High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic

. 2022 Jan 14 ; 12 (1) : . [epub] 20220114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35054514

Parkinson's disease and parkinsonism are relatively common neurodegenerative disorders. This study aimed to assess potential genetic risk factors of haplotypes in genes associated with parkinsonism in a population in which endemic parkinsonism and atypical parkinsonism have recently been found. The genes ADH1C, EIF4G1, FBXO7, GBA, GIGYF2, HTRA2, LRRK2, MAPT, PARK2, PARK7, PINK1 PLA2G6, SNCA, UCHL1, and VPS35 were analyzed in 62 patients (P) and 69 age-matched controls from the researched area (C1). Variants were acquired by high-throughput sequencing using Ion Torrent workflow. As another set of controls, the whole genome sequencing data from 100 healthy non-related individuals from the Czech population were used (C2); the results were also compared with the Genome Project data (C3). We observed shared findings of four intron (rs11564187, rs36220738, rs200829235, and rs3789329) and one exon variant (rs33995883) in the LRRK2 gene in six patients. A comparison of the C1-C3 groups revealed significant differences in haplotype frequencies between ratio of 2.09 for C1, 1.65 for C2, and 6.3 for C3, and odds ratios of 13.15 for C1, 2.58 for C2, and 7.6 for C3 were estimated. The co-occurrence of five variants in the LRRK2 gene (very probably in haplotype) could be an important potential risk factor for the development of parkinsonism, even outside the recently described pedigrees in the researched area where endemic parkinsonism is present.

Zobrazit více v PubMed

Deng H., Gao K., Jankovic J. TheVPS35gene and Parkinson’s disease. Mov. Disord. 2013;28:569–575. doi: 10.1002/mds.25430. PubMed DOI

De Lau L.M.L., Breteler M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9. PubMed DOI

Berardelli A., Rothwell J.C., Thompson P.D., Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 2001;124:2131–2146. doi: 10.1093/brain/124.11.2131. PubMed DOI

Noyce A., Msc J.P.B., Silveira-Moriyama L., Hawkes C.H., Giovannoni G., Lees A.J., Schrag A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012;72:893–901. doi: 10.1002/ana.23687. PubMed DOI PMC

Kieburtz K., Wunderle K.B. Parkinson’s disease: Evidence for environmental risk factors. Mov. Disord. 2013;28:8–13. doi: 10.1002/mds.25150. PubMed DOI

Lill C.M. Genetics of Parkinson’s disease. Mol. Cell. Probes. 2016;30:386–396. doi: 10.1016/j.mcp.2016.11.001. PubMed DOI

Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276:2045–2047. doi: 10.1126/science.276.5321.2045. PubMed DOI

Zhang M., Cai F., Zhang S., Zhang S., Song W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 2014;4:7298. doi: 10.1038/srep07298. PubMed DOI PMC

Rydning S.L., Backe P.H., Sousa M.M.L., Iqbal Z., Øye A.M., Sheng Y., Yang M., Lin X., Slupphaug G., Nordenmark T.H., et al. NovelUCHL1 mutations reveal new insights into ubiquitin processing. Hum. Mol. Genet. 2016;26:1031–1040. PubMed

Bilguvar K., Tyagi N.K., Ozkara C., Tüysüz B., Bakircioglu M., Choi M., Delil S., Caglayan A., Baranoski J.F., Erturk O., et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc. Natl. Acad. Sci. USA. 2013;110:3489–3494. doi: 10.1073/pnas.1222732110. PubMed DOI PMC

Li J.-Q., Tan L., Yu J.-T. The role of the LRRK2 gene in Parkinsonism. Mol. Neurodegener. 2014;9:47. doi: 10.1186/1750-1326-9-47. PubMed DOI PMC

Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne D.B., et al. Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron. 2004;44:601–607. doi: 10.1016/j.neuron.2004.11.005. PubMed DOI

Greggio E., Jain S., Kingsbury A., Bandopadhyay R., Lewis P., Kaganovich A., van der Brug M.P., Beilina A., Blackinton J., Thomas K.J., et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 2006;23:329–341. doi: 10.1016/j.nbd.2006.04.001. PubMed DOI

Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 2018;10:eaar5429. doi: 10.1126/scitranslmed.aar5429. PubMed DOI PMC

