Synthetic Data in Quantitative Scanning Probe Microscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
21-12132J
Grantová Agentura České Republiky
19ENG05
European Metrology Programme for Innovation and Research
PubMed
34361132
PubMed Central
PMC8308173
DOI
10.3390/nano11071746
PII: nano11071746
Knihovny.cz E-zdroje
- Klíčová slova
- data synthesis, nanometrology, scanning probe microscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Synthetic data are of increasing importance in nanometrology. They can be used for development of data processing methods, analysis of uncertainties and estimation of various measurement artefacts. In this paper we review methods used for their generation and the applications of synthetic data in scanning probe microscopy, focusing on their principles, performance, and applicability. We illustrate the benefits of using synthetic data on different tasks related to development of better scanning approaches and related to estimation of reliability of data processing methods. We demonstrate how the synthetic data can be used to analyse systematic errors that are common to scanning probe microscopy methods, either related to the measurement principle or to the typical data processing paths.
Zobrazit více v PubMed
Voigtländer B. Scanning Probe Microscopy. Springer; Berlin, Germany: 2013. NanoScience and Technology.
Meyer E., Hug H.J., Bennewitz R. Scanning Probe Microscopy: The Lab on the Tip. Springer; Berlin, Germany: 2004. Advanced Texts in Physics.
Klapetek P. Quantitative Data Processing in Scanning Probe Microscopy. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2018.
Ceria P., Ducourtieux S., Boukellal Y. Estimation of the measurement uncertainty of LNE’s metrological Atomic Force Microscope using virtual instrument modeling and Monte Carlo Method; Proceedings of the 17th International Congress of Metrology; Paris, France. 21–24 September 2015; p. 14007. DOI
Xu M., Dziomba T., Koenders L. Modelling and simulating scanning force microscopes for estimating measurement uncertainty: A virtual scanning force microscope. Meas. Sci. Technol. 2011;22:094004. doi: 10.1088/0957-0233/22/9/094004. DOI
Nečas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188. doi: 10.2478/s11534-011-0096-2. DOI
Gwyddion Developers Gwyddion. [(accessed on 1 July 2021)]; Available online: http://gwyddion.net/
Klapetek P., Yacoot A., Grolich P., Valtr M., Nečas D. Gwyscan: A library to support non-equidistant Scanning Probe Microscope measurements. Meas. Sci. Technol. 2017;28:034015. doi: 10.1088/1361-6501/28/3/034015. DOI
Yang C., Wang W., Chen Y. Contour-oriented automatic tracking based on Gaussian processes for atomic force microscopy. Measurement. 2019;148:106951. doi: 10.1016/j.measurement.2019.106951. DOI
Ren M.J., Cheung C.F., Xiao G.B. Gaussian Process Based Bayesian Inference System for Intelligent Surface Measurement. Sensors. 2018;18:4069. doi: 10.3390/s18114069. PubMed DOI PMC
Payton O., Champneys A., Homer M., Picco L., Miles M. Feedback-induced instability in tapping mode atomic force microscopy: Theory and experiment. Proc. R. Soc. A. 2011;467:1801. doi: 10.1098/rspa.2010.0451. DOI
Koops R., van Veghel M., van de Nes A. A dedicated calibration standard for nanoscale areal surface texture measurements. Microelectron. Eng. 2015;141:250–255. doi: 10.1016/j.mee.2015.04.021. DOI
Babij M., Majstrzyk W., Sierakowski A., Janus P., Grabiec P., Ramotowski Z., Yacoot A., Gotszalk T. Electromagnetically actuated MEMS generator for calibration of AFM. Meas. Sci. Technol. 2021;32:065903. doi: 10.1088/1361-6501/abc28a. DOI
