Ureidopyrazine Derivatives: Synthesis and Biological Evaluation as Anti-Infectives and Abiotic Elicitors

. 2017 Oct 23 ; 22 (10) : . [epub] 20171023

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29065539

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 μg/mL, 5.19 μM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 μg/mL, 18.91 μM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.

Zobrazit více v PubMed

Sia I.G., Wieland M.L. Current Concepts in the Management of Tuberculosis. Mayo Clin. Proc. 2011;86:348–361. doi: 10.4065/mcp.2010.0820. PubMed DOI PMC

Shenoi S., Heysell S., Moll A., Friedland G. Multidrug-resistant and extensively drug-resistant tuberculosis: Consequences for the global HIV community. Curr. Opin. Infect. Dis. 2009;22:11–17. doi: 10.1097/QCO.0b013e3283210020. PubMed DOI PMC

World Health Organization Global Tuberculosis Report 2016. [(accessed on 2 February 2017)]; WHO/HTM/TB/2016.13. Available online: http://www.who.int/tb/publications/global_report/en/

Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. [(accessed on 27 November 2016)]; Available online: http://www.his.org.uk/files/4514/1829/6668/AMR_Review_Paper_-_Tackling_a_crisis_for_the_health_and_wealth_of_nations_1.pdf.

Chaluvaraju K.C., Bhat K.I. Synthesis and antimicrobial activities of amino benzylated mannich bases of pyrazinamide. Int. J. ChemTech Res. 2010;2:1368–1371.

Jandourek O., Tauchman M., Paterova P., Konecna K., Navratilova L., Kubicek V., Holas O., Zitko J., Dolezal M. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation. Molecules. 2017;22:223. doi: 10.3390/molecules22020223. PubMed DOI PMC

Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., Paterova P., Semelkova L., Jandourek O., Opletalova V. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs. Molecules. 2016;21:1421. doi: 10.3390/molecules21111421. PubMed DOI PMC

Semelkova L., Janoscova P., Fernandes C., Bouz G., Jandourek O., Konecna K., Paterova P., Navratilova L., Kunes J., Dolezal M., Zitko J. Design, Synthesis, Antimycobacterial Evaluation, and In Silico Studies of 3-(Phenylcarbamoyl)-pyrazine-2-carboxylic Acids. Molecules. 2017;22:1491. doi: 10.3390/molecules22091491. PubMed DOI PMC

Zhou S., Yang S., Huang G. Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J. Enzym. Inhibit. Med. Chem. 2017;32:1183–1186. doi: 10.1080/14756366.2017.1367774. PubMed DOI PMC

Zitko J., Barbora S.-V., Paterová P., Navrátilová L., Trejtnar F., Kuneš J., Doležal M. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides. Chem. Pap. 2016;70:649.

Conde M.B., Lapa E.S.J.R. New regimens for reducing the duration of the treatment of drug-susceptible pulmonary tuberculosis. Drug Dev. Res. 2011;72:501–508. doi: 10.1002/ddr.20456. PubMed DOI PMC

Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC

Kim H., Shibayama K., Rimbara E., Mori S. Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and Inhibition of Its Activity by Pyrazinamide. PLoS ONE. 2014;9:e100062. doi: 10.1371/journal.pone.0100062. PubMed DOI PMC

Shi W.L., Chen J.Z., Feng J., Cui P., Zhang S., Weng X.H., Zhang W.H., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC

Boehringer D., Ban N., Leibundgut M. 7.5-Å Cryo-EM Structure of the Mycobacterial Fatty Acid Synthase. J. Mol. Biol. 2013;425:841–849. doi: 10.1016/j.jmb.2012.12.021. PubMed DOI

Ciccarelli L., Connell S.R., Enderle M., Mills D.J., Vonck J., Grininger M. Structure and Conformational Variability of the Mycobacterium tuberculosis Fatty Acid Synthase Multienzyme Complex. Structure. 2013;21:1251–1257. doi: 10.1016/j.str.2013.04.023. PubMed DOI

Imaizumi T., Nakagawa H., Hori R., Watanabe Y., Soga S., Iida K., Onodera H. The synthesis and evaluation of the antiproliferative activity of deacidified GEX1A analogues. J. Antibiot. 2017;70:675–679. doi: 10.1038/ja.2016.166. PubMed DOI

