Synthetic Data in Quantitative Scanning Probe Microscopy

. 2021 Jul 02 ; 11 (7) : . [epub] 20210702

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34361132

Grantová podpora
21-12132J Grantová Agentura České Republiky
19ENG05 European Metrology Programme for Innovation and Research

Synthetic data are of increasing importance in nanometrology. They can be used for development of data processing methods, analysis of uncertainties and estimation of various measurement artefacts. In this paper we review methods used for their generation and the applications of synthetic data in scanning probe microscopy, focusing on their principles, performance, and applicability. We illustrate the benefits of using synthetic data on different tasks related to development of better scanning approaches and related to estimation of reliability of data processing methods. We demonstrate how the synthetic data can be used to analyse systematic errors that are common to scanning probe microscopy methods, either related to the measurement principle or to the typical data processing paths.

Zobrazit více v PubMed

Voigtländer B. Scanning Probe Microscopy. Springer; Berlin, Germany: 2013. NanoScience and Technology.

Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy: The Lab on the Tip. Springer; Berlin, Germany: 2004. Advanced Texts in Physics.

Klapetek P. Quantitative Data Processing in Scanning Probe Microscopy. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2018.

Ceria P., Ducourtieux S., Boukellal Y. Estimation of the measurement uncertainty of LNE’s metrological Atomic Force Microscope using virtual instrument modeling and Monte Carlo Method; Proceedings of the 17th International Congress of Metrology; Paris, France. 21–24 September 2015; p. 14007. DOI

Xu M., Dziomba T., Koenders L. Modelling and simulating scanning force microscopes for estimating measurement uncertainty: A virtual scanning force microscope. Meas. Sci. Technol. 2011;22:094004. doi: 10.1088/0957-0233/22/9/094004. DOI

Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI

Gwyddion Developers Gwyddion. [(accessed on 1 July 2021)]; Available online: http://gwyddion.net/

Klapetek P., Yacoot A., Grolich P., Valtr M., Nečas D. Gwyscan: A library to support non-equidistant Scanning Probe Microscope measurements. Meas. Sci. Technol. 2017;28:034015. doi: 10.1088/1361-6501/28/3/034015. DOI

Yang C., Wang W., Chen Y. Contour-oriented automatic tracking based on Gaussian processes for atomic force microscopy. Measurement. 2019;148:106951. doi: 10.1016/j.measurement.2019.106951. DOI

Ren M.J., Cheung C.F., Xiao G.B. Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement. Sensors. 2018;18:4069. doi: 10.3390/s18114069. PubMed DOI PMC

Payton O., Champneys A., Homer M., Picco L., Miles M. Feedback-induced instability in tapping mode atomic force microscopy: Theory and experiment. Proc. R. Soc. A. 2011;467:1801. doi: 10.1098/rspa.2010.0451. DOI

Koops R., van Veghel M., van de Nes A. A dedicated calibration standard for nanoscale areal surface texture measurements. Microelectron. Eng. 2015;141:250–255. doi: 10.1016/j.mee.2015.04.021. DOI

Babij M., Majstrzyk W., Sierakowski A., Janus P., Grabiec P., Ramotowski Z., Yacoot A., Gotszalk T. Electromagnetically actuated MEMS generator for calibration of AFM. Meas. Sci. Technol. 2021;32:065903. doi: 10.1088/1361-6501/abc28a. DOI

Marino A., Desii A., Pellegrino M., Pellegrini M., Filippeschi C., Mazzolai B., Mattoli V., Ciofani G. Nanostructured Brownian Surfaces Prepared through Two-Photon Polymerization: Investigation of Stem Cell Response. ACS Nano. 2014;8:11869–11882. doi: 10.1021/nn5052426. PubMed DOI

Chen Y., Luo T., Huang W. Focused Ion Beam Fabrication and Atomic Force Microscopy Characterization of Micro/Nanoroughness Artifacts With Specified Statistic Quantities. IEEE Trans. Nanotechnol. 2014;13:563–573. doi: 10.1109/TNANO.2014.2311103. DOI

Hemmleb M., Berger D., Dziomba T. Focused Ion Beam fabrication of defined scalable roughness structures; Proceedings of the European Microscopy Congress; Lyon, France. 28 August–2 September 2016; DOI

Bontempi M., Visani A., Benini M., Gambardella A. Assessing conformal thin film growth under nonstochastic deposition conditions: Application of a phenomenological model of roughness replication to synthetic topographic images. J. Microsc. 2020;280:270–279. doi: 10.1111/jmi.12942. PubMed DOI

