Endemic parkinsonism: clusters, biology and clinical features

. 2023 Oct ; 19 (10) : 599-616. [epub] 20230908

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37684518
Odkazy

PubMed 37684518
DOI 10.1038/s41582-023-00866-3
PII: 10.1038/s41582-023-00866-3
Knihovny.cz E-zdroje

The term 'endemic parkinsonism' refers to diseases that manifest with a dominant parkinsonian syndrome, which can be typical or atypical, and are present only in a particular geographically defined location or population. Ten phenotypes of endemic parkinsonism are currently known: three in the Western Pacific region; two in the Asian-Oceanic region; one in the Caribbean islands of Guadeloupe and Martinique; and four in Europe. Some of these disease entities seem to be disappearing over time and therefore are probably triggered by unique environmental factors. By contrast, other types persist because they are exclusively genetically determined. Given the geographical clustering and potential overlap in biological and clinical features of these exceptionally interesting diseases, this Review provides a historical reference text and offers current perspectives on each of the 10 phenotypes of endemic parkinsonism. Knowledge obtained from the study of these disease entities supports the hypothesis that both genetic and environmental factors contribute to the development of neurodegenerative diseases, not only in endemic parkinsonism but also in general. At the same time, this understanding suggests useful directions for further research in this area.

1st Department of Neurology Masaryk University Medical School Brno Czech Republic

Département de Neuropathologie Hôpital La Pitié Salpêtrière Paris France

Départment de Neurologie Centre Hospitalier Universitaire de la Guadeloupe Pointe á Pitre France

Department of Clinical and Molecular Genetics Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic

Department of Clinical and Molecular Pathology Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic

Department of Human Neurophysiology Fukushima Medical University Fukushima Japan

Department of Neurology and Clinical Neuroscience Center Faculty of Medicine and Dentistry Palacky University Olomouc Czech Republic

Department of Neurology Faculty of Medicine Johannes Kepler University Linz Austria

Department of Neurology Hospital General Universitario Gregorio Marañón Madrid Spain

Department of Neurology Kuwana City Medical Center Kuwana Japan

Department of Neurology Santa Maria University Hospital Terni Italy

Department of Neurology School of Medicine Oregon Institute of Occupational Health Sciences Oregon Health and Science University Portland OR USA

Department of Pathology 3rd Medical Faculty Charles University and University Hospital Kralovske Vinohrady Prague Czech Republic

Department of Pathology and Molecular Medicine 3rd Medical Faculty Charles University and Thomayer University Hospital Prague Czech Republic

Independent Researcher Bali Indonesia

Laboratory of Growth Regulators Faculty of Science Palacky University Olomouc Czech Republic

Lille Neuroscience and Cognition Research Centre INSERM U1172 Lille France

Research Center for Health Sciences Faculty of Medicine and Surgery University of Santo Tomás Manila The Philippines

St Anne University Hospital Brno Czech Republic

St Luke's Institute of Neuroscience Metro Manila The Philippines

University Hospital Olomouc Czech Republic

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Nuytemans, K. et al. Founder mutation p.R1441C in the leucine-rich repeat kinase 2 gene in Belgian Parkinson’s disease patients. Eur. J. Hum. Genet. 16, 471–479 (2008). PubMed

Plato, C. H. C. et al. Amyotrophic lateral sclerosis and parkinsonism–dementia complex of Guam: changing incidence rates during the past 60 years. Am. J. Epidemiol. 157, 149–157 (2003). PubMed

Spencer, P. S., Nunn, P. B., Hugon, J., Ludolph, A. & Roy, D. N. Motorneurone disease on Guam: possible role of a food neurotoxin. Lancet 1, 965 (1985).

Spencer, P. et al. Guam amyotrophic lateral sclerosis–parkinsonism–dementia linked to a plant excitant neurotoxin. Science 237, 517–522 (1987). PubMed

Spencer, P. S. et al. Discovery and partial characterization of primate motor-system toxins. Ciba Found. Symp. 126, 221–238 (1987). PubMed

Cox, P. A., Davis, D. A., Mash, D. C. & Metcalf, J. S. Do vervets and macaques respond differently to BMAA? Neurotoxicology 57, 310–311 (2016). PubMed

Spencer, P. S., Garner, C. E., Palmer, V. S. & Kisby, G. E. Vervets and macaques: similarities and differences in their responses to L-BMAA. Neurotoxicology 56, 284–286 (2016). PubMed

Cox, P. A. & Sacks, O. W. Cycad neurotoxins, consumption of flying foxes and ALS-PDC disease in Guam. Neurology 58, 976–979 (2002).