Hackbarth C.J., Chen D.Z., Lewis J.G., Clark K., Mangold J.B., Cramer J.A., Margolis P.S., Wang W., Koehn J., Wu C., et al. N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity. Antimicrob. Agents Chemother. 2002;46:2752–2764. doi: 10.1128/AAC.46.9.2752-2764.2002. PubMed DOI PMC

Boyle R.G., Imogai H.J., Cherry M. Preparation of Diarylureas as Chk-1 Kinase Inhibitors for the Treatment of Cancer. WO200,310,144,4A1. Patent. 2005 Aug 11;

Sorenson W.R. Reaction of an Isocyanate and a Carboxylic Acid in Dimethyl Sulfoxide. J. Org. Chem. 1959;24:978–980. doi: 10.1021/jo01089a024. DOI

Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. PubMed PMC

Zitko J., Servusová B., Paterová P., Mandíková J., Kubíček V., Kučera R., Hrabcová V., Kuneš J., Soukup O., Doležal M. Synthesis, Antimycobacterial Activity and In Vitro Cytotoxicity of 5-Chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807. doi: 10.3390/molecules181214807. PubMed DOI PMC

Semelkova L., Konecna K., Paterova P., Kubicek V., Kunes J., Novakova L., Marek J., Naesens L., Pesko M., Kralova K., et al. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides. Molecules. 2015;20:8687–8711. doi: 10.3390/molecules20058687. PubMed DOI PMC

Nguta J.M., Appiah-Opong R., Nyarko A.K., Yeboah-Manu D., Addo P.G. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol. 2015;4:165–183. doi: 10.1016/j.ijmyco.2015.05.004. PubMed DOI

Hsiao C.H., Tsai T.F., Hsueh P.R. Characteristics of skin and soft tissue infection caused by non-tuberculous mycobacteria in Taiwan. Int. J. Tuberc. Lung Dis. 2011;15:811–817. doi: 10.5588/ijtld.10.0481. PubMed DOI

Katoch V.M. Infections due to non-tuberculous mycobacteria (NTM) Indian J. Med. Res. 2004;120:290–304. PubMed

Shimizu F., Hatano Y., Okamoto O., Katagiri K., Fujiwara S., Sato S., Kato A., Uezato H., Asato Y., Takahashi K. Mycobacterium smegmatis soft tissue infection. Int. J. Dermatol. 2012;51:1518–1520. doi: 10.1111/j.1365-4632.2010.04835.x. PubMed DOI

Gupta A., Bhakta S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012;67:1380–1391. doi: 10.1093/jac/dks056. PubMed DOI

Espinel-Ingroff A., Fothergill A., Ghannoum M., Manavathu E., Ostrosky-Zeichner L., Pfaller M., Rinaldi M., Schell W., Walsh T. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 2005;43:5243–5246. doi: 10.1128/JCM.43.10.5243-5246.2005. PubMed DOI PMC

Yew W.W., Leung C.C. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11:699–707. doi: 10.1111/j.1440-1843.2006.00941.x. PubMed DOI

Tostmann A., Boeree M.J., Peters W.H.M., Roelofs H.M.J., Aarnoutse R.E., van der Ven A.J.A.M., Dekhuijzen P.N.R. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Agents. 2008;31:577–580. doi: 10.1016/j.ijantimicag.2008.01.022. PubMed DOI

Zhang Z., Guo K., Bai Y., Dong J., Gao Z., Yuan Y., Wang Y., Liu L., Yue T. Identification, Synthesis, and Safety Assessment of Forchlorfenuron (1-(2-Chloro-4-pyridyl)-3-phenylurea) and Its Metabolites in Kiwifruits. J. Agric. Food. Chem. 2015;63:3059–3066. doi: 10.1021/acs.jafc.5b01100. PubMed DOI

Dolezal M., Tumova L., Kesetovicova D., Tuma J., Kral‘ova K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC

Tumova L., Tuma J., Dolezal M. Pyrazinecarboxamides as Potential Elicitors of Flavonolignan and Flavonoid Production in Silybum marianum and Ononis arvensis Cultures In Vitro. Molecules. 2011;16:9142–9152. doi: 10.3390/molecules16119142. PubMed DOI PMC

Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Kreft I., Fabjan N., Yasumoto K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006;98:508–512. doi: 10.1016/j.foodchem.2005.05.081. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...