High-Throughput Sequencing Haplotype Analysis Indicates in LRRK2 Gene a Potential Risk Factor for Endemic Parkinsonism in Southeastern Moravia, Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35054514
PubMed Central
PMC8780375
DOI
10.3390/life12010121
PII: life12010121
Knihovny.cz E-zdroje
- Klíčová slova
- LRRK2 gene, Parkinson’s disease, atypical Parkinson syndrome, haplotype, high-throughput sequencing,
- Publikační typ
- časopisecké články MeSH
Parkinson's disease and parkinsonism are relatively common neurodegenerative disorders. This study aimed to assess potential genetic risk factors of haplotypes in genes associated with parkinsonism in a population in which endemic parkinsonism and atypical parkinsonism have recently been found. The genes ADH1C, EIF4G1, FBXO7, GBA, GIGYF2, HTRA2, LRRK2, MAPT, PARK2, PARK7, PINK1 PLA2G6, SNCA, UCHL1, and VPS35 were analyzed in 62 patients (P) and 69 age-matched controls from the researched area (C1). Variants were acquired by high-throughput sequencing using Ion Torrent workflow. As another set of controls, the whole genome sequencing data from 100 healthy non-related individuals from the Czech population were used (C2); the results were also compared with the Genome Project data (C3). We observed shared findings of four intron (rs11564187, rs36220738, rs200829235, and rs3789329) and one exon variant (rs33995883) in the LRRK2 gene in six patients. A comparison of the C1-C3 groups revealed significant differences in haplotype frequencies between ratio of 2.09 for C1, 1.65 for C2, and 6.3 for C3, and odds ratios of 13.15 for C1, 2.58 for C2, and 7.6 for C3 were estimated. The co-occurrence of five variants in the LRRK2 gene (very probably in haplotype) could be an important potential risk factor for the development of parkinsonism, even outside the recently described pedigrees in the researched area where endemic parkinsonism is present.
Department of Medical Genetics University Hospital Olomouc 779 00 Olomouc Czech Republic
Department of Neurology University Hospital Olomouc 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Deng H., Gao K., Jankovic J. TheVPS35gene and Parkinson’s disease. Mov. Disord. 2013;28:569–575. doi: 10.1002/mds.25430. PubMed DOI
De Lau L.M.L., Breteler M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5:525–535. doi: 10.1016/S1474-4422(06)70471-9. PubMed DOI
Berardelli A., Rothwell J.C., Thompson P.D., Hallett M. Pathophysiology of bradykinesia in Parkinson’s disease. Brain. 2001;124:2131–2146. doi: 10.1093/brain/124.11.2131. PubMed DOI
Noyce A., Msc J.P.B., Silveira-Moriyama L., Hawkes C.H., Giovannoni G., Lees A.J., Schrag A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012;72:893–901. doi: 10.1002/ana.23687. PubMed DOI PMC
Kieburtz K., Wunderle K.B. Parkinson’s disease: Evidence for environmental risk factors. Mov. Disord. 2013;28:8–13. doi: 10.1002/mds.25150. PubMed DOI
Lill C.M. Genetics of Parkinson’s disease. Mol. Cell. Probes. 2016;30:386–396. doi: 10.1016/j.mcp.2016.11.001. PubMed DOI
Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., et al. Mutation in the α-Synuclein Gene Identified in Families with Parkinson’s Disease. Science. 1997;276:2045–2047. doi: 10.1126/science.276.5321.2045. PubMed DOI
