Ureidopyrazine Derivatives: Synthesis and Biological Evaluation as Anti-Infectives and Abiotic Elicitors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29065539
PubMed Central
PMC6151446
DOI
10.3390/molecules22101797
PII: molecules22101797
Knihovny.cz E-zdroje
- Klíčová slova
- Mycobacterium tuberculosis, abiotic elicitors, anti-infectives, callus culture, ester, pyrazinoic acid, ureidopyrazine,
- MeSH
- antituberkulotika chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- Fagopyrum chemie MeSH
- fyziologický stres účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární struktura MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- proliferace buněk účinky léků MeSH
- pyrazinamid chemie farmakologie MeSH
- pyraziny chemická syntéza chemie farmakologie MeSH
- regulátory růstu rostlin chemická syntéza chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antituberkulotika MeSH
- propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate MeSH Prohlížeč
- propyl 5-(3-phenylureido)pyrazine-2-carboxylate MeSH Prohlížeč
- pyrazinamid MeSH
- pyraziny MeSH
- regulátory růstu rostlin MeSH
Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) has become a frequently deadly infection due to increasing antimicrobial resistance. This serious issue has driven efforts worldwide to discover new drugs effective against Mtb. One research area is the synthesis and evaluation of pyrazinamide derivatives as potential anti-TB drugs. In this paper we report the synthesis and biological evaluations of a series of ureidopyrazines. Compounds were synthesized by reacting alkyl/aryl isocyanates with aminopyrazine or with propyl 5-aminopyrazine-2-carboxylate. Reactions were performed in pressurized vials using a CEM Discover microwave reactor with a focused field. Purity and chemical structures of products were assessed, and the final compounds were tested in vitro for their antimycobacterial, antibacterial, and antifungal activities. Propyl 5-(3-phenylureido)pyrazine-2-carboxylate (compound 4, MICMtb = 1.56 μg/mL, 5.19 μM) and propyl 5-(3-(4-methoxyphenyl)ureido)pyrazine-2-carboxylate (compound 6, MICMtb = 6.25 μg/mL, 18.91 μM) had high antimycobacterial activity against Mtb H37Rv with no in vitro cytotoxicity on HepG2 cell line. Therefore 4 and 6 are suitable for further structural modifications that might improve their biological activity and physicochemical properties. Based on the structural similarity to 1-(2-chloropyridin-4-yl)-3-phenylurea, a known plant growth regulator, two selected compounds were evaluated for similar activity as abiotic elicitors.
Zobrazit více v PubMed
Sia I.G., Wieland M.L. Current Concepts in the Management of Tuberculosis. Mayo Clin. Proc. 2011;86:348–361. doi: 10.4065/mcp.2010.0820. PubMed DOI PMC
Shenoi S., Heysell S., Moll A., Friedland G. Multidrug-resistant and extensively drug-resistant tuberculosis: Consequences for the global HIV community. Curr. Opin. Infect. Dis. 2009;22:11–17. doi: 10.1097/QCO.0b013e3283210020. PubMed DOI PMC
World Health Organization Global Tuberculosis Report 2016. [(accessed on 2 February 2017)]; WHO/HTM/TB/2016.13. Available online: http://www.who.int/tb/publications/global_report/en/
Review on Antimicrobial Resistance Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. [(accessed on 27 November 2016)]; Available online: http://www.his.org.uk/files/4514/1829/6668/AMR_Review_Paper_-_Tackling_a_crisis_for_the_health_and_wealth_of_nations_1.pdf.
Chaluvaraju K.C., Bhat K.I. Synthesis and antimicrobial activities of amino benzylated mannich bases of pyrazinamide. Int. J. ChemTech Res. 2010;2:1368–1371.
Jandourek O., Tauchman M., Paterova P., Konecna K., Navratilova L., Kubicek V., Holas O., Zitko J., Dolezal M. Synthesis of Novel Pyrazinamide Derivatives Based on 3-Chloropyrazine-2-carboxamide and Their Antimicrobial Evaluation. Molecules. 2017;22:223. doi: 10.3390/molecules22020223. PubMed DOI PMC
Kucerova-Chlupacova M., Vyskovska-Tyllova V., Richterova-Finkova L., Kunes J., Buchta V., Vejsova M., Paterova P., Semelkova L., Jandourek O., Opletalova V. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs. Molecules. 2016;21:1421. doi: 10.3390/molecules21111421. PubMed DOI PMC
Semelkova L., Janoscova P., Fernandes C., Bouz G., Jandourek O., Konecna K., Paterova P., Navratilova L., Kunes J., Dolezal M., Zitko J. Design, Synthesis, Antimycobacterial Evaluation, and In Silico Studies of 3-(Phenylcarbamoyl)-pyrazine-2-carboxylic Acids. Molecules. 2017;22:1491. doi: 10.3390/molecules22091491. PubMed DOI PMC
Zhou S., Yang S., Huang G. Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J. Enzym. Inhibit. Med. Chem. 2017;32:1183–1186. doi: 10.1080/14756366.2017.1367774. PubMed DOI PMC
Zitko J., Barbora S.-V., Paterová P., Navrátilová L., Trejtnar F., Kuneš J., Doležal M. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides. Chem. Pap. 2016;70:649.