Klapetek P., Ohlídal I. Theoretical analysis of the atomic force microscopy characterization of columnar thin films. Ultramicroscopy. 2003;94:19–29. doi: 10.1016/S0304-3991(02)00159-6. PubMed DOI

Klapetek P., Ohlídal I., Bílek J. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces. Ultramicroscopy. 2004;102:51–59. doi: 10.1016/j.ultramic.2004.08.005. PubMed DOI

Mwema F., Akinlabi E.T., Oladijo O. Trends in Mechanical and Biomedical Design. Springer; Singapore: 2020. Demystifying Fractal Analysis of Thin Films: A Reference for Thin Film Deposition Processes; pp. 213–222. DOI

Klapetek P., Valtr M., Nečas D., Salyk O., Dzik P. Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res. Lett. 2011;6:514. doi: 10.1186/1556-276X-6-514. PubMed DOI PMC

Vekinis A.A., Constantoudis V. Neural network evaluation of geometric tip-sample effects in AFM measurements. Micro Nano Eng. 2020;8:100057. doi: 10.1016/j.mne.2020.100057. DOI

Wang W., Whitehouse D. Application of neural networks to the reconstruction of scanning probe microscope images distorted by finite-size tips. Nanotechnology. 1995;6:45–51. doi: 10.1088/0957-4484/6/2/003. DOI

Wang Y.F., Kilpatrick J.I., Jarvis S.P., Boland F., Kokaram A., Corrigan D. Double-Tip Artefact Removal from Atomic Force Microscopy Images. IEEE Trans. Image Process. 2016;25:2774–2788. doi: 10.1109/TIP.2016.2532239. PubMed DOI

Chen Y., Luo T., Huang W. Improving Dimensional Measurement From Noisy Atomic Force Microscopy Images by Non-Local Means Filtering. Scanning. 2016;38:113–120. doi: 10.1002/sca.21246. PubMed DOI

Jacobs T.D., Junge T., Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017;5:013001. doi: 10.1088/2051-672X/aa51f8. DOI

Nečas D., Klapetek P. One-dimensional autocorrelation and power spectrum density functions of irregular regions. Ultramicroscopy. 2013;124:13–19. doi: 10.1016/j.ultramic.2012.08.002. PubMed DOI

Hu C., Cai J., Li Y., Bi C., Gu Z., Zhu J., Zang J., Zheng W. In situ growth of ultra-smooth or super-rough thin films by suppression of vertical or horizontal growth of surface mounds. J. Mat. Chem. C. 2020;8:3248–3257. doi: 10.1039/C9TC06683G. DOI

Nečas D., Klapetek P., Valtr M. Estimation of roughness measurement bias originating from background subtraction. Meas. Sci. Technol. 2020;31:094010. doi: 10.1088/1361-6501/ab8993. DOI

Garnæs J., Nečas D., Nielsen L., Madsen M.H., Torras-Rosell A., Zeng G., Klapetek P., Yacoot A. Algorithms for using silicon steps for scanning probe microscope evaluation. Metrologia. 2020;57:064002. doi: 10.1088/1681-7575/ab9ad3. DOI

Huang Q., Gonda S., Misumi I., Keem T., Kurosawa T. Research on pitch analysis methods for calibration of one-dimensional grating standard based on nanometrological AFM. Proc. SPIE. 2006;6280:628007.

Ghosal S., Salapaka M. Fidelity imaging for Atomic Force Microscopy. Appl. Phys. Lett. 2015;106:013113. doi: 10.1063/1.4905633. DOI

Chen Y. Data fusion for accurate microscopic rough surface metrology. Ultramicroscopy. 2016;165:15–25. doi: 10.1016/j.ultramic.2016.03.012. PubMed DOI

Nečas D., Klapetek P. Study of user influence in routine SPM data processing. Meas. Sci. Technol. 2017;28:034014. doi: 10.1088/1361-6501/28/3/034014. DOI

Kawashima E., Fujii M., Yamashita K. Simulation of Conductive Atomic Force Microscopy of Organic Photovoltaics by Dynamic Monte Carlo Method. Chem. Lett. 2019;48:513–516. doi: 10.1246/cl.190041. DOI