Zhang M., Cai F., Zhang S., Zhang S., Song W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer’s progression in vivo. Sci. Rep. 2014;4:7298. doi: 10.1038/srep07298. PubMed DOI PMC
Rydning S.L., Backe P.H., Sousa M.M.L., Iqbal Z., Øye A.M., Sheng Y., Yang M., Lin X., Slupphaug G., Nordenmark T.H., et al. NovelUCHL1 mutations reveal new insights into ubiquitin processing. Hum. Mol. Genet. 2016;26:1031–1040. PubMed
Bilguvar K., Tyagi N.K., Ozkara C., Tüysüz B., Bakircioglu M., Choi M., Delil S., Caglayan A., Baranoski J.F., Erturk O., et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc. Natl. Acad. Sci. USA. 2013;110:3489–3494. doi: 10.1073/pnas.1222732110. PubMed DOI PMC
Li J.-Q., Tan L., Yu J.-T. The role of the LRRK2 gene in Parkinsonism. Mol. Neurodegener. 2014;9:47. doi: 10.1186/1750-1326-9-47. PubMed DOI PMC
Zimprich A., Biskup S., Leitner P., Lichtner P., Farrer M., Lincoln S., Kachergus J., Hulihan M., Uitti R.J., Calne D.B., et al. Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology. Neuron. 2004;44:601–607. doi: 10.1016/j.neuron.2004.11.005. PubMed DOI
Greggio E., Jain S., Kingsbury A., Bandopadhyay R., Lewis P., Kaganovich A., van der Brug M.P., Beilina A., Blackinton J., Thomas K.J., et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol. Dis. 2006;23:329–341. doi: 10.1016/j.nbd.2006.04.001. PubMed DOI
Di Maio R., Hoffman E.K., Rocha E.M., Keeney M.T., Sanders L.H., De Miranda B.R., Zharikov A., Van Laar A., Stepan A.F., Lanz T.A., et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci. Transl. Med. 2018;10:eaar5429. doi: 10.1126/scitranslmed.aar5429. PubMed DOI PMC
Ross O.A., Soto-Ortolaza A.I., Heckman M.G., Aasly J.O., Abahuni N., Annesi G., Bacon J.A., Bardien S., Bozi M., Brice A., et al. Association of LRRK2 exonic variants with susceptibility to Parkinson’s disease: A case–control study. Lancet Neurol. 2011;10:898–908. doi: 10.1016/S1474-4422(11)70175-2. PubMed DOI PMC
Ruiz-Martínez J., Krebs C.E., Makarov V., Gorostidi A., Martí-Massó J.F., Paisán-Ruíz C. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J. Hum. Genet. 2015;60:637–640. doi: 10.1038/jhg.2015.69. PubMed DOI PMC
Bose A., Beal M.F. Mitochondrial dysfunction in Parkinson’s disease. J. Neurochem. 2016;139((Suppl. 1)):216–231. doi: 10.1111/jnc.13731. PubMed DOI
Mir R., Tonelli F., Lis P., Macartney T., Polinski N.K., Martinez T.N., Chou M.-Y., Howden A.J., König T., Hotzy C., et al. The Parkinson’s disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem. J. 2018;475:1861–1883. doi: 10.1042/BCJ20180248. PubMed DOI PMC
Chen Y.-F., Chang Y.-Y., Lan M.-Y., Chen P.-L., Lin C.-H. Identification of VPS35 p.D620N mutation-related Parkinson’s disease in a Taiwanese family with successful bilateral subthalamic nucleus deep brain stimulation: A case report and literature review. BMC Neurol. 2017;17:191. doi: 10.1186/s12883-017-0972-5. PubMed DOI PMC
Chartier-Harlin M.-C., Dachsel J.C., Vilarino-Guell C., Lincoln S.J., Lepretre F., Hulihan M.M., Kachergus J., Milnerwood A.J., Tapia L., Song M.-S., et al. Translation Initiator EIF4G1 Mutations in Familial Parkinson Disease. Am. J. Hum. Genet. 2011;89:398–406. doi: 10.1016/j.ajhg.2011.08.009. PubMed DOI PMC
Buervenich S., Carmine A., Galter D., Shahabi H.N., Johnels B., Holmberg B., Ahlberg J., Nissbrandt H., Eerola J., Hellström O., et al. A Rare Truncating Mutation in ADH1C (G78Stop) Shows Significant Association With Parkinson Disease in a Large International Sample. Arch. Neurol. 2005;62:74–78. doi: 10.1001/archneur.62.1.74. PubMed DOI
