yi Y.; Rong H.; Zhang J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS Nano 2021, 15, 2005–2037. 10.1021/acsnano.0c06962. PubMed DOI
Mayorga-Martinez C. C.; Zhang L.; Pumera M. Chemical Multiscale Robotics for Bacterial Biofilm Treatment. Chem. Soc. Rev. 2024, 53, 2284–2299. 10.1039/D3CS00564J. PubMed DOI
Jancik-Prochazkova A.; Kmentova H.; Ju X.; Kment S.; Zboril R.; Pumera M. Precision Engineering of Nanorobots: Toward Single Atom Decoration and Defect Control for Enhanced Microplastic Capture. Adv. Funct. Mater. 2024, 240256710.1002/adfm.202402567. DOI
Xing Y.; et al. Copper Single-Atom Jellyfish-like Nanomotors for Enhanced Tumor Penetration and Nanocatalytic Therapy. ACS Nano 2023, 17, 6789–6799. 10.1021/acsnano.3c00076. PubMed DOI
Zheng S.; Wang Y.; Pan S.; Ma E.; Jin S.; Jiao M.; Wang W.; Li J.; Xu K.; Wang H.; et al. Biocompatible Nanomotors as Active Diagnostic Imaging Agents for Enhanced Magnetic Resonance Imaging of Tumor Tissues In Vivo. Adv. Funct. Mater. 2021, 31, 210093610.1002/adfm.202100936. DOI
Ussia M.; Urso M.; Dolezelikova K.; Michalkova H.; Adam V.; Pumera M.; et al. Active Light-Powered Antibiofilm ZnO Micromotors with Chemically Programmable Properties. Adv. Funct. Mater. 2021, 31, 210117810.1002/adfm.202101178. DOI
Chen S.; et al. Nanomotors Driven by Single-atom Catalysts. Cell Reports Physical Science 2024, 5, 10189810.1016/j.xcrp.2024.101898. DOI
Cai X.; et al. Single-atom-anchored Microsweepers for H. pylori Inhibition Through Dynamically Navigated Reciprocating Locomotion. Chem. Commun. 2023, 59, 5455–5458. 10.1039/D3CC00933E. PubMed DOI
Chang B.; Zhang L.; Wu S.; Sun Z.; Cheng Z. Engineering Single-atom Catalysts Toward Biomedical Applications. Chem. Soc. Rev. 2022, 51, 3688–3734. 10.1039/D1CS00421B. PubMed DOI
Ariga K.; Li J.; Fei J.; Ji Q.; Hill J. P. Nanoarchitectonics for Dynamic Functional Materials from Atomic-/Molecular-Level Manipulation to Macroscopic Action. Adv. Mater. 2016, 28, 1251–1286. 10.1002/adma.201502545. PubMed DOI