Klapetek P., Martinek J., Grolich P., Valtr M., Kaur N.J. Graphics cards based topography artefacts simulations in Scanning Thermal Microscopy. Int. J. Heat Mass Transfe. 2017;108:841–850. doi: 10.1016/j.ijheatmasstransfer.2016.12.036. DOI

Klapetek P., Campbell A.C., Buršíková V. Fast mechanical model for probe-sample elastic deformation estimation in scanning probe microscopy. Ultramicroscopy. 2019;201:18–27. doi: 10.1016/j.ultramic.2019.03.010. PubMed DOI

Kato A., Burger S., Scholze F. Analytical modeling and three-dimensional finite element simulation of line edge roughness in scatterometry. Appl. Opt. 2012;51:6457. doi: 10.1364/AO.51.006457. PubMed DOI

Zong W., Wu D., He C. Radius and angle determination of diamond Berkovich indenter. Measurement. 2017;104:243–252. doi: 10.1016/j.measurement.2017.03.035. DOI

Argento C., French R. Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J. Appl. Phys. 1996;80:6081–6090. doi: 10.1063/1.363680. DOI

Alderighi M., Ierardi V., Allegrini M., Fuso F., Solaro R. An Atomic Force Microscopy Tip Model for Investigating the Mechanical Properties of Materials at the Nanoscale. J. Nanosci. Nanotechnol. 2008;8:2479–2482. doi: 10.1166/jnn.2008.18281. PubMed DOI

Patil S., Dharmadhikari C. Investigation of the electrostatic forces in scanning probe microscopy at low bias voltages. Surf. Interf. Anal. 2002;33:155–158. doi: 10.1002/sia.1180. DOI

Albonetti C., Chiodini S., Annibale P., Stoliar P., Martinez V., Garcia R., Biscarini F. Quantitative phase-mode electrostatic force microscopy on silicon oxide nanostructures. J. Microsc. 2020;280:252–269. doi: 10.1111/jmi.12938. PubMed DOI

Yang L., song Tu Y., li Tan H. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment. Appl. Math. Mech. 2014;35:567–574. doi: 10.1007/s10483-014-1813-7. DOI

Belikov S., Erina N., Huang L., Su C., Prater C., Magonov S., Ginzburg V., McIntyre B., Lakrout H., Meyers G. Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements. J. Vac. Sci. Technol. 2008;27:984–992. doi: 10.1116/1.3071852. DOI

Shen J., Zhang D., Zhang F.H., Gan Y. AFM characterization of patterned sapphire substrate with dense cone arrays: Image artifacts and tip-cone convolution effect. Appl. Surf. Sci. 2018;433:358–366. doi: 10.1016/j.apsusc.2017.10.077. DOI

Villarrubia J.S. Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation. J. Res. Natl. Inst. Stand. Technol. 1997;102:425–454. doi: 10.6028/jres.102.030. PubMed DOI PMC

Canet-Ferrer J., Coronado E., Forment-Aliaga A., Pinilla-Cienfuegos E. Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy. Nanotechnology. 2014;25:395703. doi: 10.1088/0957-4484/25/39/395703. PubMed DOI

Chen Z., Luo J., Doudevski I., Erten S., Kim S.H. Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip. Microsc. Microanal. 2019;25:1106–1111. doi: 10.1017/S1431927619014697. PubMed DOI

Consultative Committee for Length Mise en Pratique for the Definition of the Metre in the SI. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-metre.pdf.

Consultative Committee for Length Recommendations of CCL/WG-N on: Realization of SI Metre Using Height of Monoatomic Steps of Crystalline Silicon Surfaces. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-3.pdf.

Gloystein A., Nilius N., Goniakowski J., Noguera C. Nanopyramidal Reconstruction of Cu2O(111): A Long-Standing Surface Puzzle Solved by STM and DFT. J. Phys. Chem. C. 2020;124:26937–26943. doi: 10.1021/acs.jpcc.0c09330. DOI

Vrubel I.I., Yudin D., Pervishko A.A. On the origin of the electron accumulation layer at clean InAs(111) surfaces. Phys. Chem. Chem. Phys. 2021;23:4811–4817. doi: 10.1039/D0CP05632D. PubMed DOI

Yan L., Silveira O.J., Alldritt B., Krejčí O., Foster A.S., Liljeroth P. Synthesis and Local Probe Gating of a Monolayer Metal-Organic Framework. Adv. Func. Mater. 2021;31:2100519. doi: 10.1002/adfm.202100519. DOI

Tersoff J., Hamann D. Theory of the scanning tunneling microscope. Phys. Rev. B. 1985;31:805–813. doi: 10.1103/PhysRevB.31.805. PubMed DOI

Penrose R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974;10:266–271.

