Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
26007174
PubMed Central
PMC6272192
DOI
10.3390/molecules20058687
PII: molecules20058687
Knihovny.cz E-resources
- Keywords
- alkylation, aminodehalogenation, antimycobacterial activity, inhibition of photosynthetic electron transport, pyrazinamide, pyrazine, structure-activity relationships,
- MeSH
- Antitubercular Agents chemical synthesis pharmacology MeSH
- Bacterial Proteins antagonists & inhibitors metabolism MeSH
- Chloroplasts metabolism MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis drug effects metabolism MeSH
- Pyrazinamide chemical synthesis chemistry pharmacology MeSH
- Pyrazines chemical synthesis pharmacology MeSH
- Spinacia oleracea metabolism MeSH
- Fatty Acid Synthases antagonists & inhibitors metabolism MeSH
- Electron Transport drug effects MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Bacterial Proteins MeSH
- fatty acid synthase I, mycobacteria MeSH Browser
- Pyrazinamide MeSH
- Pyrazines MeSH
- Fatty Acid Synthases MeSH
A series of N-alkyl-3-(alkylamino)pyrazine-2-carboxamides and their N-alkyl-3-chloropyrazine-2-carboxamide precursors were prepared. All compounds were characterized by analytical methods and tested for antimicrobial and antiviral activity. The antimycobacterial MIC values against Mycobacterium tuberculosis H37Rv of the most effective compounds, 3-(hexylamino)-, 3-(heptylamino)- and 3-(octylamino)-N-methyl-pyrazine-2-carboxamides 14‒16, was 25 μg/mL. The compounds inhibited photosystem 2 photosynthetic electron transport (PET) in spinach chloroplasts. This activity was strongly connected with the lipophilicity of the compounds. For effective PET inhibition longer alkyl chains in the 3-(alkylamino) substituent in the N-alkyl-3-(alkylamino)pyrazine-2-carboxamide molecule were more favourable than two shorter alkyl chains.
See more in PubMed
Ukrainets I.V., Bereznyakova N.L. Heterocyclic diuretics. Chem. Heterocycl. Compd. 2012;48:155–165. doi: 10.1007/s10593-012-0979-1. PubMed DOI PMC
Miniyar P.B., Murumkar P.R., Patil P.S., Barmade M.A., Bothara K.G. Unequivocal role of pyrazine ring in medicinally important compounds: A review. Mini Rev. Med. Chem. 2013;13:1607–1625. PubMed
Mueller R., Rappert S. Pyrazines: Occurrence, formation and biodegradation. Appl. Microbiol. Biot. 2010;85:1315–1320. doi: 10.1007/s00253-009-2362-4. PubMed DOI
Dolezal M., Zitko J. Pyrazine derivatives: A patent review (June 2012-present) Expert Opin. Ther. Pat. 2014;25:33–47. PubMed
Kucerova-Chlupacova M., Kunes J., Buchta V., Vejsova M., Opletalova V. Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules. 2015;20:1104–1117. doi: 10.3390/molecules20011104. PubMed DOI PMC
Zhang D.F., Liu Y., Zhang C.L., Zhang H., Wang B., Xu J., Fu L., Yin D.L., Cooper C.B., Ma Z.K., et al. Synthesis and biological evaluation of novel 2-methoxypyridylamino-substituted riminophenazine derivatives as antituberculosis agents. Molecules. 2014;19:4380–4394. doi: 10.3390/molecules19044380. PubMed DOI PMC
Rychtarcikova Z., Kratky M., Gazvoda M., Komloova M., Polanc S., Kocevar M., Stolarikova J., Vinsova J. N-Substituted 2-isonicotinoylhydrazinecarboxamides—New antimycobacterial active molecules. Molecules. 2014;19:3851–3868. doi: 10.3390/molecules19043851. PubMed DOI PMC
Singh P., Mishra A.K., Malonia S.K., Chauhan D.S., Sharma V.D., Venkatesan K., Katoch V.M. The paradox of pyrazinamide: An update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J. Commun. Dis. 2006;38:288–298. PubMed
