How levelling and scan line corrections ruin roughness measurement and how to prevent it
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32943693
PubMed Central
PMC7499267
DOI
10.1038/s41598-020-72171-8
PII: 10.1038/s41598-020-72171-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Surface roughness plays an important role in various fields of nanoscience and nanotechnology. However, the present practices in roughness measurements, typically based on some Atomic Force Microscopy measurements for nanometric roughness or optical or mechanical profilometry for larger scale roughness significantly bias the results. Such biased values are present in nearly all the papers dealing with surface parameters, in the areas of nanotechnology, thin films or material science. Surface roughness, most typically root mean square value of irregularities Sq is often used parameter that is used to control the technologies or to link the surface properties with other material functionality. The error in estimated values depends on the ratio between scan size and roughness correlation length and on the way how the data are processed and can easily be larger than 10% without us noting anything suspicious. Here we present a survey of how large is the problem, detailed analysis of its nature and suggest methods to predict the error in roughness measurements and possibly to correct them. We also present a guidance for choosing suitable scan area during the measurement.
CEITEC Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
CEITEC Masaryk University Kamenice 5 625 00 Brno Czech Republic
Czech Metrology Institute Okružní 31 638 00 Brno Czech Republic
Zobrazit více v PubMed
Hutchings IM. Leonardo da Vincis studies of friction. Wear. 2016;360–361:51–66. doi: 10.1016/j.wear.2016.04.019. DOI
Liang SY, Hecker RL, Landers RG. Machining process monitoring and control: The state-of-the-art. J. Manuf. Sci. Eng. 2004;126:297–310. doi: 10.1115/1.1707035. DOI
Schmitz LT, Couey J, Marsh E, Mauntler N, Hughes D. Runout effects in milling: Surface finish, surface location error, and stability. Int. J. Mach. Tool. Manu. 2007;47:841–851. doi: 10.1016/j.ijmachtools.2006.06.014. DOI
Hansen HN, Hocken RJ, Tosello G. Replication of micro and nano surface geometries. CIRP Ann. 2011;60:695–714. doi: 10.1016/j.cirp.2011.05.008. DOI
Zhang SJ, To S, Wang SJ, Zhu ZW. A review of surface roughness generation in ultra-precision machining. Int. J. Mach. Tool. Manu. 2015;91:76–95. doi: 10.1016/j.ijmachtools.2015.02.001. DOI
Townsend A, Senin N, Blunt L, Leach RK, Taylor JS. Surface texture metrology for metal additive manufacturing: A review. Precision Eng. 2016;46:34–47. doi: 10.1016/j.precisioneng.2016.06.001. DOI
Gachot C, Rosenkranz A, Hsu SM, Costa HL. A critical assessment of surface texturing for friction and wear improvement. Wear. 2017;372:21–41. doi: 10.1016/j.wear.2016.11.020. DOI
Williams JA, Le HR. Tribology and MEMS. J. Phys. D Appl. Phys. 2006;39:R201–R214. doi: 10.1088/0022-3727/39/12/R01. DOI
Cresti A, Pala MG, Poli S, Mouis M, Ghibaudo G. A comparative study of surface-roughness-induced variability in silicon nanowire and double-gate FETs. IEEE T. Electron. Dev. 2011;58:2274–2281. doi: 10.1109/TED.2011.2147318. DOI
Pala MG, Cresti A. Increase of self-heating effects in nanodevices induced by surface roughness: A full-quantum study. J. Appl. Phys. 2015;117:084313. doi: 10.1063/1.4913511. DOI
Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA. Advances in engineered surfaces for functional performance. CIRP Ann. Manuf. Technol. 2008;57:750–769. doi: 10.1016/j.cirp.2008.09.003. DOI
Bhushan B. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J. Nanotechnol. 2011;2:66–84. doi: 10.3762/bjnano.2.9. PubMed DOI PMC