Gegg M.E., Schapira A.H.V. The role of glucocerebrosidase in Parkinson disease pathogenesis. FEBS J. 2018;285:3591–3603. doi: 10.1111/febs.14393. PubMed DOI
McNeill A., Magalhaes J., Shen C., Chau K., Hughes D., Mehta A., Foltynie T., Cooper J.M., Abramov A., Gegg M., et al. Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells. Brain. 2014;137:1481–1495. doi: 10.1093/brain/awu020. PubMed DOI PMC
Deutschlander A.B., Konno T., Soto-Beasley A.I., Walton R.L., van Gerpen J.A., Uitti R.J., Heckman M.G., Wszolek Z.K., Ross O.A. Association of MAPT subhaplotypes with clinical and demographic features in Parkinson’s disease. Ann. Clin. Transl. Neurol. 2020;7:1557–1563. doi: 10.1002/acn3.51139. PubMed DOI PMC
Valente E.M., Abou-Sleiman P.M., Caputo V., Muqit M.M.K., Harvey K., Gispert S., Ali Z., Del Turco D., Bentivoglio A.R., Healy D.G., et al. Hereditary Early-Onset Parkinson’s Disease Caused by Mutations in PINK1. Science. 2004;304:1158–1160. doi: 10.1126/science.1096284. PubMed DOI
Bonifati V., Rizzu P., van Baren M.J., Schaap O., Breedveld G.J., Krieger E., Dekker M.C.J., Squitieri F., Ibanez P., Joosse M., et al. Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science. 2003;299:256–259. doi: 10.1126/science.1077209. PubMed DOI
Park J., Lee S.B., Lee S., Kim Y., Song S., Kim S., Bae E., Kim J., Shong M., Kim J.-M., et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–1161. doi: 10.1038/nature04788. PubMed DOI
Yoshino H., Tomiyama H., Tachibana N., Ogaki K., Li Y., Funayama M., Hashimoto T., Takashima S., Hattori N. Phenotypic spectrum of patients with PLA2G6 mutation and PARK14-linked parkinsonism. Neurology. 2010;75:1356–1361. doi: 10.1212/WNL.0b013e3181f73649. PubMed DOI
Zhao T., De Graaff E., Breedveld G.J., Loda A., Severijnen L.A., Wouters C.H., Verheijen F.W., Dekker M.C., Montagna P., Willemsen R., et al. Loss of nuclear activity of the FBXO7 protein in patients with parkinsonian-pyramidal syn-drome (PARK15) Public Libr. Sci. One. 2011;6:e16983. PubMed PMC
Hirano A., Kurland L.T., Krooth R.S., Lessell S. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain. 1961;84:642–661. doi: 10.1093/brain/84.4.642. PubMed DOI
Hirano A., Malamud N., Kurland L.T. Parkinsonism-dementia complex, an endemic disease on the island of Guam. II. Pathological features. Brain. 1961;84:662–679. doi: 10.1093/brain/84.4.662. PubMed DOI
Gajdusek D.C., Salazar A.M. Amyotrophic lateral sclerosis and parkinsonian syndromes in high incidence among the Auyu and Jakai people of West New Guinea. Neurology. 1982;32:107–126. doi: 10.1212/WNL.32.2.107. PubMed DOI
De Rijk M.C., Tzourio C., Breteler M.M., Dartigues J.F., Amaducci L., Lopez-Pousa S., Manubens-Bertran J.M., Alperovitch A., Rocca W.A. Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry. 1997;62:10–15. doi: 10.1136/jnnp.62.1.10. PubMed DOI PMC
Wermuth L., Joensen P., Bünger N., Jeune B. High prevalence of Parkinson’s disease in the Faroe Islands. Neurology. 1997;49:426–432. doi: 10.1212/WNL.49.2.426. PubMed DOI
Mensikova K., Kanovsky P., Kaiserova M., Mikulicova L., Vastik M., Hlustik P., Jugas P., Ovecka J., Janout V. Prevalence of neurodegenerative parkinsonism in an isolated population in south-eastern Moravia, Czech Republic. Eur. J. Epidemiol. 2013;28:833–836. doi: 10.1007/s10654-013-9823-x. PubMed DOI