Delaunay B. Sur la sphère vide. Izvestia Akademii Nauk SSSR Otdelenie Matematicheskikh i Estestvennykh Nauk. 1934;7:793–800. (In Russian)

De Berg M., Otfried C., van Kreveld M., Overmars M. Computational Geometry: Algorithms and Applications. 3rd ed. Springer; Berlin, Germany: 2008.

Voronoi G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 1907;133:97–178. (In French)

Williams J.A., Le H.R. Tribology and MEMS. J. Phys. D Appl. Phys. 2006;39:R201–R214. doi: 10.1088/0022-3727/39/12/R01. DOI

Cresti A., Pala M.G., Poli S., Mouis M., Ghibaudo G. A Comparative Study of Surface-Roughness-Induced Variability in Silicon Nanowire and Double-Gate FETs. IEEE T. Electron. Dev. 2011;58:2274–2281. doi: 10.1109/TED.2011.2147318. DOI

Pala M.G., Cresti A. Increase of self-heating effects in nanodevices induced by surface roughness: A full-quantum study. J. Appl. Phys. 2015;117:084313. doi: 10.1063/1.4913511. DOI

Bruzzone A.A.G., Costa H.L., Lonardo P.M., Lucca D.A. Advances in engineered surfaces for functional performance. CIRP Ann. Manuf. Technol. 2008;57:750–769. doi: 10.1016/j.cirp.2008.09.003. DOI

Bhushan B. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J. Nanotechnol. 2011;2:66–84. doi: 10.3762/bjnano.2.9. PubMed DOI PMC

Barabási A.L., Stanley H.E. Fractal Concepts in Surface Growth. Cambridge University Press; New York, NY, USA: 1995.

Levi A.C., Kotrla M. Theory and simulation of crystal growth. J. Phys. Condens. Matter. 1997;9:299–344. doi: 10.1088/0953-8984/9/2/001. DOI

Kardar M., Parisi G., Zhang Y. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 1986;56:889–892. doi: 10.1103/PhysRevLett.56.889. PubMed DOI

Wio H.S., Escudero C., Revelli J.A., Deza R.R., de la Lama M.S. Recent developments on the Kardar–Parisi–Zhang surface-growth equation. Philos. T. Roy. Soc. A. 2011;369:396–411. doi: 10.1098/rsta.2010.0259. PubMed DOI

Ales A., Lopez J.M. Faceted patterns and anomalous surface roughening driven by long-range temporally correlated noise. Phys. Rev. E. 2019;99:062139. doi: 10.1103/PhysRevE.99.062139. PubMed DOI

Kessler D.A., Levine H., Tu Y. Interface fluctuations in random media. Phys. Rev. A. 1991;43:4551(R). doi: 10.1103/PhysRevA.43.4551. PubMed DOI

Singh R., Mollick S.A., Saini M., Guha P., Som T. Experimental and simulation studies on temporal evolution of chemically etched Si surface: Tunable light trapping and cold cathode electron emission properties. J. Appl. Phys. 2019;125:164302. doi: 10.1063/1.5079481. DOI

Weeks J.D., Gilmer G.H., Jackson K.A. Analytical theory of crystal growth. J. Chem. Phys. 1976;65:712–720. doi: 10.1063/1.433086. DOI

Meakin P., Jullien R. Modeling of Optical Thin Films. Volume 0821. SPIE; Bellingham, WA, USA: 1988. Simple Ballistic Deposition Models For The Formation Of Thin Films; pp. 45–55.

Russ J.C. Fractal Surfaces. Volume 1 Springer Science; New York, NY, USA: 1994.