Conde M.B., Lapa E.S.J.R. New regimens for reducing the duration of the treatment of drug-susceptible pulmonary tuberculosis. Drug Dev. Res. 2011;72:501–508. doi: 10.1002/ddr.20456. PubMed DOI PMC
Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC
Kim H., Shibayama K., Rimbara E., Mori S. Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and Inhibition of Its Activity by Pyrazinamide. PLoS ONE. 2014;9:e100062. doi: 10.1371/journal.pone.0100062. PubMed DOI PMC
Shi W.L., Chen J.Z., Feng J., Cui P., Zhang S., Weng X.H., Zhang W.H., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC
Boehringer D., Ban N., Leibundgut M. 7.5-Å Cryo-EM Structure of the Mycobacterial Fatty Acid Synthase. J. Mol. Biol. 2013;425:841–849. doi: 10.1016/j.jmb.2012.12.021. PubMed DOI
Ciccarelli L., Connell S.R., Enderle M., Mills D.J., Vonck J., Grininger M. Structure and Conformational Variability of the Mycobacterium tuberculosis Fatty Acid Synthase Multienzyme Complex. Structure. 2013;21:1251–1257. doi: 10.1016/j.str.2013.04.023. PubMed DOI
Imaizumi T., Nakagawa H., Hori R., Watanabe Y., Soga S., Iida K., Onodera H. The synthesis and evaluation of the antiproliferative activity of deacidified GEX1A analogues. J. Antibiot. 2017;70:675–679. doi: 10.1038/ja.2016.166. PubMed DOI
Hackbarth C.J., Chen D.Z., Lewis J.G., Clark K., Mangold J.B., Cramer J.A., Margolis P.S., Wang W., Koehn J., Wu C., et al. N-Alkyl Urea Hydroxamic Acids as a New Class of Peptide Deformylase Inhibitors with Antibacterial Activity. Antimicrob. Agents Chemother. 2002;46:2752–2764. doi: 10.1128/AAC.46.9.2752-2764.2002. PubMed DOI PMC
Boyle R.G., Imogai H.J., Cherry M. Preparation of Diarylureas as Chk-1 Kinase Inhibitors for the Treatment of Cancer. WO200,310,144,4A1. Patent. 2005 Aug 11;
Sorenson W.R. Reaction of an Isocyanate and a Carboxylic Acid in Dimethyl Sulfoxide. J. Org. Chem. 1959;24:978–980. doi: 10.1021/jo01089a024. DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. PubMed PMC
Zitko J., Servusová B., Paterová P., Mandíková J., Kubíček V., Kučera R., Hrabcová V., Kuneš J., Soukup O., Doležal M. Synthesis, Antimycobacterial Activity and In Vitro Cytotoxicity of 5-Chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807. doi: 10.3390/molecules181214807. PubMed DOI PMC
Semelkova L., Konecna K., Paterova P., Kubicek V., Kunes J., Novakova L., Marek J., Naesens L., Pesko M., Kralova K., et al. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides. Molecules. 2015;20:8687–8711. doi: 10.3390/molecules20058687. PubMed DOI PMC
Nguta J.M., Appiah-Opong R., Nyarko A.K., Yeboah-Manu D., Addo P.G. Current perspectives in drug discovery against tuberculosis from natural products. Int. J. Mycobacteriol. 2015;4:165–183. doi: 10.1016/j.ijmyco.2015.05.004. PubMed DOI
Hsiao C.H., Tsai T.F., Hsueh P.R. Characteristics of skin and soft tissue infection caused by non-tuberculous mycobacteria in Taiwan. Int. J. Tuberc. Lung Dis. 2011;15:811–817. doi: 10.5588/ijtld.10.0481. PubMed DOI
Katoch V.M. Infections due to non-tuberculous mycobacteria (NTM) Indian J. Med. Res. 2004;120:290–304. PubMed
Shimizu F., Hatano Y., Okamoto O., Katagiri K., Fujiwara S., Sato S., Kato A., Uezato H., Asato Y., Takahashi K. Mycobacterium smegmatis soft tissue infection. Int. J. Dermatol. 2012;51:1518–1520. doi: 10.1111/j.1365-4632.2010.04835.x. PubMed DOI
Gupta A., Bhakta S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012;67:1380–1391. doi: 10.1093/jac/dks056. PubMed DOI
Espinel-Ingroff A., Fothergill A., Ghannoum M., Manavathu E., Ostrosky-Zeichner L., Pfaller M., Rinaldi M., Schell W., Walsh T. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 2005;43:5243–5246. doi: 10.1128/JCM.43.10.5243-5246.2005. PubMed DOI PMC
Yew W.W., Leung C.C. Antituberculosis drugs and hepatotoxicity. Respirology. 2006;11:699–707. doi: 10.1111/j.1440-1843.2006.00941.x. PubMed DOI
Tostmann A., Boeree M.J., Peters W.H.M., Roelofs H.M.J., Aarnoutse R.E., van der Ven A.J.A.M., Dekhuijzen P.N.R. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Agents. 2008;31:577–580. doi: 10.1016/j.ijantimicag.2008.01.022. PubMed DOI
Zhang Z., Guo K., Bai Y., Dong J., Gao Z., Yuan Y., Wang Y., Liu L., Yue T. Identification, Synthesis, and Safety Assessment of Forchlorfenuron (1-(2-Chloro-4-pyridyl)-3-phenylurea) and Its Metabolites in Kiwifruits. J. Agric. Food. Chem. 2015;63:3059–3066. doi: 10.1021/acs.jafc.5b01100. PubMed DOI
Dolezal M., Tumova L., Kesetovicova D., Tuma J., Kral‘ova K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC
Tumova L., Tuma J., Dolezal M. Pyrazinecarboxamides as Potential Elicitors of Flavonolignan and Flavonoid Production in Silybum marianum and Ononis arvensis Cultures In Vitro. Molecules. 2011;16:9142–9152. doi: 10.3390/molecules16119142. PubMed DOI PMC
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI
Kreft I., Fabjan N., Yasumoto K. Rutin content in buckwheat (Fagopyrum esculentum Moench) food materials and products. Food Chem. 2006;98:508–512. doi: 10.1016/j.foodchem.2005.05.081. DOI