Bartoníková T., Menšíková K., Kolaříková K., Vodicka R., Vrtěl R., Otruba P., Kaiserová M., Vaštík M., Mikulicová L., Ovečka J., et al. New endemic familial parkinsonism in south Moravia, Czech Republic and its genetical background. Medicine. 2018;97:e12313. doi: 10.1097/MD.0000000000012313. PubMed DOI PMC
Vodicka R., Vrtel R., Mensikova K., Kanovsky P., Dolinova I., Kolarikova K., Prochazka M. Next Generation Sequencing Data Analysis Evaluation in Patients with Parkinsonism from a Genetically Isolated Population. Genom. Comput. Biol. 2017;3:e44. doi: 10.18547/gcb.2017.vol3.iss3.e44. DOI
Menšíková K., Tučková L., Kolařiková K., Bartoníková T., Vodicka R., Ehrmann J., Vrtěl R., Procházka M., Kaňovský P., Kovacs G.G. Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP-P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 2019;137:171–173. doi: 10.1007/s00401-018-1923-y. PubMed DOI
Paisán-Ruíz C., Jain S., Evans E.W., Gilks W.P., Simón J., Van Der Brug M., De Munain A.L., Aparicio S., Gil A.M., Khan N., et al. Cloning of the Gene Containing Mutations that Cause PARK8-Linked Parkinson’s Disease. Neuron. 2004;44:595–600. doi: 10.1016/j.neuron.2004.10.023. PubMed DOI
Kalia L.V., Lang A.E., Hazrati L.-N., Fujioka S., Wszolek Z.K., Dickson D.W., Ross O.A., Van Deerlin V.M., Trojanowski J.Q., Hurtig H.I., et al. Clinical Correlations With Lewy Body Pathology inLRRK2-Related Parkinson Disease. JAMA Neurol. 2015;72:100–105. doi: 10.1001/jamaneurol.2014.2704. PubMed DOI PMC
Schneider S.A., Alcalay R.N. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov. Disord. 2017;32:1504–1523. doi: 10.1002/mds.27193. PubMed DOI PMC
Weil R.S., Lashley T., Bras J., Schrag A.E., Schott J. Current concepts and controversies in the pathogenesis of Parkinson’s disease dementia and Dementia with Lewy Bodies. F1000Research. 2017;6:1604. doi: 10.12688/f1000research.11725.1. PubMed DOI PMC
Trinh J., Zeldenrust F.M., Huang J., Kasten M., Schaake S., Petkovic S., Madoev H., Grünewald A., Almuammar S., König I.R., et al. Genotype-phenotype relations for the Parkinson’s disease genes SNCA, LRRK2, VPS35: MDSGene systematic review. Mov. Disord. 2018;33:1857–1870. doi: 10.1002/mds.27527. PubMed DOI
Wallings R., Manzoni C., Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J. 2015;282:2806–2826. doi: 10.1111/febs.13305. PubMed DOI PMC
Arranz A.M., Delbroek L., Van Kolen K., Guimaraes M.R., Mandemakers W., Daneels G., Matta S., Calafate S., Shaban H., Baatsen P., et al. LRRK2 functions in synaptic vesicle endocytosis through a kinase-dependent mechanism. J. Cell Sci. 2014;128:541–552. doi: 10.1242/jcs.158196. PubMed DOI
Hakimi M., Selvanantham T., Swinton E., Padmore R.F., Tong Y., Kabbach G., Venderova K., Girardin S.E., Bulman D.E., Scherzer C.R., et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J. Neural Transm. 2011;118:795–808. doi: 10.1007/s00702-011-0653-2. PubMed DOI PMC
Gardet A., Benita Y., Li C., Sands B.E., Ballester I., Stevens C., Korzenik J.R., Rioux J.D., Daly M.J., Xavier R.J., et al. LRRK2 Is Involved in the IFN-γ Response and Host Response to Pathogens. J. Immunol. 2010;185:5577–5585. doi: 10.4049/jimmunol.1000548. PubMed DOI PMC