Vold M.J. A numerical approach to the problem of sediment volume. J. Coll. Sci. 1959;14:168–174. doi: 10.1016/0095-8522(59)90041-8. DOI

Sarma S.D., Tamborenea P. A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy. Phys. Rev. Lett. 1991;66:325–328. doi: 10.1103/PhysRevLett.66.325. PubMed DOI

Wolf D.E., Villain J. Growth with surface diffusion. Europhys. Lett. 1990;13:389–394. doi: 10.1209/0295-5075/13/5/002. DOI

Drotar J.T., Zhao Y.P., Lu T.M., Wang G.C. Surface roughening in shadowing growth and etching in 2+1 dimensions. Phys. Rev. B. 2000;62:2118–2125. doi: 10.1103/PhysRevB.62.2118. DOI

Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI

Hastings W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 1970;57:97–109. doi: 10.1093/biomet/57.1.97. DOI

Schwoebel R., Shipsey E. Step motion on crystal surfaces. J. Appl. Phys. 1966;37:3682–3686. doi: 10.1063/1.1707904. DOI

Schwoebel R. Step motion on crystal surfaces 2. J. Appl. Phys. 1969;40:614–618. doi: 10.1063/1.1657442. DOI

Haußer F., Voigt A. Ostwald ripening of two-dimensional homoepitaxial islands. Phys. Rev. B. 2005;72:035437. doi: 10.1103/PhysRevB.72.035437. DOI

Evans J.W., Thiel P.A., Bartelt M. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006;61:1–128. doi: 10.1016/j.surfrep.2005.08.004. DOI

Lai K.C., Han Y., Spurgeon P., Huang W., Thiel P.A., Liu D.J., Evans J.W. Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chem. Rev. 2019;119:6670–6768. doi: 10.1021/acs.chemrev.8b00582. PubMed DOI

Chiodini S., Straub A., Donati S., Albonetti C., Borgatti F., Stoliar P., Murgia M., Biscarini F. Morphological Transitions in Organic Ultrathin Film Growth Imaged by In Situ Step-by-Step Atomic Force Microscopy. J. Phys. Chem. C. 2020;124:14030–14042. doi: 10.1021/acs.jpcc.0c03279. DOI

Allen M.P. Computational Soft Matter: From Synthetic Polymers to Proteins. In: Attig N., Binder K., Grubmüller H., Kremer K., editors. NIC Series. John von Neumann Institute for Computing; Jülich, Germany: 2004. pp. 1–28.

Miyamoto S., Kollamn P.A. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comp. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI

Meron E. Pattern-formation in excitable media. Phys. Rep. 1992;218:1–66. doi: 10.1016/0370-1573(92)90098-K. DOI

Winfree A.T. Spiral Waves of Chemical Activity. Science. 1972;175:634–636. doi: 10.1126/science.175.4022.634. PubMed DOI

Merzhanov A., Rumanov E. Physics of reaction waves. Rev. Mod. Phys. 1999;71:1173–1211. doi: 10.1103/RevModPhys.71.1173. DOI

Fernandez-Oto C., Escaff D., Cisternas J. Spiral vegetation patterns in high-altitude wetlands. Ecol. Complex. 2019;37:38–46. doi: 10.1016/j.ecocom.2018.12.003. DOI

Scott S.K., Wang J., Showalter K. Modelling studies of spiral waves and target patterns in premixed flames. J. Chem. Soc. Faraday T. 1997;93:1733–1739. doi: 10.1039/a608474e. DOI

Christoph J., Chebbok M., Richter C., Schröder-Schetelig J., Bittihn P., Stein S., Uzelac I., Fenton F.H., Hasenfuß G., Gilmour R.F., Jr., et al. Electromechanical vortex filaments during cardiac fibrillation. Nature. 2018;555:667–672. doi: 10.1038/nature26001. PubMed DOI

Turing A.M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 1952;237:37–72.

Green J.B.A., Sharpe J. Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development. 2015;142:1203–1211. doi: 10.1242/dev.114991. PubMed DOI

Kondo S. An updated kernel-based Turing model for studying the mechanisms of biological pattern formation. J. Theor. Biol. 2017;414:120–127. doi: 10.1016/j.jtbi.2016.11.003. PubMed DOI

Vock S., Sasvári Z., Bran C., Rhein F., Wolff U., Kiselev N.S., Bogdanov A.N., Schultz L., Hellwig O., Neu V. Quantitative Magnetic Force Microscopy Study of the Diameter Evolution of Bubble Domains in a Co/Pd Multilayer. IEEE Trans. Magn. 2011;47:2352–2355. doi: 10.1109/TMAG.2011.2155630. DOI

Vock S., Hengst C., Wolf M., Tschulik K., Uhlemann M., Sasvári Z., Makarov D., Schmidt O.G., Schultz L., Neu V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 2014;105:172409. doi: 10.1063/1.4900998. DOI