Marino A., Desii A., Pellegrino M., Pellegrini M., Filippeschi C., Mazzolai B., Mattoli V., Ciofani G. Nanostructured Brownian Surfaces Prepared through Two-Photon Polymerization: Investigation of Stem Cell Response. ACS Nano. 2014;8:11869–11882. doi: 10.1021/nn5052426. PubMed DOI
Chen Y., Luo T., Huang W. Focused Ion Beam Fabrication and Atomic Force Microscopy Characterization of Micro/Nanoroughness Artifacts With Specified Statistic Quantities. IEEE Trans. Nanotechnol. 2014;13:563–573. doi: 10.1109/TNANO.2014.2311103. DOI
Hemmleb M., Berger D., Dziomba T. Focused Ion Beam fabrication of defined scalable roughness structures; Proceedings of the European Microscopy Congress; Lyon, France. 28 August–2 September 2016; DOI
Bontempi M., Visani A., Benini M., Gambardella A. Assessing conformal thin film growth under nonstochastic deposition conditions: Application of a phenomenological model of roughness replication to synthetic topographic images. J. Microsc. 2020;280:270–279. doi: 10.1111/jmi.12942. PubMed DOI
Klapetek P., Ohlídal I. Theoretical analysis of the atomic force microscopy characterization of columnar thin films. Ultramicroscopy. 2003;94:19–29. doi: 10.1016/S0304-3991(02)00159-6. PubMed DOI
Klapetek P., Ohlídal I., Bílek J. Influence of the atomic force microscope tip on the multifractal analysis of rough surfaces. Ultramicroscopy. 2004;102:51–59. doi: 10.1016/j.ultramic.2004.08.005. PubMed DOI
Mwema F., Akinlabi E.T., Oladijo O. Trends in Mechanical and Biomedical Design. Springer; Singapore: 2020. Demystifying Fractal Analysis of Thin Films: A Reference for Thin Film Deposition Processes; pp. 213–222. DOI
Klapetek P., Valtr M., Nečas D., Salyk O., Dzik P. Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res. Lett. 2011;6:514. doi: 10.1186/1556-276X-6-514. PubMed DOI PMC
Vekinis A.A., Constantoudis V. Neural network evaluation of geometric tip-sample effects in AFM measurements. Micro Nano Eng. 2020;8:100057. doi: 10.1016/j.mne.2020.100057. DOI
Wang W., Whitehouse D. Application of neural networks to the reconstruction of scanning probe microscope images distorted by finite-size tips. Nanotechnology. 1995;6:45–51. doi: 10.1088/0957-4484/6/2/003. DOI
Wang Y.F., Kilpatrick J.I., Jarvis S.P., Boland F., Kokaram A., Corrigan D. Double-Tip Artefact Removal from Atomic Force Microscopy Images. IEEE Trans. Image Process. 2016;25:2774–2788. doi: 10.1109/TIP.2016.2532239. PubMed DOI
Chen Y., Luo T., Huang W. Improving Dimensional Measurement From Noisy Atomic Force Microscopy Images by Non-Local Means Filtering. Scanning. 2016;38:113–120. doi: 10.1002/sca.21246. PubMed DOI
Jacobs T.D., Junge T., Pastewka L. Quantitative characterization of surface topography using spectral analysis. Surf. Topogr. Metrol. Prop. 2017;5:013001. doi: 10.1088/2051-672X/aa51f8. DOI
Nečas D., Klapetek P. One-dimensional autocorrelation and power spectrum density functions of irregular regions. Ultramicroscopy. 2013;124:13–19. doi: 10.1016/j.ultramic.2012.08.002. PubMed DOI
Hu C., Cai J., Li Y., Bi C., Gu Z., Zhu J., Zang J., Zheng W. In situ growth of ultra-smooth or super-rough thin films by suppression of vertical or horizontal growth of surface mounds. J. Mat. Chem. C. 2020;8:3248–3257. doi: 10.1039/C9TC06683G. DOI
Nečas D., Klapetek P., Valtr M. Estimation of roughness measurement bias originating from background subtraction. Meas. Sci. Technol. 2020;31:094010. doi: 10.1088/1361-6501/ab8993. DOI
Garnæs J., Nečas D., Nielsen L., Madsen M.H., Torras-Rosell A., Zeng G., Klapetek P., Yacoot A. Algorithms for using silicon steps for scanning probe microscope evaluation. Metrologia. 2020;57:064002. doi: 10.1088/1681-7575/ab9ad3. DOI
Huang Q., Gonda S., Misumi I., Keem T., Kurosawa T. Research on pitch analysis methods for calibration of one-dimensional grating standard based on nanometrological AFM. Proc. SPIE. 2006;6280:628007.
