Whole Exome Sequencing Study in Isolated South-Eastern Moravia (Czechia) Population Indicates Heterogenous Genetic Background for Parkinsonism Development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35368288
PubMed Central
PMC8968137
DOI
10.3389/fnins.2022.817713
Knihovny.cz E-zdroje
- Klíčová slova
- SLC18A2 gene, neurodegenerative disorders, parkinsonism, trio analysis, whole-exome sequencing,
- Publikační typ
- časopisecké články MeSH
Parkinsonism belongs to the most common neurodegenerative disease. Genetic predisposition could be one of the significant risk factor for disease development. It has been described higher prevalence of parkinsonism in large pedigree from southeastern Moravia region. The study aims were to select accessible subfamily trios from the pedigree suitable for segregation genetic analyses to perform whole exome sequencing (WES) in trio individuals and further to evaluate genetic variants in the each trio. We used IonTorrent platform for WES for five subfamily trios (1-5). Each trio included two affected and one healthy person (as control). Found variants were filtered with respect to MAF < 1% (minor allele frequency), variants effect (based on prediction tools) and disease filter (Parkinsonism responsible genes). Finally, the variants from each trio were assessed with respect to the presence in the patients. There were found no one founder mutation in the subfamilies from the pedigree. Trio 1 shares two variants with trio 2:MC1R:c.322G > A (p.A108T) and MTCL1:c.1445C > T (p.A482V), trio 3 shares two variants with trio 5: DNAJC6:c.1817A > C (p.H606P) and HIVEP3:c.3856C > A (p.R1286W). In trios 4 and 5, there were found two variants in gene CSMD1:c.3335A > G (p.E1112G) and c.4071C > G (p.I1357M) respectively. As the most potentially damaging, we evaluated the non-shared variant SLC18A2:c.583G > A (p.G195S). The variant could affect dopamine transport in dopaminergic neurons. The study of the parkinsonism genetic background in isolated Moravian population suggested that there could be significant accumulation of many risk genetic factors. For verification of the variants influence, it would be appropriate to perform a more extensive population study and suitable functional analysis.
Department of Medical Genetics University Hospital Olomouc Olomouc Czechia
Department of Neurology Faculty of Medicine and Dentistry Palacký University Olomouc Olomouc Czechia
Department of Neurology University Hospital Olomouc Olomouc Czechia
Zobrazit více v PubMed
Allen C. E., Mak C. H., Wu L. C. (2002). The kappa B transcriptional enhancer motif and signal sequences of V(D)J recombination are targets for the zinc finger protein HIVEP3/KRC: a site selection amplification binding study. BMC Immunol. 22:10. 10.1186/1471-2172-3-10 PubMed DOI PMC
Ando M., Fiesel F. C., Hudec R., Caulfield T. R., Ogaki K., Górka-Skoczylas P., et al. (2017). The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol. Neurodegener. 12:32. 10.1186/s13024-017-0174-z PubMed DOI PMC
Bandres-Ciga S., Diez-Fairen M., Kim J. J., Singleton A. B. (2020). Genetics of Parkinson’s disease: an introspection of its journey towards precision medicine. Neurobiol. Dis. 137:104782. 10.1016/j.nbd.2020.104782 PubMed DOI PMC
Brighina L., Riva C., Bertola F., Saracchi E., Fermi S., Goldwurm S., et al. (2013). Analysis of vesicular monoamine transporter 2 polymorphisms in Parkinson’s disease. Neurobiol. Aging 34 1712.e9–13. 10.1016/j.neurobiolaging.2012.12.020 PubMed DOI PMC
Buervenich S., Carmine A., Galter D., Shahabi H. N., Johnels B., Holmberg B., et al. (2005). A rare truncating mutation in ADH1C (G78Stop) shows significant association with Parkinson disease in a large international sample. Arch. Neurol. 62 74–78. 10.1001/archneur.62.1.74 PubMed DOI
Campêlo C. L. C., Cagni F. C., de Siqueira Figueredo D., Oliveira L. G., Jr., Silva-Neto A. B., Macêdo P. T., et al. (2017). Variants in SNCA gene are associated with parkinson’s disease risk and cognitive symptoms in a brazilian sample. Front. Aging Neurosci. 20:198. 10.3389/fnagi.2017.00198 PubMed DOI PMC