Marler, T. E., Lee, V. & Shaw, C. Cycad toxins and neurological disorders on Guam: defining theoretical and experimental standards for correlating human disease with environmental toxins. Hortscience 40, 1598–1606 (2005).

Spencer, P. S., Ohta, M. & Palmer, V. S. Cycad use and motor neurone disease in Kii peninsula of Japan. Lancet 2, 1462–1463 (1987). PubMed

Spencer, P. S., Palmer, V. S., Herman, A. & Asmedi, A. Cycad use and motor neurone disease in Irian Jaya. Lancet 2, 1273–1274 (1987). PubMed

Caparros-Lefebvre, D., Steele, J., Kotake, Y. & Ohta, S. Geographic isolates of atypical parkinsonism and tauopathy in the tropics: possible synergy of neurotoxins. Mov. Disord. 21, 1769–1770 (2006). PubMed

Lannuzel, A., Ruberg, M. & Michel, P. P. Atypical parkinsonism in the Caribbean island of Guadeloupe: etiological role of the mitochondrial complex I inhibitor annonacin. Mov. Disord. 23, 2122–2128 (2008). PubMed

Zimmerman, H. M. Progress report of work in the laboratory of pathology during May, 1945. Guam, US Naval Medical Research Unit number 2, June 1 (Unpublished Navy Memorandum, Sealed ‘Secret’) (Department of the Navy, 1945).

Mulder, D. W., Kurland, L. T. & Iriarte, L. L. G. Neurologic diseases on the island of Guam. US Armed Forces Med. J. 5, 39 (1954).

Kurland, L. T. & Mulder, D. W. Epidemiologic investigations of amyotrophic lateral sclerosis. 1. Preliminary report of geographical distribution with special reference to the Mariana Islands including clinical and pathological observations. Neurology 4, 438–448 (1954). PubMed

Kurland, L. T. & Mulder, D. W. Epidemiologic investigations of amyotrophic lateral sclerosis. 2. Familial aggregations indicative of dominant inheritance. Neurology 5, 182–196 (1955). PubMed

Hirano, A. My academic life in neuropathology. J. Neuropathol. Exp. Neurol. 69, 760–766 (2010). PubMed

Hirano, A. Hirano bodies and related neuronal inclusions. Neuropathol. Appl. Neurobiol. 20, 3–11 (1994). PubMed

Steele, J. C. Parkinsonism–dementia complex of Guam. Mov. Disord. 20, S99–S107 (2005). PubMed

Steele, J. C. et al. Defining neurodegeneration on Guam by targeted genomic sequencing. Ann. Neurol. 77, 458–468 (2015). PubMed

Spencer, P. S. Etiology of retinal and cerebellar pathology in Western Pacific amyotrophic lateral sclerosis and parkinsonism–dementia complex. Eye Brain 12, 97–104 (2020). PubMed PMC

Spencer, P. S. et al. Kampo medicine and muro disease (amyotrophic lateral sclerosis and parkinsonism–dementia complex): postscript and historical footnote. eNeurologicalsci 22, 100308 (2021). PubMed

Hirano, A., Malamud, N. & Kurland, L. T. Parkinsonism–dementia complex, an endemic disease on the island of Guam: II. Pathological features. Brain 84, 662–679 (1961). PubMed

Hirano, A., Malamud, N., Elizan, T. S. & Kurland, L. T. Amyotrophic lateral sclerosis and parkinsonism–dementia complex on Guam. Further pathologic studies. Arch. Neurol. 15, 35–51 (1966). PubMed

Oyanagi, K. & Wada, M. Neuropathology of parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam: an update. J. Neurol. 246, 19–27 (1999).

Oyanagi, K. et al. Amyotrophic lateral sclerosis of Guam: the nature of the neuropathological findings. Acta Neuropathol. 88, 405–412 (1994). PubMed

Yamazaki, M. et al. Alpha-synuclein inclusions in amygdala in the brains of patients with the parkinsonism–dementia complex of Guam. J. Neuropathol. Exp. Neurol. 59, 585–591 (2000). PubMed

Forman, M. S. et al. Tau and α-synuclein pathology in amygdala of parkinsonism–dementia complex patients of Guam. Am. J. Pathol. 160, 1725–1731 (2002). PubMed PMC