Healy D.G., Falchi M., O’Sullivan S.S., Bonifati V., Durr A., Bressman S., Brice A., Aasly J., Zabetian C.P., Goldwurm S., et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008;7:583–590. doi: 10.1016/S1474-4422(08)70117-0. PubMed DOI PMC
Lesage S., Dürr A., Tazir M., Lohmann E., Leutenegger A.-L., Janin S., Pollak P., Brice A. LRRK2G2019S as a Cause of Parkinson’s Disease in North African Arabs. N. Engl. J. Med. 2006;354:422–423. doi: 10.1056/NEJMc055540. PubMed DOI
Ozelius L.J., Senthil G., Saunders-Pullman R., Ohmann E., Deligtisch A., Tagliati M., Hunt A.L., Klein C., Henick B., Hailpern S.M., et al. LRRK2G2019S as a Cause of Parkinson’s Disease in Ashkenazi Jews. N. Engl. J. Med. 2006;354:424–425. doi: 10.1056/NEJMc055509. PubMed DOI
Hui K.Y., Fernandez-Hernandez H., Hu J., Schaffner A., Pankratz N., Hsu N.-Y., Chuang L.-S., Carmi S., Villaverde N., Li X., et al. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn’s disease and Parkinson’s disease. Sci. Transl. Med. 2018;10:eaai779510. doi: 10.1126/scitranslmed.aai7795. PubMed DOI PMC
Xiao B., Deng X., Ng E.Y.-L., Allen J.C., Lim S.-Y., Ahmad-Annuar A., Tan E.-K. Association of LRRK2 Haplotype with Age at Onset in Parkinson Disease. JAMA Neurol. 2018;75:127–128. doi: 10.1001/jamaneurol.2017.3363. PubMed DOI PMC
Heckman M.G., Elbaz A., Soto-Ortolaza A.I., Serie D.J., Aasly J.O., Annesi G., Auburger G., Bacon J.A., Boczarska-Jedynak M., Bozi M., et al. The protective effect of LRRK2 p.R1398H on risk of Parkinson’s disease is independent of MAPT and SNCA variants. Neurobiol. Aging. 2013;35:266.e5–266.e14. doi: 10.1016/j.neurobiolaging.2013.07.013. PubMed DOI PMC
Paisã¡n-Ruiz C. LRRK2gene variation and its contribution to Parkinson disease. Hum. Mutat. 2009;30:1153–1160. doi: 10.1002/humu.21038. PubMed DOI
Paisán-Ruiz C., Washecka N., Nath P., Singleton A.B., Corder E.H. Parkinson’s Disease and Low Frequency Alleles Found Together ThroughoutLRRK2. Ann. Hum. Genet. 2009;73:391–403. doi: 10.1111/j.1469-1809.2009.00524.x. PubMed DOI PMC
Setó-Salvia N., Clarimón J., Pagonabarraga J., Pascual-Sedano B., Campolongo A., Combarros O., Mateo J.I., Regaña D., Martínez-Corral M., Marquié M., et al. Dementia Risk in Parkinson Disease. Arch. Neurol. 2011;68:359–364. doi: 10.1001/archneurol.2011.17. PubMed DOI
Smith W.W., Pei Z., Jiang H., Dawson V.L., Dawson T.M., A Ross C. Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat. Neurosci. 2006;9:1231–1233. doi: 10.1038/nn1776. PubMed DOI
Gilsbach B.K., Ekortholt A. Structural biology of the LRRK2 GTPase and kinase domains: Implications for regulation. Front. Mol. Neurosci. 2014;7:32. doi: 10.3389/fnmol.2014.00032. PubMed DOI PMC
1000 Genomes Project Consortium. Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., et al. A global reference for human genetic variation. Nature. 2015;526:68–74. PubMed PMC
Greggio E., Cookson M.R. Leucine-Rich Repeat Kinase 2 Mutations and Parkinson’s Disease: Three Questions. ASN Neuro. 2009;1:AN20090007. doi: 10.1042/AN20090007. PubMed DOI PMC
Deng X., Dzamko N., Prescott A., Davies P., Liu Q., Yang Q., Lee J.-D., Patricelli M.P., Nomanbhoy T.K., Alessi D.R., et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nat. Chem. Biol. 2011;7:203–205. doi: 10.1038/nchembio.538. PubMed DOI PMC
Endemic parkinsonism: clusters, biology and clinical features