Chartier-Harlin M. C., Dachsel J. C., Vilariño-Güell C., Lincoln S. J., Leprêtre F., Hulihan M. M., et al. (2011). Translation initiator EIF4G1 mutations in familial Parkinson disease. Am. J. Hum. Genet. 89 398–406. 10.1016/j.ajhg.2011.08.009 PubMed DOI PMC
Dolgacheva L. P., Berezhnov A. V., Fedotova E. I., Zinchenko V. P., Abramov A. Y. (2019). Role of DJ-1 in the mechanism of pathogenesis of Parkinson’s disease. J. Bioenerg. Biomembr. 51 175–188. 10.1007/s10863-019-09798-4 PubMed DOI PMC
Edvardson S., Cinnamon Y., Ta-Shma A., Shaag A., Yim Y. I., Zenvirt S., et al. (2012). A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One 7:e36458. 10.1371/journal.pone.0036458 PubMed DOI PMC
Farlow J. L., Robak L. A., Hetrick K., Bowling K., Boerwinkle E., Coban-Akdemir Z. H., et al. (2016). Whole-Exome sequencing in familial parkinson disease. JAMA Neurol. 73 68–75. 10.1001/jamaneurol.2015.3266 PubMed DOI PMC
Gan-Or Z., Mohsin N., Girard S. L., Montplaisir J. Y., Ambalavanan A., Strong S., et al. (2016). The role of the melanoma gene MC1R in Parkinson disease and REM sleep Behavior Disorder. Neurobiol. Aging 43 180.e7–180.e13. 10.1016/j.neurobiolaging.2016.03.029 . PubMed DOI PMC
Gao X., Simon K. C., Han J., Schwarzschild M. A., Ascherio A. (2009). Genetic determinants of hair color and Parkinson’s disease risk. Ann. Neurol. 65 76–82. 10.1002/ana.21535 PubMed DOI PMC
Gazal S., Gosset S., Verdura E., Bergametti F., Guey S., Babron M. C., et al. (2016). Can whole-exome sequencing data be used for linkage analysis? Eur. J. Hum. Genet. 24 581–586. 10.1038/ejhg.2015.143 PubMed DOI PMC
Guo J. F., Zhang L., Li K., Mei J. P., Xue J., Chen J., et al. (2018). Coding mutations in NUS1 contribute to Parkinson’s disease. Proc. Natl. Acad. Sci. U S A. 115 11567–11572. 10.1073/pnas.1809969115 PubMed DOI PMC
Håvik B., Le Hellard S., Rietschel M., Lybæk H., Djurovic S., Mattheisen M., et al. (2011). The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol. Psychiatry 70 35–42. 10.1016/j.biopsych.2011.01.030 PubMed DOI
Hughes A. J., Daniel S. E., Ben-Shlomo Y., Lees A. J. (2002). The accuracy of diagnosis of parkinsonian syndromes in a specialist movement disorder service. Brain 125 861–870. 10.1093/brain/awf080 PubMed DOI
Kalinderi K., Bostantjopoulou S., Fidani L. (2016). The genetic background of Parkinson’s disease: current progress and future prospects. Acta Neurol. Scand. 134 314–326. 10.1111/ane.12563 PubMed DOI
Köroğlu Ç, Baysal L., Cetinkaya M., Karasoy H., Tolun A. (2013). DNAJC6 is responsible for juvenile parkinsonism with phenotypic variability. Parkinsonism. Relat. Disord. 19 320–324. 10.1016/j.parkreldis.2012.11.006 PubMed DOI
Kraus D. M., Elliott G. S., Chute H., Horan T., Pfenninger K. H., Sanford S. D., et al. (2006). CSMD1 is a novel multiple domain complement-regulatory protein highly expressed in the central nervous system and epithelial tissues. J. Immunol. 176 4419–4430. 10.4049/jimmunol.176.7.4419 PubMed DOI
Lin G., Lee P. T., Chen K., Mao D., Tan K. L., Zuo Z., et al. (2018). Phospholipase PLA2G6, a parkinsonism-associated gene, affects Vps26 and Vps35, retromer function, and ceramide levels, similar to α-Synuclein gain. Cell Metab. 28 605–618.e6. 10.1016/j.cmet.2018.05.019. PubMed DOI
Liu Y., Edwards R. H. (1997). The role of vesicular transport proteins in synaptic transmission and neural degeneration. Annu. Rev. Neurosci. 20 125–156. 10.1146/annurev.neuro.20.1.125 PubMed DOI
Lopez O. L., Smith G., Meltzer C. C., Becker J. T. (1999). Dopamine systems in human immunodeficiency virus-associated dementia. Neuropsychiatry Neuropsychol. Behav. Neurol. 12 184–192. PubMed
Marti T., Puig-Butille J. A., Potrony M., Badenas C., Milà M., Malvehy J., et al. (2015). The MC1R melanoma risk variant p.R160W is associated with Parkinson disease. Ann. Neurol. 77 889–894. 10.1002/ana.24373 PubMed DOI
Mensikova K., Kanovsky P., Kaiserova M., Mikulicova L., Vastik M., Hlustik P., et al. (2013). Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern moravia, czech republic. Eur. J. Epidemiol. 28 833–836. 10.1007/s10654-013-9823-x PubMed DOI