Miklossy, J. et al. Enduring involvement of tau, β-amyloid, α-synuclein, ubiquitin and TDP-43 pathology in the amyotrophic lateral sclerosis/parkinsonism–dementia complex of Guam (ALS/PDC). Acta Neuropathol. 116, 625–637 (2008). PubMed

Verheijen, B. M., Oyanagi, K. & Leeuwen, F. W. Dysfunction of protein quality control in parkinsonism–dementia complex of Guam. Front. Neurol. 9, 173 (2018). PubMed PMC

Spencer, P., Palmer, V. S. & Kisby, G. K. Western Pacific ALS-PDC: evidence implicating cycad neurotoxins. J. Neurol. Sci. 419, 117185 (2020). PubMed

Laqueur, G. L., Mickelsen, O., Whitting, M. G. & Kurland, L. T. Carcinogenic properties of nuts from Cycas circinalis L. indigenous to Guam. J. Natl Cancer Inst. 31, 919–951 (1963). PubMed

Kurland, L. T. An appraisal to the neurotoxicity of cycad and the etiology of amyotrophic lateral sclerosis on Guam. Fed. Proc. 31, 1540–1542 (1972). PubMed

Gajdusek, D. C. & Salazar, A. M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West new Guinea. Neurology 32, 107–126 (1982). PubMed

Gajdusek, D. C. Motor neuron disease in natives of New Guinea. N. Engl. J. Med. 268, 473–476 (1963).

Spencer, P. S., Palmer, V., Ohta, M. & Herman, A. in Amyotrophic Lateral Sclerosis: Recent Advances in Research and Treatment (eds Tsubaki, T. & Yase, Y.) 35–40 (Excerpta Medica, 1988).

Cox, P. A., Banack, S. A. & Murch, S. J. Biomagification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamoro people of Guam. Proc. Natl Acad. Sci. USA 100, 13380–13383 (2003). PubMed PMC

Ince, P. G. & Codd, G. A. Return of the cycad hypothesis — does the amyotrophic lateral sclerosis/parkinsonism dementia complex (ALS/PDC) of Guam have new implications for global health? Neuropathol. Appl. Neurobiol. 31, 345–353 (2005). PubMed

Banack, S. A., Murch, S. J. & Cox, P. A. Neurotoxic flying foxes as dietary items for the Chamorro people, Marianas Islands. J. Ethnopharmacol. 106, 97–104 (2006). PubMed

Wiles, G. J. The status of fruit bats on Guam. Pac. Sci. 41, 1–4 (1987).

Morton, J. M. & Wiles, G. J. Observations of Mariana fruit bats (Pteropus mariannus) in the upper Talofofo watershed on southern Guam. Micronesica 34, 155–163 (2002).

Wiles, G. J. & Johnson, N. C. Population size and natural history of Mariana fruit bats (Chiroptera: Pteropodidae) on Sarigan, Mariana Islands. Pac. Sci. 58, 585–596 (2004).

Monson, C. S., Banack, S. A. & Cox, P. A. Conservation implications of Chamorro consumption of flying foxes as a possible cause of amyotrophic lateral sclerosis–parkinsonism dementia complex in Guam. Cons. Biol. 17, 678–686 (2003).

Foss, A. J., Chernoff, N. & Aubel, M. T. The analysis of undervaterizated ß-methylamino-L-alanine (BMAA), BAMA, AEG & 2,4-DAB in Pteropus mariannus mariannus specimens using HILIC-LC-MS/MS. Toxicon 152, 150–159 (2018). PubMed

Steele, J. C. & McGeer, P. L. The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 70, 1984–1990 (2008). PubMed

Cox, T. A., McDarby, J. V., Lavine, L., Steele, J. C. & Calne, D. B. A retinopathy on Guam with high prevalence in Lytico–Bodig. Ophthalmology 96, 1731–1735 (1989). PubMed

Kisby, G. E. & Spencer, P. S. Genotoxic damage during brain development presages prototypical neurodegenerative disease. Front. Neurol. 15, 752153 (2021).