Macias G, Alba M, Marsal LF, Mihi A. Surface roughness boosts the SERS performance of imprinted plasmonic architectures. J. Mater. Chem. C. 2016;4:3970–3975. doi: 10.1039/c5tc02779a. DOI
Lee C, Robertson CS, Nguyen AH, Kahraman M, Wachsmann-Hogiu S. Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci. Rep. 2015;5:11644. doi: 10.1038/srep11644. PubMed DOI PMC
Alipour P, Toghraie D, Karimipour A, Hajian M. Modeling different structures in perturbed Poiseuille flow in a nanochannel by using of molecular dynamics simulation: Study the equilibrium. Phys. A Stat. Mech. Appl. 2019;515:13–30. doi: 10.1016/j.physa.2018.09.177. DOI
Pravinraj T, Patrikar R. Modeling and characterization of surface roughness effect on fluid flow in a polydimethylsiloxane microchannel using a fractal based lattice Boltzmann method. AIP Adv. 2018;8:065112. doi: 10.1063/1.5036797. DOI
Rodríguez-Fernández J, et al. The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Phys. Chem. Chem. Phys. 2009;11:5909–5914. doi: 10.1039/b905200n. PubMed DOI
Tan F, et al. Rough gold films as broadband absorbers for plasmonic enhancement of PubMed DOI PMC
Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E. Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater. 2010;6:2711–2720. doi: 10.1016/j.actbio.2010.01.016. PubMed DOI
Koçer G, et al. Light-responsive hierarchically structured liquid crystal polymer networks for harnessing cell adhesion and migration. Adv. Mater. 2017;29:1606407. doi: 10.1002/adma.201606407. PubMed DOI
Barabási A-L, Stanley HE. Fractal Concepts in Surface Growth. New York: Cambridge University Press; 1995.
Zhao, Y., Wang, G.-C. & Lu, T.-M. Characterization of amorphous and crystalline rough surface—principles and applications In Experimental Methods in the Physical Sciences, Vol. 37 (Academic Press, San Diego, 2000).
Chowdhury D, Ghose D. Super-roughening scaling behaviour of Si surface morphology at grazing incidence low energy ion beam sputtering. Appl. Surf. Sci. 2015;324:517–524. doi: 10.1016/j.apsusc.2014.07.209. DOI
Xin Q, et al. Surface roughening of ground fused silica processed by atmospheric inductively coupled plasma. Appl. Surf. Sci. 2015;341:142–148. doi: 10.1016/j.apsusc.2015.03.001. DOI
Obaidulla SM, Giri PK. Surface roughening and scaling behavior of vacuum-deposited DOI
Villarrubia JS. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stand. Technol. 1997;102:425–454. doi: 10.6028/jres.102.030. PubMed DOI PMC
Klapetek P, Ohlídal I. Theoretical analysis of the atomic force microscopy characterization of columnar thin films. Ultramicroscopy. 2003;94:19–29. doi: 10.1016/S0304-3991(02)00159-6. PubMed DOI
Buj-Corral I, Domínguez-Fernández A, Llucià RD. Influence of print orientation on surface roughness in fused deposition modeling (FDM) processes. Materials. 2019;12:3834. doi: 10.3390/ma12233834. PubMed DOI PMC
Klapetek P. Quantitative Data Processing in Scanning Probe Microscopy. 2nd. Amsterdam: Elsevier; 2018.
ISO 4287:1997. Geometrical product specification (GPS). Surface texture. profile method. terms, definitions and surface texture parameters (1997).
ASME B46.1. Surface texture (surface roughness, waviness, lay). Am. Soc. Mech. Eng. (2009).
ISO 25178. Geometric product specifications (GPS)—surface texture: Areal (2012).
Anderson, T. W. The Statistical Analysis of Time Series. Wiley series in probability and mathematical statistics (Wiley, New York, 1971).
Krishnan V, Chandra K. Probability and Random Processes. 2nd. New York: Wiley; 2015.
Nečas D, Klapetek P. One-dimensional autocorrelation and power spectrum density functions of irregular regions. Ultramicroscopy. 2013;124:13–19. doi: 10.1016/j.ultramic.2012.08.002. PubMed DOI
Nečas, D., Klapetek, P. & Valtr, M. Estimation of roughness measurement bias originating from background subtraction. Meas. Sci. Technol.10.1088/1361-6501/ab8993 (2020). Accepted.