Ross O.A., Soto-Ortolaza A.I., Heckman M.G., Aasly J.O., Abahuni N., Annesi G., Bacon J.A., Bardien S., Bozi M., Brice A., et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: A case–control study. Lancet Neurol. 2011;10:898–908. doi: 10.1016/S1474-4422(11)70175-2. PubMed DOI PMC

Ruiz-Martínez J., Krebs C.E., Makarov V., Gorostidi A., Martí-Massó J.F., Paisán-Ruíz C. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J. Hum. Genet. 2015;60:637–640. doi: 10.1038/jhg.2015.69. PubMed DOI PMC

Bose A., Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016;139((Suppl. 1)):216–231. doi: 10.1111/jnc.13731. PubMed DOI

Mir R., Tonelli F., Lis P., Macartney T., Polinski N.K., Martinez T.N., Chou M.-Y., Howden A.J., König T., Hotzy C., et al. The Parkinson’s disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem. J. 2018;475:1861–1883. doi: 10.1042/BCJ20180248. PubMed DOI PMC

Chen Y.-F., Chang Y.-Y., Lan M.-Y., Chen P.-L., Lin C.-H. Identification of VPS35 p.D620N mutation-related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: A case report and literature review. BMC Neurol. 2017;17:191. doi: 10.1186/s12883-017-0972-5. PubMed DOI PMC

Chartier-Harlin M.-C., Dachsel J.C., Vilarino-Guell C., Lincoln S.J., Lepretre F., Hulihan M.M., Kachergus J., Milnerwood A.J., Tapia L., Song M.-S., et al. Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. Am. J. Hum. Genet. 2011;89:398–406. doi: 10.1016/j.ajhg.2011.08.009. PubMed DOI PMC

Buervenich S., Carmine A., Galter D., Shahabi H.N., Johnels B., Holmberg B., Ahlberg J., Nissbrandt H., Eerola J., Hellström O., et al. A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample. Arch. Neurol. 2005;62:74–78. doi: 10.1001/archneur.62.1.74. PubMed DOI

Gegg M.E., Schapira A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018;285:3591–3603. doi: 10.1111/febs.14393. PubMed DOI

McNeill A., Magalhaes J., Shen C., Chau K., Hughes D., Mehta A., Foltynie T., Cooper J.M., Abramov A., Gegg M., et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain. 2014;137:1481–1495. doi: 10.1093/brain/awu020. PubMed DOI PMC

Deutschlander A.B., Konno T., Soto-Beasley A.I., Walton R.L., van Gerpen J.A., Uitti R.J., Heckman M.G., Wszolek Z.K., Ross O.A. Association of MAPT subhaplotypes with clinical and demographic features in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020;7:1557–1563. doi: 10.1002/acn3.51139. PubMed DOI PMC

Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., et al. Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science. 2004;304:1158–1160. doi: 10.1126/science.1096284. PubMed DOI

Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld G.J., Krieger E., Dekker M.C.J., Squitieri F., Ibanez P., Joosse M., et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science. 2003;299:256–259. doi: 10.1126/science.1077209. PubMed DOI

Park J., Lee S.B., Lee S., Kim Y., Song S., Kim S., Bae E., Kim J., Shong M., Kim J.-M., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–1161. doi: 10.1038/nature04788. PubMed DOI

Yoshino H., Tomiyama H., Tachibana N., Ogaki K., Li Y., Funayama M., Hashimoto T., Takashima S., Hattori N. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology. 2010;75:1356–1361. doi: 10.1212/WNL.0b013e3181f73649. PubMed DOI

Zhao T., De Graaff E., Breedveld G.J., Loda A., Severijnen L.A., Wouters C.H., Verheijen F.W., Dekker M.C., Montagna P., Willemsen R., et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syn-drome (PARK15) Public Libr. Sci. One. 2011;6:e16983. PubMed PMC

Hirano A., Kurland L.T., Krooth R.S., Lessell S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain. 1961;84:642–661. doi: 10.1093/brain/84.4.642. PubMed DOI

Hirano A., Malamud N., Kurland L.T. Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain. 1961;84:662–679. doi: 10.1093/brain/84.4.662. PubMed DOI

Gajdusek D.C., Salazar A.M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology. 1982;32:107–126. doi: 10.1212/WNL.32.2.107. PubMed DOI