Ahlskog, J. E. et al. Guamanian neurodegenerative disease: investigation of the calcium metabolism/heavy metal hypothesis. Neurology 45, 1340–1344 (1995). PubMed

Durlach, J. et al. Are age-related neurodegenerative diseases linked with various types of magnesium depletion? Magnes. Res. 10, 339–353 (1997). PubMed

Yanagihara, R. et al. Calcium and vitamin D metabolism in Guamanian Chamorros with amyotrophic lateral sclerosis and parkinsonism–dementia. Ann. Neurol. 15, 42–48 (1984). PubMed

Poorkaj, P. et al. TAU as susceptibility gene for amyotrophic sclerosis–parkinsonism–dementia complex of Guam. Arch. Neurol. 58, 1871–1878 (2001). PubMed

Sieh, W. et al. Identification of novel susceptibility loci for Guam neurodegenerative disease: challenges of genome scans in genetic isolates. Hum. Mol. Genet. 18, 3725–3738 (2009). PubMed PMC

Dombroski, B. A. et al. C9orf72 hexanucleotide repeat expansion and Guam amyotrophic lateral sclerosis–parkinsonism–dementia complex. JAMA Neurol. 70, 742–745 (2013). PubMed PMC

No author listed. ‘Kishu Koza no shou fuko no hito’ [An unhappy story of a unfilial man from Koza Village of Kii]. Honcho Koji Innen Shu Vol. 4, Edo (Tokyo) (Yorozuya Kinbe, 1689); translated into early modern Japanese in Iseido Sosho 847–908 (Kyoto Shibunkaku, 1970).

Kuzuhara, S. ‘Endemic paraplegia of Koza in Kii’ in Honcho Koji Innen Shu published in 1689 is probably the earliest description of amyotrophic lateral sclerosis of Kii Peninsula: presentation of the original and investigation of factuality. Rinsho Shinkeigaku 61, 815–824 (2021). PubMed

Miura, K. Amyotrophische lateral sklerose unter dem bilde von sog. bulbaerparalyse. Seishin Shinkeigaku Zasshi 10, 366–369 (1911).

Kimura, K., Yase, Y. & Higashi, Y. Epidemiological and geomedical studies on ALS and allied diseases in Kii peninsula (Japan). Preliminary report. Proc. Jpn. Acad. Sci. 37, 417–420 (1961).

Kimura, K. et al. Epidemiological and geomedical studies on amyotrophic lateral sclerosis. Dis. Nerv. Syst. 24, 155–159 (1963).

Shiraki, H. & Yase, Y. Amyotrophic lateral sclerosis in Japan. in Handbook of Clinical Neurology Vol. 22, part II (eds Vinken, P. J. & Bruyn, G. W.) 353–419 (Elsevier, 1975).

Yoshida, S. Environmental factors in western Pacific foci of ALS and a possible pathogenetic role of aluminum (Al) in motor neuron degeneration [in Japanese with English abstract]. Rinsho Shinkeigaku 31, 1310–1312 (1991). PubMed

Kuzuhara, S. et al. Familial amyotrophic lateral sclerosis and parkinsonism–dementia complex of the Kii peninsula of Japan: clinical and neuropathological study and tau analysis. Ann. Neurol. 49, 501–511 (2001). PubMed

Mimuro, M., Yoshida, M., Kuzuhara, S. & Kokubo, Y. Amyotrophic lateral sclerosis and parkinsonism–dementia complex of the Hohara focus of the Kii peninsula: a multiple proteinopathy? Neuropathology 38, 98–107 (2018). PubMed

Mimuro, M., Kokubo, Y. & Kuzuhara, S. Similar topographic distribution of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism–dementia complex in people living in the Kii peninsula of Japan suggests a single tauopathy. Acta Neuropathol. 113, 653–658 (2007). PubMed

Shiraki, H. & Yase, Y. Amyotrophic lateral sclerosis and parkinsonism–dementia in the Kii peninsula: comparison with the same disorders in Guam and with Alzheimer’s disease. in Handbook of Clinical Neurology: Diseases of the Motor System (eds Vinken, P. J. et al.) 273–300 (Elsevier, 1991).

Oyanagi, K. et al. Distinct pathological features of the Gallyas- and tau-positive glia in the parkinsonism–dementia complex and amyotrophic lateral sclerosis of Guam. J. Neuropathol. Exp. Neurol. 56, 308–316 (1997). PubMed

Yamazaki, M. et al. Tau-positive fine granules in the cerebral white matter: a novel finding among tauopathies exclusive to parkinsonism–dementia complex of Guam. J. Neuropathol. Exp. Neurol. 64, 839–846 (2005). PubMed

Kokubo, Y. & Kuzuhara, S. Neurofibrillary tangles in ALS and parkinsonism–dementia complex focus in Kii, Japan. Neurology 63, 2399–2401 (2004). PubMed

Itoh, N. et al. Biochemical and ultrastructural study of neurofibrillary tangles in amyotrophic lateral sclerosis/parkinsonism–dementia complex in the Kii peninsula of Japan. J. Neuropathol. Exp. Neurol. 62, 791–798 (2003). PubMed

Spencer, P. S. et al. Kampo medicine and Muro disease (amyotrophic lateral sclerosis and parkinsonism–dementia complex). eNeurologicalSci 18, 100230 (2020). PubMed PMC

Kuzuhara, S. & Kokubo, Y. in Amyotrophic Lateral Sclerosis and the Frontotemporal Dementias (ed. Strong, M. J.) 39–54 (Oxford Univ. Press, 2012).