Nečas D., Klapetek P., Neu V., Havlíček M., Puttock R., Kazakova O., Hu X., Zajíčková L. Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method. Sci. Rep. 2019;9:3880. doi: 10.1038/s41598-019-40477-x. PubMed DOI PMC

Hu X., Dai G., Sievers S., Fernández-Scarioni A., Corte-León H., Puttock R., Barton C., Kazakova O., Ulvr M., Klapetek P., et al. Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy. J. Magn. Magn. Mater. 2020;511:166947. doi: 10.1016/j.jmmm.2020.166947. DOI

Ising E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik. 1925;31:253–258. doi: 10.1007/BF02980577. (In German) DOI

Peierls R. On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc. 1936;32:477–481. doi: 10.1017/S0305004100019174. DOI

Landau L.D., Lifshitz E.M. Statistical Physics, Part 1. Pergamon; New York, NY, USA: 1980.

Baxter R.J. Exactly Solved Models in Statistical Mechanics. Academic Press; London, UK: 1989.

Rothman D.H., Zaleski S. Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow. Rev. Mod. Phys. 1994;66:1417–1479. doi: 10.1103/RevModPhys.66.1417. DOI

De With G. Liquid-State Physical Chemistry: Fundamentals, Modeling, and Applications. Wiley-VCH; Weinheim, Germany: 2013.

Frost J.M., Cheynis F., Tuladhar S.M., Nelson J. Influence of Polymer-Blend Morphology on Charge Transport and Photocurrent Generation in Donor–Acceptor Polymer Blends. Nano Lett. 2006;6:1674–1681. doi: 10.1021/nl0608386. PubMed DOI

Ibarra-García-Padilla E., Malanche-Flores C.G., Poveda-Cuevas F.J. The hobbyhorse of magnetic systems: The Ising model. Eur. J. Phys. 2016;37:065103. doi: 10.1088/0143-0807/37/6/065103. DOI

Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972;12:30–39. doi: 10.1007/BF00289234. PubMed DOI

Meinhardt H., Gierer A. Pattern formation by local self-activation and lateral inhibition. BioEssays. 2000;22:753–760. doi: 10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z. PubMed DOI

Liehr A.W. Dissipative Solitons in Reaction Diffusion Systems. Mechanism, Dynamics, Interaction. Volume 70 Springer; Berlin, Germany: 2013. (Springer Series in Synergetics).

Pismen L.M., Monine M.I., Tchernikov G.V. Patterns and localized structures in a hybrid non-equilibrium Ising model. Physica D. 2004;199:82–90. doi: 10.1016/j.physd.2004.08.006. DOI

Horvát S., Hantz P. Pattern formation induced by ion-selective surfaces: Models and simulations. J. Chem. Phys. 2005;123:034707. doi: 10.1063/1.1943409. PubMed DOI

De Gomensoro Malheiros M., Walter M. Pattern formation through minimalist biologically inspired cellular simulation; Proceedings of the Graphics Interface 2017; Edmonton, Alberta. 16–19 May 2017; pp. 148–155.

Marinello F., Balcon M., Schiavuta P., Carmignato S., Savio E. Thermal drift study on different commercial scanning probe microscopes during the initial warming-up phase. Meas. Sci. Technol. 2011;22:094016. doi: 10.1088/0957-0233/22/9/094016. DOI

Han C., Chung C.C. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy. Rev. Sci. Instrum. 2011;82:053709. doi: 10.1063/1.3590778. PubMed DOI

Klapetek P., Nečas D., Campbellová A., Yacoot A., Koenders L. Methods for determining and processing 3D errors and uncertainties for AFM data analysis. Meas. Sci. Technol. 2011;22:025501. doi: 10.1088/0957-0233/22/2/025501. DOI

Klapetek P., Grolich P., Nezval D., Valtr M., Šlesinger R., Nečas D. GSvit—An open source FDTD solver for realistic nanoscale optics simulations. Comput. Phys. Commun. 2021;265:108025. doi: 10.1016/j.cpc.2021.108025. DOI

Labuda A., Bates J.R., Grütter P.H. The noise of coated cantilevers. Nanotechnology. 2012;23:025503. doi: 10.1088/0957-4484/23/2/025503. PubMed DOI

Boudaoud M., Haddab Y., Gorrec Y.L., Lutz P. Study of thermal and acoustic noise interferences in low stiffness AFM cantilevers and characterization of their dynamic properties. Rev. Sci. Instrum. 2012;83:013704. doi: 10.1063/1.3673637. PubMed DOI