Ghosal S., Salapaka M. Fidelity imaging for Atomic Force Microscopy. Appl. Phys. Lett. 2015;106:013113. doi: 10.1063/1.4905633. DOI
Chen Y. Data fusion for accurate microscopic rough surface metrology. Ultramicroscopy. 2016;165:15–25. doi: 10.1016/j.ultramic.2016.03.012. PubMed DOI
Nečas D., Klapetek P. Study of user influence in routine SPM data processing. Meas. Sci. Technol. 2017;28:034014. doi: 10.1088/1361-6501/28/3/034014. DOI
Kawashima E., Fujii M., Yamashita K. Simulation of Conductive Atomic Force Microscopy of Organic Photovoltaics by Dynamic Monte Carlo Method. Chem. Lett. 2019;48:513–516. doi: 10.1246/cl.190041. DOI
Klapetek P., Martinek J., Grolich P., Valtr M., Kaur N.J. Graphics cards based topography artefacts simulations in Scanning Thermal Microscopy. Int. J. Heat Mass Transfe. 2017;108:841–850. doi: 10.1016/j.ijheatmasstransfer.2016.12.036. DOI
Klapetek P., Campbell A.C., Buršíková V. Fast mechanical model for probe-sample elastic deformation estimation in scanning probe microscopy. Ultramicroscopy. 2019;201:18–27. doi: 10.1016/j.ultramic.2019.03.010. PubMed DOI
Kato A., Burger S., Scholze F. Analytical modeling and three-dimensional finite element simulation of line edge roughness in scatterometry. Appl. Opt. 2012;51:6457. doi: 10.1364/AO.51.006457. PubMed DOI
Zong W., Wu D., He C. Radius and angle determination of diamond Berkovich indenter. Measurement. 2017;104:243–252. doi: 10.1016/j.measurement.2017.03.035. DOI
Argento C., French R. Parametric tip model and force–distance relation for Hamaker constant determination from atomic force microscopy. J. Appl. Phys. 1996;80:6081–6090. doi: 10.1063/1.363680. DOI
Alderighi M., Ierardi V., Allegrini M., Fuso F., Solaro R. An Atomic Force Microscopy Tip Model for Investigating the Mechanical Properties of Materials at the Nanoscale. J. Nanosci. Nanotechnol. 2008;8:2479–2482. doi: 10.1166/jnn.2008.18281. PubMed DOI
Patil S., Dharmadhikari C. Investigation of the electrostatic forces in scanning probe microscopy at low bias voltages. Surf. Interf. Anal. 2002;33:155–158. doi: 10.1002/sia.1180. DOI
Albonetti C., Chiodini S., Annibale P., Stoliar P., Martinez V., Garcia R., Biscarini F. Quantitative phase-mode electrostatic force microscopy on silicon oxide nanostructures. J. Microsc. 2020;280:252–269. doi: 10.1111/jmi.12938. PubMed DOI
Yang L., song Tu Y., li Tan H. Influence of atomic force microscope (AFM) probe shape on adhesion force measured in humidity environment. Appl. Math. Mech. 2014;35:567–574. doi: 10.1007/s10483-014-1813-7. DOI
Belikov S., Erina N., Huang L., Su C., Prater C., Magonov S., Ginzburg V., McIntyre B., Lakrout H., Meyers G. Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements. J. Vac. Sci. Technol. 2008;27:984–992. doi: 10.1116/1.3071852. DOI
Shen J., Zhang D., Zhang F.H., Gan Y. AFM characterization of patterned sapphire substrate with dense cone arrays: Image artifacts and tip-cone convolution effect. Appl. Surf. Sci. 2018;433:358–366. doi: 10.1016/j.apsusc.2017.10.077. DOI