Tomiyama, H. et al. Mutation analyses in amyotrophic lateral sclerosis/parkinsonism–dementia complex of the Kii peninsula, Japan. Mov. Disord. 23, 2344–2348 (2008). PubMed

Hara, K. et al. TRPM7 is not associated with amyotrophic lateral sclerosis–parkinsonism dementia complex in the Kii peninsula of Japan. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B, 310–313 (2010). PubMed

Hara, K. et al. Molecular-genetic analysis of amyotrophic lateral sclerosis/parkinsonism–dementia complex (ALS/PDC) in the Kii peninsula [in Japanese]. Rinsho Shinkeigaku 47, 974–976 (2007). PubMed

Ishiura, H. et al. C9ORF72 repeat expansion in amyotrophic lateral sclerosis in the Kii peninsula of Japan. Arch. Neurol. 69, 1154–1158 (2012). PubMed

Kokubo, Y. et al. An immigrant family with Kii amyotrophic lateral sclerosis/parkinsonism–dementia complex. Neurol. Sci. 43, 1423–1425 (2022). PubMed

Spencer, P. S., Kisby, G. E. & Ludolp, A. C. Long-latency neurodegenerative disease in the western Pacific. Geriatrics 46, 37–42 (1991). PubMed

Okumiya, K. et al. Amyotrophic lateral sclerosis and parkinsonism in Papua, Indonesia: 2001–2012 survey results. BMJ Open 4, e004353 (2014). PubMed PMC

Spencer, P., Palmer, V. S. & Ludolph, A. C. On the decline and etiology of high-incidence motor system disease in West papua (Southwest New Guinea). Mov. Disord. 20, 119–126 (2005).

Gibbs, C. J. & Gajdusek, D. C. An update on long-term in vivo and in vitro studies designed to identify a virus as the cause of amyotrophic lateral sclerosis, parkinsonism dementia, and Parkinson’s disease. Adv. Neurol. 36, 343–353 (1982). PubMed

Gajdusek, D. C. in Amyotrophic Lateral Sclerosis — Concepts in Pathogenesis and Etiology (ed. Hudson, A. J.) 317–325 (Univ. Toronto Press, 1990).

Spencer, P. S. Parkinsonism and motor neuron disorders: lessons from the Western Pacific. J. Neurol. Sci. 433, 120021 (2022). PubMed

Spencer, P. S., Palmer, V. S. & Kisby, G. E. Seeking environmental causes of neurodegenerative disease and envisioning primary prevention. Neurotoxicology 56, 269–283 (2016). PubMed

Kisby, G. E., Kabel, H., Hugon, J. & Spencer, P. Damage and repair of nerve cell DNA in toxic stress. Drug Metab. Rev. 31, 589–618 (1999). PubMed

Esclaire, F. et al. The Guam cycad toxin methylazoxymethanol damages neuronal DNA and modulate tau mRNA expression and excitotoxicity. Exp. Neurol. 155, 11–21 (1999). PubMed

Spencer, P. S. Hypothesis: etiologic and molecular mechanistic leads for sporadic neurodegenerative diseases based on experience with Western Pacific ALS/PDC. Front. Neurol. 10, 754 (2019). PubMed PMC

Vallely, A. & Tetu, M. A familial cluster of Parkinson’s disease identified in Milne Bay province, Papua New Guinea. PNG Med. J. 42, 27–31 (1999).

Fernandez, H. H. & Rosales, R. L. Uncovering the mystery from the Philippine island of Panay. Int. J. Neurosci. 121, 1–2 (2011). PubMed

Laabs, B. H. et al. Identifying genetic modifiers of age-associated penetrance in X-linked dystonia-parkinsonism. Nat. Commun. 12, 3216 (2021). PubMed PMC

Rosales, R. L. X-linked dystonia parkinsonism: clinical phenotype, genetics and therapeutics. J. Mov. Disord. 3, 32–38 (2010). PubMed PMC

Pauly, M. L. et al. Expanding data collection for the MDSGene database: X-linked dystonia-parkinsonism as use case example. Mov. Disord. 35, 1933–1938 (2020). PubMed

Ng, A. R., Jamora, R. D. G. & Rosales, R. L. X‐linked dystonia parkinsonism: crossing a new threshold. J. Neur. Transm. 128, 567–573 (2021).