Carel C., Nukdee K., Cantaloube S., Bonne M., Diagne C.T., Laval F., Daffe M., Zerbib D. Mycobacterium tuberculosis proteins involved in mycolic acid synthesis and transport localize dynamically to the old growing pole and septum. PLoS ONE. 2014;9:e97148. doi: 10.1371/journal.pone.0097148. PubMed DOI PMC
Sayahi H., Pugliese K.M., Zimhony O., Jacobs W.R., Jr., Shekhtman A., Welch J.T. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem. Biodivers. 2012;9:2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI
Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Kunes J., Dolezal M., Zitko J. Alkylamino derivatives of pyrazinamide: Synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2014;24:450–453. doi: 10.1016/j.bmcl.2013.12.054. PubMed DOI
Good N.E. Inhibitors of Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed
Dolezal M., Miletin M., Kunes J., Kralova K. Substituted amides of pyrazine-2-carboxylic acids: Synthesis and biological activity. Molecules. 2002;7:363–373. doi: 10.3390/70300363. DOI
Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. 1991;30:1621–1633. doi: 10.1002/anie.199116211. DOI
Barber J., Marder J.B. Photosynthesis and the application of molecular genetics. Biotechnol. Genet. Eng. Rev. 1986;4:355–404. doi: 10.1080/02648725.1986.10647832. DOI
Shipman L.L. Theoretical-study of the binding-site and mode of action for photosystem-ii herbicides. J. Theor. Biol. 1981;90:123–148. doi: 10.1016/0022-5193(81)90126-0. DOI
Kral’ova K., Sersen F., Kubicova L., Waisser K. Inhibition of photosynthetic electron transport in spinach chloroplasts by 3-and 4-halogeno substituted benzanilides and thiobenzanilides. J. Trace Microprobe Tech. 2000;18:251–256.
Kral’ova K., Sersen F., Miletin M., Dolezal M. Inhibition of photosynthetic electron transport in spinach chloroplasts by 2,6-disubstituted pyridine-4-thiocarboxamides. Chem. Pap. Chem. Zvesti. 2002;56:214–217.
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kral’ova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Allen J.R., Andrews K.L., Frohn M.J., Harrington P.E., Pickrell A.J., Rzasa R.M. Nitrogen-Heterocyclic Compounds as Phosphodiesterase 10 Inhibitors. WO 2,011,143,129. U.S. Patent. 2011 Nov 17;
Zhu J.L., Wong H., Zhang Z.X., Yin Z.W., Kadow J., Meanwell N.A., Wang T. Malononitrile as a carbonyl synthon: A one-pot preparation of heteroaryl amide via a SNAr-oxidation-displacement strategy. Tetrahedron Lett. 2004;45:5909–5911. doi: 10.1016/j.tetlet.2004.05.154. DOI
Albert A., Brown D.J., Wood H.C.S. Pteridine studies. Part VIII. The degradation of pteridine. Methylation of the hydroxypteridines and degradation of the products. J. Chem. Soc. 1956:2066–2075. doi: 10.1039/jr9560002066. DOI
Jandourek O., Dolezal M., Kunes J., Kubicek V., Paterova P., Pesko M., Buchta V., Kralova K., Zitko J. New potentially active pyrazinamide derivatives synthesized under microwave conditions. Molecules. 2014;19:9318–9338. doi: 10.3390/molecules19079318. PubMed DOI PMC
Devinsky F., Kopecka-Leitmanova A., Sersen F., Balgavy P. Interaction of surfactants with model and biological-membranes. 8. Amine oxides. 24. Cutoff effect in antimicrobial activity and in membrane perturbation efficiency of the homologous series of N,N-dimethylalkylamine oxides. J. Pharm. Pharmacol. 1990;42:790–794. doi: 10.1111/j.2042-7158.1990.tb07022.x. PubMed DOI
Balgavy P., Devinsky F. Cut-off effects in biological activities of surfactants. Adv. Colloid Interface. 1996;66:23–63. doi: 10.1016/0001-8686(96)00295-3. PubMed DOI
Przestalski S., Sarapuk J., Kleszczynska H., Gabrielska J., Hladyszowski J., Trela Z., Kuczera J. Influence of amphiphilic compounds on membranes. Acta Biochim. Pol. 2000;47:627–638. PubMed
Sarapuk J., Kubica K. Cut-off phenomenon. Cell. Mol. Biol. Lett. 1998;5:261–269.