ISO 19606:2017. Fine ceramics (advanced ceramics, advanced technical ceramics)—test method for surface roughness of fine ceramic films by atomic force microscopy (2017).
ISO 4288:1996. Geometrical product specifications (GPS)—surface texture: Profile method—rules and procedures for the assessment of surface texture (1996).
Jacobs TDB, Junge T, Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017;5:013001. doi: 10.1088/2051-672X/aa51f8. DOI
Klapetek P, Yacoot A, Grolich P, Valtr M, Nečas D. Gwyscan: A library to support non-equidistant scanning probe microscope measurements. Meas. Sci. Technol. 2017;28:034015. doi: 10.1088/1361-6501/28/3/034015. DOI
Schneider S, Füser M, Bolte M, Terfort A. Self-assembled monolayers of aromatic pyrrole derivatives: Electropolymerization and electrocopolymerization with pyrrole. Electrochim. Acta. 2017;246:853–863. doi: 10.1016/j.electacta.2017.06.046. DOI
Yuennan J, Sukwisute P, Muensit N. Effect of hydrated salts on the microstructure and phase transformation of poly(vinylidenefluoride-hexafluoropropylene) composites. Mater. Res. Express. 2018;5:055702. doi: 10.1088/2053-1591/aabf4d. DOI
Zajíčková L, Jelínek P, Obrusník A, Vodák J, Nečas D. Plasma enhanced CVD of functional coatings in Ar/maleic anhydride/ DOI
Marinello F, Carmignato S, Voltan A, Savio E, Chiffre LD. Error sources in atomic force microscopy for dimensional measurements: Taxonomy and modeling. J. Manuf. Sci. Eng. 2010;132:031003. doi: 10.1115/1.4001242. DOI
Marinello F, Balcon M, Schiavuta P, Carmignato S, Savio E. Thermal drift study on different commercial scanning probe microscopes during the initial warming-up phase. Meas. Sci. Technol. 2011;22:094016. doi: 10.1088/0957-0233/22/9/094016. DOI
Klapetek P, Nečas D, Campbellová A, Yacoot A, Koenders L. Methods for determining and processing 3D errors and uncertainties for AFM data analysis. Meas. Sci. Technol. 2011;22:025501. doi: 10.1088/0957-0233/22/2/025501. DOI
Nečas D, Klapetek P. Study of user influence in routine SPM data processing. Meas. Sci. Technol. 2017;28:034014. doi: 10.1088/1361-6501/28/3/034014. DOI
Dumas P, et al. Quantitative microroughness analysis down to the nanometer scale. Europhys. Lett. 1993;22:717–722. doi: 10.1209/0295-5075/22/9/014. DOI
Box GEP, Jenkins GM, Reinsel GC, Ljung GM. Time Series Analysis: Forecasting and Control. 5th. New York: Wiley; 2015.
Nečas D, Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.
More JJ. The Levenberg-Marquardt algorithm: Implementation and theory. In: Watson GA, editor. Lecture Notes in Mathematics. New York: Springer-Verlag; 1978. pp. 106–116.
Boggs P, Byrd B, Schnabel R. A stable and efficient algorithm for nonlinear orthogonal distance regression. SIAM J. Sci. Stat. Comput. 1987;8:1052–1078. doi: 10.1137/0908085. DOI
Jensen JLWV. Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 1906;30:175–193. doi: 10.1007/BF02418571. DOI
Hausotte, T., Jäger, G., Manske, E., Hofmann, N. & Mastylo, R. Traceable nanometrology with a nanopositioning and nanomeasuring machine. In Proc. International Symposium on Precision Mechanical Measurements (ISPMM’2004), 399–404 (2004).
The GIMP team. The GNU image manipulation program, version 2.10.12. http://www.gimp.org/ (2019).
Scanning Probe Microscopy controller with advanced sampling support
Synthetic Data in Quantitative Scanning Probe Microscopy