Sprenger, A. et al. Eye movement deficits in X-linked dystonia–parkinsonism are related to striatal degeneration. Parkinsonism Relat. Disord. 61, 170–178 (2019). PubMed

Lee, L. V., Munoz, E. L., Tan, K. T. & Reyes, M. T. Sex linked recessive dystonia parkinsonism of Panay, Philippines (XDP). J. Clin. Mol. Pathol. 54, 362–368 (2001).

Goto, S. et al. Functional anatomy of the basal ganglia in X-linked recessive dystonia–parkinsonism. Ann. Neurol. 58, 7–17 (2005). PubMed

Goto, S. et al. Defects in the striatal neuropeptide Y system in X-linked dystonia–parkinsonism. Brain 136, 1555–1567 (2013). PubMed

Kawarai, T., Morigaki, R., Kaji, R. & Goto, S. Clinicopathological phenotype and genetics of X-linked dystonia–parkinsonism (XDP; DYT3; Lubag). Brain Sci. 7, 72 (2017). PubMed PMC

Hanssen, H. et al. Imaging gradual neurodegeneration in a basal ganglia model disease. Ann. Neurol. 86, 517–526 (2019). PubMed

Rosales, R. L., Ng, A. R., Delos Santos, M. M. & Fernandez, H. H. The broadening application of chemodenervation in X-linked dystonia–parkinsonism (part II): an open-label experience with botulinum toxin-A (Dysport®) injections for oromandibular, lingual, and truncal dystonias. Int. J. Neurosci. 121, 44–56 (2011). PubMed

Brüggemann, N. et al. Association of pallidal neurostimulation and outcome predictors with X-linked dystonia–parkinsonism. JAMA Neurol. 76, 211–216 (2019). PubMed

Aneichyk, T. et al. Dissecting the causal mechanism of X-linked dystonia–parkinsonism by integrating genome and transcriptome assembly. Cell 172, 897–909 (2018). PubMed PMC

Lüth, T. et al. Elucidating hexanucleotide repeat number and methylation within the X-linked dystonia–parkinsonism (XDP)-related SVA retrotransposon in TAF1 with nanopore sequencing. Genes 13, 126 (2022). PubMed PMC

Di Lazzaro, G. et al. X-linked parkinsonism: phenotypic and genetic heterogeneity. Mov. Disord. 36, 1511–1525 (2021). PubMed

Reyes, C. J. et al. Brain regional differences in hexanucleotide repeat length in X-linked dystonia–parkinsonism using nanopore sequencing. Neurol. Genet. 7, e608 (2021). PubMed PMC

Westenberger, A. et al. A hexanucleotide repeat modifies expressivity of X-linked dystonia–parkinsonism. Ann. Neurol. 85, 812–822 (2019). PubMed

Bragg, D. C. et al. Disease onset in X-linked dystonia–parkinsonism correlates with expansion of a hexameric repeat within an SVA retrotransposon in TAF1. Proc. Natl Acad. Sci. USA 114, E11020–E11028 (2017). PubMed PMC

Trinh, J. et al. Mosaic divergent repeat interruption in XDP influence repeat stability and disease onset. Brain 146, 1075–1082 (2023). PubMed

Angibaud, G., Gaultier, C. & Rascol, O. Atypical parkinsonism and Annonaceae consumption in New Caledonia. Mov. Disord. 19, 603–605 (2004). PubMed

Caparros-Lefebvre, D. Atypical parkinsonism in New Caledonia: comparisons with Guadeloupe and association with Annonaceae consumption. Mov. Disord. 19, 604–606 (2004). PubMed

Lannuzel, A. et al. Further evidence for a distinctive atypical degenerative parkinsonism in the Caribbean: a new cluster in the French West Indian Island of Martinique. J. Neurol. Sci. 388, 214–219 (2018). PubMed

Caparros-Lefebvre, D. & Elbaz, A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case–control study. Lancet 354, 281–286 (1999). PubMed

Caparros-Lefebvre, D. et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 125, 801–811 (2002). PubMed

Lannuzel, A. et al. Clinical varieties and epidemiological aspects of amyotrophic lateral sclerosis in the Caribbean Island of Guadeloupe: a new focus of ALS associated with parkinsonism. Amyotroph. Lateral Scler. Frontotemporal Degener. 16, 216–223 (2015). PubMed

Moghdamtousi, S. Z. et al. Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. Int. J. Mol. Sci. 16, 15625–15658 (2015).

