Light-Propelled Nanorobots for Facial Titanium Implants Biofilms Removal
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- UV light, bacteria, black TiO 2, dental implants, nanomotors, silver, visible light,
- MeSH
- Bacteria MeSH
- Biofilms * MeSH
- Prostheses and Implants MeSH
- Titanium * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Titanium * MeSH
Titanium miniplates are biocompatible materials used in modern oral and maxillofacial surgery to treat facial bone fractures. However, plate removal is often required due to implant complications. Among them, a biofilm formation on an infected miniplate is associated with severe inflammation, which frequently results in implant failure. In light of this, new strategies to control or treat oral bacterial biofilm are of high interest. Herein, the authors exploit the ability of nanorobots against multispecies bacterial biofilm grown onto facial commercial titanium miniplate implants to simulate pathogenic conditions of the oral microenvironment. The strategy is based on the use of light-driven self-propelled tubular black-TiO2 /Ag nanorobots, that unlike traditional ones, exhibit an extended absorption and motion actuation from UV to the visible-light range. The motion analysis is performed separately over UV, blue, and green light irradiation and shows different motion behaviors, including a fast rotational motion that decreases with increasing wavelengths. The biomass reduction is monitored by evaluating LIVE/DEAD fluorescent and digital microscope images of bacterial biofilm treated with the nanorobots under motion/no-motion conditions. The current study and the obtained results can bring significant improvements for effective therapy of infected metallic miniplates by biofilm.
See more in PubMed
A. Al-Ahmad, M. Wiedmann-Al-Ahmad, J. Faust, M. Bächle, M. Follo, M. Wolkewitz, C. Hannig, E. Hellwig, C. Carvalho, R. Kohal, J. Biomed. Mater. Res., Part B 2010, 95B, 101.
B. H. Choi, S. J. Zhu, Y. H. Kim, Am. J. Orthod. Dentofacial Orthop. 2005, 128, 382.
A. K. Jhass, D. A. Johnston, A. Gulati, R. Anand, P. Stoodley, S. Sharma, J. Cranio-Maxillofacial Surg. 2014, 42, e372.
D. Wang, M. Haapasalo, Y. Gao, J. Ma, Y. Shen, Bioact. Mater. 2018, 3, 418.
A. Minkiewicz-Zochniak, S. Jarzynka, A. Iwańska, K. Strom, B. Iwańczyk, M. Bartel, M. Mazur, A. Pietruczuk-Padzik, M. Konieczna, E. Augustynowicz-Kopeć, G. Olędzka, Materials 2021, 14, 2030.
A. Lee, H. L. Wang, Implant Dent. 2010, 19, 387.
T. Do, D. Devine, P. D. Marsh, Clin., Cosmet. Invest. Dent. 2013, 5, 11.
Z. Chen, Z. Wang, W. Qiu, F. Fang, Bioconjugate Chem. 2021, 32, 627.
T. S. O. Silva, A. R. Freitas, M. L. L. Pinheiro, C. do Nascimento, E. Watanabe, R. F. Albuquerque, J. Visualized Exp. 2018, 136, e57756.
W. Huang, R. Cheng, L. Mao, Y. Zhao, in Anisotropic Particle Assemblies, Elsevier Inc., Amsterdam 2018, https://doi.org/10.1016/B978-0-12-804069-0.00010-1.
M. Urso, M. Ussia, M. Pumera, B Adv. Funct. Mater. 2021, 31, 2101510.
J. Wang, X. Liu, Y. Qi, Z. Liu, Y. Cai, R. Dong, Chem. Eng. J. 2021, 416, 129091.
R. Dong, Q. Zhang, W. Gao, A. Pei, B. Ren, ACS Nano 2016, 10, 839.
M. Urso, C. Iffelsberger, C. C. Mayorga-Martinez, M. Pumera, Small Methods 2021, 5, 2100511.
M. Ussia, M. Pumera, Chem. Soc. Rev. 2022, 51, 1558.
M. Urso, M. Pumera, Adv. Funct. Mater. 2022, 2112120, http://doi.org/10.1002/adfm.202112120.
C. M. Oral, M. Ussia, M. Pumera, J. Phys. Chem. C 2021, 125, 18040.
F. Soto, J. Wang, R. Ahmed, U. Demirci, Adv. Sci. 2020, 7, 2070117.
B. Jurado-Sánchez, M. Pacheco, J. Rojo, A. Escarpa, Angew. Chem., Int. Ed. 2017, 56, 6957.
P. Chandra, R. Prakash Nanobiomaterial Engineering: Concepts and Their Applications in Biomedicine and Diagnostics, 2020, https://doi.org/10.1007/978-981-32-9840-8.