De Rijk M.C., Tzourio C., Breteler M.M., Dartigues J.F., Amaducci L., Lopez-Pousa S., Manubens-Bertran J.M., Alperovitch A., Rocca W.A. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 1997;62:10–15. doi: 10.1136/jnnp.62.1.10. PubMed DOI PMC

Wermuth L., Joensen P., Bünger N., Jeune B. High prevalence of Parkinson’s disease in the Faroe Islands. Neurology. 1997;49:426–432. doi: 10.1212/WNL.49.2.426. PubMed DOI

Mensikova K., Kanovsky P., Kaiserova M., Mikulicova L., Vastik M., Hlustik P., Jugas P., Ovecka J., Janout V. Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern Moravia, Czech Republic. Eur. J. Epidemiol. 2013;28:833–836. doi: 10.1007/s10654-013-9823-x. PubMed DOI

Bartoníková T., Menšíková K., Kolaříková K., Vodicka R., Vrtěl R., Otruba P., Kaiserová M., Vaštík M., Mikulicová L., Ovečka J., et al. New endemic familial parkinsonism in south Moravia, Czech Republic and its genetical background. Medicine. 2018;97:e12313. doi: 10.1097/MD.0000000000012313. PubMed DOI PMC

Vodicka R., Vrtel R., Mensikova K., Kanovsky P., Dolinova I., Kolarikova K., Prochazka M. Next Generation Sequencing Data Analysis Evaluation in Patients with Parkinsonism from a Genetically Isolated Population. Genom. Comput. Biol. 2017;3:e44. doi: 10.18547/gcb.2017.vol3.iss3.e44. DOI

Menšíková K., Tučková L., Kolařiková K., Bartoníková T., Vodicka R., Ehrmann J., Vrtěl R., Procházka M., Kaňovský P., Kovacs G.G. Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 2019;137:171–173. doi: 10.1007/s00401-018-1923-y. PubMed DOI

Paisán-Ruíz C., Jain S., Evans E.W., Gilks W.P., Simón J., Van Der Brug M., De Munain A.L., Aparicio S., Gil A.M., Khan N., et al. Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson’s Disease. Neuron. 2004;44:595–600. doi: 10.1016/j.neuron.2004.10.023. PubMed DOI

Kalia L.V., Lang A.E., Hazrati L.-N., Fujioka S., Wszolek Z.K., Dickson D.W., Ross O.A., Van Deerlin V.M., Trojanowski J.Q., Hurtig H.I., et al. Clinical Correlations With Lewy Body Pathology inLRRK2-Related Parkinson Disease. JAMA Neurol. 2015;72:100–105. doi: 10.1001/jamaneurol.2014.2704. PubMed DOI PMC

Schneider S.A., Alcalay R.N. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov. Disord. 2017;32:1504–1523. doi: 10.1002/mds.27193. PubMed DOI PMC

Weil R.S., Lashley T., Bras J., Schrag A.E., Schott J. Current concepts and controversies in the pathogenesis of Parkinson’s disease dementia and Dementia with Lewy Bodies. F1000Research. 2017;6:1604. doi: 10.12688/f1000research.11725.1. PubMed DOI PMC

Trinh J., Zeldenrust F.M., Huang J., Kasten M., Schaake S., Petkovic S., Madoev H., Grünewald A., Almuammar S., König I.R., et al. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 2018;33:1857–1870. doi: 10.1002/mds.27527. PubMed DOI

Wallings R., Manzoni C., Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J. 2015;282:2806–2826. doi: 10.1111/febs.13305. PubMed DOI PMC

Arranz A.M., Delbroek L., Van Kolen K., Guimaraes M.R., Mandemakers W., Daneels G., Matta S., Calafate S., Shaban H., Baatsen P., et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J. Cell Sci. 2014;128:541–552. doi: 10.1242/jcs.158196. PubMed DOI

Hakimi M., Selvanantham T., Swinton E., Padmore R.F., Tong Y., Kabbach G., Venderova K., Girardin S.E., Bulman D.E., Scherzer C.R., et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J. Neural Transm. 2011;118:795–808. doi: 10.1007/s00702-011-0653-2. PubMed DOI PMC

Gardet A., Benita Y., Li C., Sands B.E., Ballester I., Stevens C., Korzenik J.R., Rioux J.D., Daly M.J., Xavier R.J., et al. LRRK2 Is Involved in the IFN-γ Response and Host Response to Pathogens. J. Immunol. 2010;185:5577–5585. doi: 10.4049/jimmunol.1000548. PubMed DOI PMC

Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., Brice A., Aasly J., Zabetian C.P., Goldwurm S., et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008;7:583–590. doi: 10.1016/S1474-4422(08)70117-0. PubMed DOI PMC

Lesage S., Dürr A., Tazir M., Lohmann E., Leutenegger A.-L., Janin S., Pollak P., Brice A. LRRK2G2019S as a Cause of Parkinson’s Disease in North African Arabs. N. Engl. J. Med. 2006;354:422–423. doi: 10.1056/NEJMc055540. PubMed DOI

Ozelius L.J., Senthil G., Saunders-Pullman R., Ohmann E., Deligtisch A., Tagliati M., Hunt A.L., Klein C., Henick B., Hailpern S.M., et al. LRRK2G2019S as a Cause of Parkinson’s Disease in Ashkenazi Jews. N. Engl. J. Med. 2006;354:424–425. doi: 10.1056/NEJMc055509. PubMed DOI

Hui K.Y., Fernandez-Hernandez H., Hu J., Schaffner A., Pankratz N., Hsu N.-Y., Chuang L.-S., Carmi S., Villaverde N., Li X., et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 2018;10:eaai779510. doi: 10.1126/scitranslmed.aai7795. PubMed DOI PMC

Xiao B., Deng X., Ng E.Y.-L., Allen J.C., Lim S.-Y., Ahmad-Annuar A., Tan E.-K. Association of LRRK2 Haplotype with Age at Onset in Parkinson Disease. JAMA Neurol. 2018;75:127–128. doi: 10.1001/jamaneurol.2017.3363. PubMed DOI PMC

Heckman M.G., Elbaz A., Soto-Ortolaza A.I., Serie D.J., Aasly J.O., Annesi G., Auburger G., Bacon J.A., Boczarska-Jedynak M., Bozi M., et al. The protective effect of LRRK2 p.R1398H on risk of Parkinson’s disease is independent of MAPT and SNCA variants. Neurobiol. Aging. 2013;35:266.e5–266.e14. doi: 10.1016/j.neurobiolaging.2013.07.013. PubMed DOI PMC

Paisã¡n-Ruiz C. LRRK2gene variation and its contribution to Parkinson disease. Hum. Mutat. 2009;30:1153–1160. doi: 10.1002/humu.21038. PubMed DOI

Paisán-Ruiz C., Washecka N., Nath P., Singleton A.B., Corder E.H. Parkinson’s Disease and Low Frequency Alleles Found Together ThroughoutLRRK2. Ann. Hum. Genet. 2009;73:391–403. doi: 10.1111/j.1469-1809.2009.00524.x. PubMed DOI PMC

Setó-Salvia N., Clarimón J., Pagonabarraga J., Pascual-Sedano B., Campolongo A., Combarros O., Mateo J.I., Regaña D., Martínez-Corral M., Marquié M., et al. Dementia Risk in Parkinson Disease. Arch. Neurol. 2011;68:359–364. doi: 10.1001/archneurol.2011.17. PubMed DOI

Smith W.W., Pei Z., Jiang H., Dawson V.L., Dawson T.M., A Ross C. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 2006;9:1231–1233. doi: 10.1038/nn1776. PubMed DOI

Gilsbach B.K., Ekortholt A. Structural biology of the LRRK2 GTPase and kinase domains: Implications for regulation. Front. Mol. Neurosci. 2014;7:32. doi: 10.3389/fnmol.2014.00032. PubMed DOI PMC

1000 Genomes Project Consortium. Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC

Greggio E., Cookson M.R. Leucine-Rich Repeat Kinase 2 Mutations and Parkinson’s Disease: Three Questions. ASN Neuro. 2009;1:AN20090007. doi: 10.1042/AN20090007. PubMed DOI PMC

Deng X., Dzamko N., Prescott A., Davies P., Liu Q., Yang Q., Lee J.-D., Patricelli M.P., Nomanbhoy T.K., Alessi D.R., et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat. Chem. Biol. 2011;7:203–205. doi: 10.1038/nchembio.538. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Endemic parkinsonism: clusters, biology and clinical features

. 2023 Oct ; 19 (10) : 599-616. [epub] 20230908

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...