Lannuzel, A. et al. Toxicity of Annonaceae for dopaminergic neurons: potential role in atypical parkinsonism in Guadeloupe. Mov. Disord. 17, 84–90 (2002). PubMed

De Sousa, O. V., Vieira, G. D. V., de Pinho, J. D. J. R., Yamamoto, C. H. & Alves, M. S. Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. Int. J. Mol. Sci. 11, 2067–2078 (2010). PubMed PMC

Mishra, S., Ahmad, S., Kumar, N. & Sharma, B. K. Annona muricata (the cancer killer): a review. Glob. J. Pharm. Res. 2, 1613–1618 (2013).

Ragasa, C. Y., Soriano, G., Torres, O. B., Don, M. J. & Shen, C. C. Acetogenins from Annona muricata. Pharm. J. 4, 32–37 (2012).

Lannuzel, A. et al. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121, 287–296 (2003). PubMed

Champy, P. et al. Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J. Neurochem. 88, 63–69 (2004). PubMed

Lannuzel, A. et al. Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 130, 816–827 (2007). PubMed

Steele, J. C., Caparros-Lefebvre, D., Lees, A. J. & Sacks, O. W. Progressive supranuclear palsy and its relation to pacific foci of the parkinsonism–dementia complex and Guadeloupean parkinsonism. Parkinsonism Relat. Disord. 9, 39–54 (2002). PubMed

DeCock, V. C. et al. REM sleep behavior disorder in patients with Guadeloupean parkinsonism, a tauopathy. Sleep 30, 1026–1032 (2007).

Camuzat, A. et al. The PSP-associated MAPT H1 subhaplotype in Guadeloupean atypical parkinsonism. Mov. Disord. 16, 2384–2391 (2008).

Kedari, T. S. & Khan, A. A. Guyabano (Annona muricata): a review of its traditional uses, phytochemistry and pharmacology. Am. J. Res. Comm. 2, 247–268 (2014).

Spencer, P. S. & Palmer, V. S. Food plant chemicals linked with neurological and neurodegenerative disease. Adv. Neurotoxicol. 1, 247–267 (2017).

Martí Massó, J. F., Zarranz, J. J., Otaegui, D. & López de Munain, A. Neurogenetic disorders in the Basque population. Ann. Hum. Genet. 79, 57–75 (2015). PubMed

Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44, 595–600 (2004). PubMed

Mata, I. F. et al. LRRK2 R1441G in Spanish patients with Parkinson’s disease. Neurosci. Lett. 382, 309–311 (2005). PubMed

Simón-Sánchez, J. et al. Parkinson’s disease due to the R1441G mutations in dardarin: a founder effect in the Basques. Mov. Disord. 21, 1954–1959 (2006). PubMed

González-Fernández, M. C. et al. LRRK2-associated parkinsonism is a major cause of disease in Northern Spain. Parkinsonism Relat. Disord. 13, 509–515 (2007). PubMed

Deng, H., Wang, P. & Jankovic, J. The genetics of Parkinson’s disease. Ageing Res. Rev. 42, 72–85 (2018). PubMed

López de Munain, A., Martí Massó, J. F. & Pérez Tur, J. The discovery of dardarin gene 15 years later: a globalized local history. Mov. Disord. 35, 708 (2020). PubMed

Martí-Massó, J. F. et al. Neuropathology of Parkinson’s disease with the R1441G mutation in LRRK2. Mov. Disord. 24, 1998–2001 (2009). PubMed

Mata, I. F. et al. LRRK2 mutations are a common cause of Parkinson’s disease in Spain. Eur. J. Neurol. 13, 391–394 (2006). PubMed

Ruíz-Martínez, J. et al. Penetrance in Parkinson’s disease related to the LRRK2 R1441G mutation in the Basque-Country (Spain). Mov. Disord. 25, 2340–2345 (2010). PubMed

Gorostidi, A., Ruiz-Martinez, J., Lopez de Munain, A., Alzualde, A. & Marti-Masso, J. F. LRRK2 G2019S and R1441G mutations associated with Parkinson’s disease are common in the Basque Country but relative prevalence is determined by ethnicity. Neurogenetics 10, 157–159 (2009). PubMed