J. Muñoz, M. Urso, M. Pumera, Angew. Chem., Int. Ed. 2022, 61, 202116090.
M. Ussia, M. Urso, K. Dolezelikova, H. Michalkova, V. Adam, M. Pumera, Adv. Funct. Mater. 2021, 31, 2101178.
M. Guix, R. Mestre, T. Patiño, M. De Corato, J. Fuentes, G. Zarpellon, S. Sánchez, Science Robotics 2021, 6, http://doi.org/10.1126/scirobotics.abe7577.
D. Xu, Y. Wang, C. Liang, Y. You, S. Sanchez, X. Ma, Small 2020, 16, 1902464.
M. M. Stanton, B.-W. Park, D. Vilela, K. Bente, D. Faivre, M. Sitti, S. Sánchez, ACS Nano 2017, 11, 9968.
M. M. Stanton, B.-W. Park, D. Vilela, K. Bente, D. Faivre, M. Sitti, S. Sanchez, ACS Nano 2017, 11, 9968.
C. C. Mayorga-Martinez, J. Zelenka, J. Grmela, H. Michalkova, T. Ruml, J. Mareš, M. Pumera, Adv. Sci. 2021, 8, 2101301.
B. Esteban-Fernández de Ávila, P. Angsantikul, D. E. Ramírez-Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, J. Wang, Science Robotics 2018, 3, http://doi.org/10.1126/scirobotics.aat0485.
X. Peng, M. Urso, M. Pumera, Small Methods 2021, 5, 2100617.
B. Dai, J. Wang, Z. Xiong, X. Zhan, W. Dai, C. C. Li, S. P. Feng, J. Tang, Nat. Nanotechnol. 2016, 11, 1087.
C. M. Oral, M. Ussia, D. K. Yavuz, M. Pumera, Small 2022, 18, 2106271.
X. Peng, M. Urso, M. Ussia, M. Pumera, ACS Nano 2022, http://doi.org/10.1021/acsnano.1c11136.
T. Cui, S. Wu, Y. Sun, J. Ren, X. Qu, Nano Lett. 2020, 20, 7350.
F. Soto, E. Karshalev, F. Zhang, B. E. Fernandez De Avila, A. Nourhani, J. Wang, Chem. Rev. 2022, 122, 5365.
B. Jang, A. Hong, H. E. Kang, C. Alcantara, S. Charreyron, F. Mushtaq, E. Pellicer, R. Büchel, J. Sort, S. S. Lee, B. J. Nelson, S. Pané, ACS Nano 2017, 11, 6146.
T. S. Rajaraman, S. P. Parikh, V. G. Gandhi, Chem. Eng. J. 2020, 389, 123918.
X. Chen, L. Liu, F. Huang, Chem. Soc. Rev. 2015, 44, 1861.
D. Yang, A. Gulzar, G. Yang, S. Gai, F. He, Y. Dai, C. Zhong, P. Yang, Small 2017, 13, 1703007.
W. Ni, M. Li, J. Cui, Z. Xing, Z. Li, X. Wu, E. Song, M. Gong, W. Zhou, Mater. Sci. Eng.: C 2017, 81, 252.
M. Pacheco, V. de la Asunción-Nadal, B. Jurado-Sánchez, A. Escarpa, Biosens. Bioelectron. 2020, 165, 112286.
Y. Y. Chang, C. H. Lai, J. T. Hsu, C. H. Tang, W. C. Liao, H. L. Huang, Clin. Oral Invest. 2012, 16, 95.
P. Górska, A. Zaleska, E. Kowalska, T. Klimczuk, J. W. Sobczak, E. Skwarek, W. Janusz, J. Hupka, App. Catal. B: Environ. 2008, 84, 440.
M. Ussia, M. Urso, M. Miritello, E. Bruno, G. Curcuruto, D. Vitalini, G. G. Condorelli, M. Cantarella, V. Privitera, S. C. Carroccio, RSC Adv. 2019, 9, 30182.
J. S. Foster, P. E. Kolenbrander, Appl. Environ. Microbiol. 2004, 70, 4340.
S. Kuroda, Y. Sugawara, T. Deguchi, H. M. Kyung, T. Takano-Yamamoto, Am. J. Orthod. Dentofacial Orthop. 2007, 131, 9.
Technology Roadmap of Micro/Nanorobots
Microrobots for Antibiotic-Resistant Staphylococcus aureus Skin Colony Eradication
Active Microrobots for Dual Removal of Biofilms via Chemical and Physical Mechanisms
Single Atom Engineering for Nanorobotics
Magnetic Microrobot Swarms with Polymeric Hands Catching Bacteria and Microplastics in Water
Reconfigurable self-assembly of photocatalytic magnetic microrobots for water purification
Smart micro- and nanorobots for water purification