Mensikova K., Kaňovský P., Otruba P., Kaiserová M., Vastik M., Hlustik P., et al. (2014). Epidemiological study of neurodegenerative Parkinsonism in “Hornacko”, a specific region of the south-eastern moravia, czech republic. Czech Slovak Neurol. Neurosurg. 110 714–720. 10.14735/amcsnn2014714 DOI
Miller S. A., Dykes D. D., Polesky H. F. (1988). A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16:1215. 10.1093/nar/16.3.1215 PubMed DOI PMC
Mir R., Tonelli F., Lis P., Macartney T., Polinski N. K., Martinez T. N., et al. (2018). The Parkinson’s disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem. J. 475 1861–1883. 10.1042/BCJ20180248 PubMed DOI PMC
Mosharov E. V., Larsen K. E., Kanter E., Phillips K. A., Wilson K., Schmitz Y., et al. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62 218–229. 10.1016/j.neuron.2009.01.033 PubMed DOI PMC
Ortega R. A., Wang C., Raymond D., Bryant N., Scherzer C. R., Thaler A., et al. (2021). Association of dual LRRK2 G2019S and GBA variations with parkinson disease progression. JAMA Netw Open 4:e215845. 10.1001/jamanetworkopen.2021.5845 PubMed DOI PMC
Park J. S., Blair N. F., Sue C. M. (2015). The role of ATP13A2 in Parkinson’s disease: clinical phenotypes and molecular mechanisms. Mov. Disord. 30 770–779. 10.1002/mds.26243 PubMed DOI
Ruiz-Martínez J., Azcona L. J., Bergareche A., Martí-Massó J. F., Paisán-Ruiz C. (2017). Whole-exome sequencing associates novel CSMD1 gene mutations with familial Parkinson disease. Neurol. Genet. 3:e177. 10.1212/NXG.0000000000000177 PubMed DOI PMC
Sato Y., Akitsu M., Amano Y., Yamashita K., Ide M., Shimada K., et al. (2013). The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells. J. Cell Sci. 126 4671–4683. 10.1242/jcs.127845 PubMed DOI
Schwalbe M., Biernat J., Bibow S., Ozenne V., Jensen M. R., Kadavath H., et al. (2013). Phosphorylation of human Tau protein by microtubule affinity-regulating kinase 2. Biochemistry 52 9068–9079. 10.1021/bi401266n PubMed DOI
Thiriot D. S., Sievert M. K., Ruoho A. E. (2002). Identification of human vesicle monoamine transporter (VMAT2) lumenal cysteines that form an intramolecular disulfide bond. Biochemistry 20 6346–6353. 10.1021/bi015779j PubMed DOI
Toma C., Díaz-Gay M., Franch-Expósito S., Arnau-Collell C., Overs B., Muñoz J., et al. (2020). Using linkage studies combined with whole-exome sequencing to identify novel candidate genes for familial colorectal cancer. Int. J. Cancer 146 1568–1577. 10.1002/ijc.32683 PubMed DOI PMC
Vodicka R., Kolarikova K., Vrtel R., Mensikova K., Kanovsky P., Prochazka M. (2020). “Evaluating basic next-generation sequencing parameters in relation to true/false positivity findings of rare variants in an isolated population from the Czech Republic South-Eastern Moravia Region with a high incidence of parkinsonism,” in Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science, Vol. 12108, eds Rojas I., Valenzuela O., Rojas F., Herrera L., Ortuño F. (Cham: Springer; ), 562–568. 10.1007/978-3-030-45385-5_50 DOI
Xiromerisiou G., Bourinaris T., Houlden H., Lewis P. A., Senkevich K., Hammer M., et al. (2021). SORL1 mutation in a Greek family with Parkinson’s disease, and dementia. Ann. Clin. Transl. Neurol. 8 1961–1969. 10.1002/acn3.51433 PubMed DOI PMC
Yemni E. A., Monies D., Alkhairallah T., Bohlega S., Abouelhoda M., Magrashi A., et al. (2019). Integrated analysis of whole exome sequencing and copy number evaluation in Parkinson’s Disease. Sci. Rep. 9:3344. 10.1038/s41598-019-40102-x PubMed DOI PMC
Yi W., MacDougall E. J., Tang M. Y., Krahn A. I., Gan-Or Z., Trempe J. F., et al. (2019). The landscape of Parkin variants reveals pathogenic mechanisms and therapeutic targets in Parkinson’s disease. Hum. Mol. Genet. 28 2811–2825. 10.1093/hmg/ddz080 PubMed DOI PMC
Yim Y. I., Sun T., Wu L. G., Raimondi A., De Camilli P., Eisenberg E., et al. (2010). Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc. Natl. Acad. Sci. U S A. 107 4412–4417. 10.1073/pnas.1000738107 PubMed DOI PMC
Endemic parkinsonism: clusters, biology and clinical features