Hurles, M. E. et al. Recent male-mediated gene flow over linguistic barrier in Iberia, suggested by analysis of a Y-chromosomal DNA polymorphism. Am. J. Hum. Genet. 65, 1437–1448 (1999). PubMed PMC

Simpson, C. H. et al. Prevalence of the LRRK2 variants in Parkinson’s disease: a comprehensive review. Parkinsonism Relat. Disord. 98, 103–113 (2022). PubMed

Zimprich, A. et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson’s disease. Am. J. Hum. Genet. 89, 168–175 (2011). PubMed PMC

Struhal, W. et al. VPS35 Parkinson’s disease phenotype resembles the sporadic disease. J. Neural Transm. 121, 755–759 (2014). PubMed

Vilariño-Güell, C. et al. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89, 162–167 (2011). PubMed PMC

Sheerin, U. M. et al. Screening for VPS35 mutations in Parkinson’s disease. Neurobiol. Aging 33, 838.e1–5 (2012). PubMed

Ando, M. et al. VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov. Disord. 27, 1413–1417 (2012). PubMed

Chen, Y., Chang, Y., Lan, M., Chen, P. & Lin, C. H. Identification of VPS35 p.D620N mutation related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: a case report and literature review. BMC Neurol. 17, 191 (2017). PubMed PMC

Caparros-Lefebvre, D. et al. A geographical cluster of progressive supranuclear palsy in Northern France. Neurology 85, 1293–1300 (2015). PubMed PMC

Caparros-Lefebvre, D. Food toxins and the Caribbean Parkinson plus types. Rev. Neurol. 175, 641–643 (2019). PubMed

Batelkova, K., Kolejka, J. & Pokorny, J. Landscape synthesis and geographical information systems as part of natural landscape assessment for regional planning: case study: Horňácko. Geography 101, 296–309 (1996).

Mensikova, K. et al. Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern Moravia, Czech Republic. Eur. J. Epidemiol. 28, 833–836 (2013). PubMed

Mensikova, K. et al. Epidemiological study of neurodegenerative parkinsonism in Hornacko, a specific region of south-eastern Moravia, Czech Republic. Cesk. Slov. Neurol. N. 77/110, 714–720 (2014).

Frolec, V., Holy, D., & Hornácko, J. R. The Life and Culture of the People from Moravian-Slovakian Borderlands (Blok, 1996).

Menšíková, K. et al. Atypical parkinsonism of progressive supranuclear palsy-parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 137, 171–173 (2019). PubMed

Kolarikova, K. et al. High throughput sequencing haplotype analysis indicates in the CHMP2B gene a potential risk factor for endemic parkinsonism in Southeastern Moravia, Czech Republic. Life 12, 121 (2022). PubMed PMC

Kolarikova, K. et al. Whole exome sequencing study in isolated South-Eastern Moravia (Czech Republic) population indicates heterogenous genetic background for parkinsonism development. Front. Neurosci. 16, 817713 (2022). PubMed PMC

Bartoníková, T. et al. New endemic familial parkinsonism in south Moravia, Czech Republic and its genetic background. Medicine 97, e12313 (2018). PubMed PMC

Lagrange, E. et al. An amyotrophic lateral sclerosis hot spot in the French Alps associated with genotoxic fungi. J. Neurol. Sci. 427, 117558 (2021). PubMed

Schulzova, V. et al. Agaritine content of 53 Agaricus species collected from nature. Food Addit. Contam. 26, 82–93 (2009).

Patocka, J., Pita, R. & Kuca, K. Gyromitrin, mushroom toxin of Gyromitra spp. Mil. Med. Sci. Lett. 81, 61–67 (2012).

Steele, J. C. & Guzman, T. Observations about amyotrophic lateral sclerosis and the parkinsonism–dementia complex of Guam with regard to epidemiology and etiology. Can. J. Neurol. Sci. 14, 358–362 (1987). PubMed

Román, G. C. Neuroepidemiology of amyotrophic lateral sclerosis: clues to aetiology and pathogenesis. J. Neurol. Neurosurg. Psychiatr. 61, 131–137 (1996).

de Langavant, L. C. et al. Annonaceae consumption worsens disease severity and cognitive deficits in degenerative parkinsonism. Mov. Disord. 37, 2355–2366 (2022).

Sacks, O. The Island of the Colorblind (Knopf-Doubleday, 1997).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Reply to: Questioning the cycad theory of Kii ALS-PDC causation

. 2024 Mar ; 20 (3) : 195-196.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...