Huang Q.X., Fei Y.T., Gonda S., Misumi I., Sato O., Keem T., Kurosawa T. The interference effect in an optical beam deflection detection system of a dynamic mode AFM. Meas. Sci. Technol. 2005;17:1417–1423. doi: 10.1088/0957-0233/17/6/020. DOI

Méndez-Vilas A., González-Martín M., Nuevo M. Optical interference artifacts in contact atomic force microscopy images. Ultramicroscopy. 2002;92:243–250. doi: 10.1016/S0304-3991(02)00140-7. PubMed DOI

Legleiter J. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: Simulation and experiment. Nanotechnology. 2009;20:245703. doi: 10.1088/0957-4484/20/24/245703. PubMed DOI

Shih F.Y. Image Processing and Mathematical Morphology (Fundamentals and Applications) Taylor & Francis; London, UK: 2009.

Perlin K. A Unified Texture/Reflectance Model; Proceedings of the SIGGRAPH ’84 Advanced Image Synthesis Course Notes; Minneapolis, MN, USA. 23–27 July 1984.

Lagae A., Lefebvre S., Cook R., DeRose T., Drettakis G., Ebert D., Lewis J., Perlin K., Zwicker M. A Survey of Procedural Noise Functions. Comput. Graph. Forum. 2010;29:2579–2600. doi: 10.1111/j.1467-8659.2010.01827.x. DOI

Fournier A., Fussell D., Carpenter L. Computer rendering of stochastic models. Commun. ACM. 1982;25:371–384. doi: 10.1145/358523.358553. DOI

Berry M., Lewis Z. On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. A. 1980;370:459–484.

Buldyrev S.V., Barabási A.L., Caserta F., Havlin S., Stanley H.E., Vicsek T. Anomalous interface roughening in porous media: Experiment and model. Phys. Rev. A. 1992;45:R8313–R8316. doi: 10.1103/PhysRevA.45.R8313. PubMed DOI

Steinbach I. Phase-field models in materials science. Modelling Simul. Mater. Sci. Eng. 2009;17:073001. doi: 10.1088/0965-0393/17/7/073001. DOI

Ding W., Dai C., Yu T., Xu J., Fu Y. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int. J. Mach. Tool. Manu. 2017;122:66–80. doi: 10.1016/j.ijmachtools.2017.05.006. DOI

Der Weeen P.V., Zimer A.M., Pereira E.C., Mascaro L.H., Bruno O.M., Baets B.D. Modeling pitting corrosion by means of a 3D discrete stochastic model. Corros. Sci. 2014;82:133–144. doi: 10.1016/j.corsci.2014.01.010. DOI

Werner B.T. Eolian dunes: Computer simulations and attractor interpretation. Geology. 1995;23:1107–1110. doi: 10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2. DOI

Pech A., Hingston P., Masek M., Lam C.P. Evolving Cellular Automata for Maze Generation. In: Chalup S., Blair A., Randall M., editors. Artificial Life and Computational Intelligence. Volume 8955. Springer; Cham, Switzerland: 2015. pp. 112–124. Lecture Notes in Artificial Intelligence.

Iben H.N., O’Brien J.F. Generating surface crack patterns. Graph. Models. 2009;71:198–208. doi: 10.1016/j.gmod.2008.12.005. DOI

Desbenoit B., Galin E., Akkouche S. Simulating and modeling lichen growth. Comput. Graph. Forum. 2004;23:341–350. doi: 10.1111/j.1467-8659.2004.00765.x. DOI

Efros A.A., Freeman W.T. Image Quilting for Texture Synthesis and Transfer; Proceedings of the SIGGRAPH 2001 Conference Proceedings; Computer Graphics, Los Angeles, CA, USA. 12–17 August 2001; pp. 341–346.

Lefebvre S., Hoppe H. Parallel controllable texture synthesis. ACM Trans. Graph. 2005;24:777–786. doi: 10.1145/1073204.1073261. DOI

Wei L., Lefebvre S., Kwatra V., Turk G. State of the Art in Example-based Texture Synthesis. In: Pauly M., Greiner G., editors. Eurographics 2009 State of The Art Reports. Eurographics Association; Munich, Germany: 2009. p. 3.