Moreland D.E. Research on biochemistry of herbicides—An historical overview. Z. Naturforsch. C. 1993;48:121–131.
Kral’ova K., Sersen F., Devinsky F., Lacko I. Photosynthesis-inhibiting effects of cationic biodegradable gemini surfactants. Tenside Surf. Deterg. 2010;47:288–293. doi: 10.3139/113.110079. DOI
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Kralova K., Sersen F., Cizmarik J. Dimethylaminoethyl alkoxyphenylcarbamates as photosynthesis inhibitors. Chem. Pap. Chem. Zvesti. 1992;46:266–268.
Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidonopropyl esters of alkoxy-substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed
Sersen F., Kralova K. Concentration-dependent inhibitory and stimulating effects of amphiphilic ammonium salts upon photosynthetic activity of spinach chloroplasts. Gen. Physiol. Biophys. 1996;15:27–36. PubMed
Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; New York, NY, USA; London, UK: 1980. pp. 413–434. Part C.
Purcell M., Leroux G., Carpentier R. Interaction of the electron donor diphenylcarbazide with the herbicide-binding niche of photosystem II. Biochim. Biophys. Acta Int. J. Biochem. Biophys. 1991;1058:374–378. doi: 10.1016/S0005-2728(05)80133-1. DOI
Borse T.H., Maheshwari V.L., Baviskar M.P. Effect of diphenyl carbazide on the metribuzin induced inhibition of photosystem-II photochemistry. J. Plant Biochem. Biotechnol. 2000;9:119–121. doi: 10.1007/BF03263097. DOI
Kamachi H., Tamura N., Inoue H. Putative second binding site of DCMU on the oxidizing side of photosystem II in photosystem II membranes depleted of functional Mn. Plant Cell Physiol. 1992;33:437–443.
Renger G. The action of 3-(3,4-dichlorophenyl)-l,l-dimethylurea on the water-splitting enzyme system Y of photosynthesis. Biochim. Biophys. Acta. 1973;314:113–116. doi: 10.1016/0005-2728(73)90070-4. PubMed DOI
Carpentier R., Fuerst E.P., Nakatani H.Y., Arntzen C.J. A second site for herbicide action in photosystem II. Biochim. Biophys. Acta. 1985;808:293–299. doi: 10.1016/0005-2728(85)90012-X. DOI
Callis P.R. Binding phenomena and fluorescence quenching. II: Photophysics of aromatic residues and dependence of fluorescence spectra on protein conformation. J. Mol. Struct. 2014;1077:22–29. doi: 10.1016/j.molstruc.2014.04.051. DOI
Kral’ova K., Sersen F., Pesko M., Waisser K., Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides—Inhibitors of photosynthesis. Chem. Pap. 2014;68:46–52.
Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M. Synthesis, Antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality-control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
National Committee for Clinical Laboratory Standards . Method for Antifungal Disc Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A. NCCLS; Wayne, PA, USA: 2004.
Naesens L., Stephens C.E., Andrei G., Loregian A., De Bolle L., Snoeck R., Sowell J.W., De Clercq E. Antiviral properties of new arylsulfone derivatives with activity against human betaherpesviruses. Antivir. Res. 2006;72:60–67. doi: 10.1016/j.antiviral.2006.03.013. PubMed DOI
Naesens L., Vanderlinden E., Roth E., Jeko J., Andrei G., Snoeck R., Pannecouque C., Illyes E., Batta G., Herczegh P., et al. Anti-influenza virus activity and structure-activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Antivir. Res. 2009;82:89–94. doi: 10.1016/j.antiviral.2009.01.003. PubMed DOI PMC
Vanderlinden E., Goktas F., Cesur Z., Froeyen M., Reed M.L., Russell C.J., Cesur N., Naesens L. Novel inhibitors of influenza virus fusion: Structure-activity relationship and interaction with the viral hemagglutinin. J. Virol. 2010;84:4277–4288. doi: 10.1128/JVI.02325-09. PubMed DOI PMC
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.