Nečas D., Valtr M., Klapetek P. How levelling and scan line corrections ruin roughness measurement and how to prevent it. Sci. Rep. 2020;10:15294. doi: 10.1038/s41598-020-72171-8. PubMed DOI PMC

Eifler M., Seewig F.S.J., Kirsch B., Aurich J.C. Manufacturing of new roughness standards for the linearity of the vertical axis—Feasibility study and optimization. Eng. Sci. Technol. Intl. J. 2016;19:1993–2001. doi: 10.1016/j.jestch.2016.06.009. DOI

Pérez-Ràfols F., Almqvist A. Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribol. Int. 2019;131:591–604. doi: 10.1016/j.triboint.2018.11.020. DOI

Klapetek P., Ohlídal I., Bílek J. Atomic force microscope tip influence on the fractal and multi-fractal analyses of the properties of ndomly rough surfaces. In: Wilkening G., Koenders L., editors. Nanoscale Calibration Standards and Methods. Wiley VCH; Weinheim, Germany: 2005. p. 452.

Consultative Committee for Length Recommendations of CCL/WG-N on: Realization of SI Metre Using Silicon Lattice and Transmission Electron Microscopy for Dimensional Nanometrology. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-2.pdf.

Zhao Y., Wang G.C., Lu T.M. Characterization of Amorphous and Crystalline Rough Surface—Principles and Applications. Volume 37 Academic Press; San Diego, CA, USA: 2000. Experimental Methods in the Physical Sciences.

Sadewasser S., Leendertz C., Streicher F., Lux-Steiner M. The influence of surface topography on Kelvin probe force microscopy. Nanotechnology. 2009;20:505503. doi: 10.1088/0957-4484/20/50/505503. PubMed DOI

Fenwick O., Latini G., Cacialli F. Modelling topographical artifacts in scanning near-field optical microscopy. Synth. Met. 2004;147:171–173. doi: 10.1016/j.synthmet.2004.06.030. DOI

Martin O., Girard C., Dereux A. Dielectric versus topographic contrast in near-field microscopy. J. Opt. Soc. Am. 1996;13:1802–1808. doi: 10.1364/JOSAA.13.001801. DOI

Gucciardi P.G., Bachelier G., Allegrini M., Ahn J., Hong M., Chang S., Jhe W., Hong S.C., Baek S.H. Artifacts identification in apertureless near-field optical microscopy. J. Appl. Phys. 2007;101:064303. doi: 10.1063/1.2696066. DOI

Biscarini F., Ong K.Q., Albonetti C., Liscio F., Longobardi M., Mali K.S., Ciesielski A., Reguera J., Renner C., Feyter S.D., et al. Quantitative Analysis of Scanning Tunneling Microscopy Images of Mixed-Ligand-Functionalized Nanoparticles. Langmuir. 2013;29:13723–13734. doi: 10.1021/la403546c. PubMed DOI

Wang L., Wang L., Xu L., Chen W. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method. Comput. Math. Method Med. 2019;2019:7895061. doi: 10.1155/2019/7895061. PubMed DOI PMC

Sugimoto Y., Pou P., Abe M., Jelinek P., Perez R., Morita S., Custance O. Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007;446:64–67. doi: 10.1038/nature05530. PubMed DOI

Zhang K., Hatano T., Tien T., Herrmann G., Edwards C., Burgess S.C., Miles M. An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Meas. Sci. Technol. 2015;26:035401. doi: 10.1088/0957-0233/26/3/035401. DOI

Han G., Lv L., Yang G., Niu Y. Super-resolution AFM imaging based on compressive sensing. Appl. Surf. Sci. 2020;508:145231. doi: 10.1016/j.apsusc.2019.145231. DOI

ISO/IEC Guide 98-3:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement. [(accessed on 6 May 2021)]; Available online: http://bipm.org/

Wiener N. The Homogeneous Chaos. Am. J. Math. 1938;60:897–936. doi: 10.2307/2371268. DOI

Augustin F., Gilg A., Paffrath M., Rentrop P., Wever U. A survey in mathematics for industry polynomial chaos for the approximation of uncertainties: Chances and limits. Eur. J. Appl. Math. 2008;19:149–190. doi: 10.1017/S0956792508007328. DOI

Oladyshkin S., Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 2012;106:179–190. doi: 10.1016/j.ress.2012.05.002. DOI

Amyot R., Flechsig H. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLoS Comput. Biol. 2020;16:e1008444. doi: 10.1371/journal.pcbi.1008444. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nanometrology

. 2022 Oct 26 ; 12 (21) : . [epub] 20221026

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...