Villarrubia J.S. Algorithms for Scanned Probe Microscope Image Simulation, Surface Reconstruction, and Tip Estimation. J. Res. Natl. Inst. Stand. Technol. 1997;102:425–454. doi: 10.6028/jres.102.030. PubMed DOI PMC
Canet-Ferrer J., Coronado E., Forment-Aliaga A., Pinilla-Cienfuegos E. Correction of the tip convolution effects in the imaging of nanostructures studied through scanning force microscopy. Nanotechnology. 2014;25:395703. doi: 10.1088/0957-4484/25/39/395703. PubMed DOI
Chen Z., Luo J., Doudevski I., Erten S., Kim S.H. Atomic Force Microscopy (AFM) Analysis of an Object Larger and Sharper than the AFM Tip. Microsc. Microanal. 2019;25:1106–1111. doi: 10.1017/S1431927619014697. PubMed DOI
Consultative Committee for Length Mise en Pratique for the Definition of the Metre in the SI. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/en/pdf/si-mep/SI-App2-metre.pdf.
Consultative Committee for Length Recommendations of CCL/WG-N on: Realization of SI Metre Using Height of Monoatomic Steps of Crystalline Silicon Surfaces. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-3.pdf.
Gloystein A., Nilius N., Goniakowski J., Noguera C. Nanopyramidal Reconstruction of Cu2O(111): A Long-Standing Surface Puzzle Solved by STM and DFT. J. Phys. Chem. C. 2020;124:26937–26943. doi: 10.1021/acs.jpcc.0c09330. DOI
Vrubel I.I., Yudin D., Pervishko A.A. On the origin of the electron accumulation layer at clean InAs(111) surfaces. Phys. Chem. Chem. Phys. 2021;23:4811–4817. doi: 10.1039/D0CP05632D. PubMed DOI
Yan L., Silveira O.J., Alldritt B., Krejčí O., Foster A.S., Liljeroth P. Synthesis and Local Probe Gating of a Monolayer Metal-Organic Framework. Adv. Func. Mater. 2021;31:2100519. doi: 10.1002/adfm.202100519. DOI
Tersoff J., Hamann D. Theory of the scanning tunneling microscope. Phys. Rev. B. 1985;31:805–813. doi: 10.1103/PhysRevB.31.805. PubMed DOI
Penrose R. The role of aesthetics in pure and applied mathematical research. Bull. Inst. Math. Appl. 1974;10:266–271.
Delaunay B. Sur la sphère vide. Izvestia Akademii Nauk SSSR Otdelenie Matematicheskikh i Estestvennykh Nauk. 1934;7:793–800. (In Russian)
De Berg M., Otfried C., van Kreveld M., Overmars M. Computational Geometry: Algorithms and Applications. 3rd ed. Springer; Berlin, Germany: 2008.
Voronoi G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 1907;133:97–178. (In French)
Williams J.A., Le H.R. Tribology and MEMS. J. Phys. D Appl. Phys. 2006;39:R201–R214. doi: 10.1088/0022-3727/39/12/R01. DOI
Cresti A., Pala M.G., Poli S., Mouis M., Ghibaudo G. A Comparative Study of Surface-Roughness-Induced Variability in Silicon Nanowire and Double-Gate FETs. IEEE T. Electron. Dev. 2011;58:2274–2281. doi: 10.1109/TED.2011.2147318. DOI
Pala M.G., Cresti A. Increase of self-heating effects in nanodevices induced by surface roughness: A full-quantum study. J. Appl. Phys. 2015;117:084313. doi: 10.1063/1.4913511. DOI
Bruzzone A.A.G., Costa H.L., Lonardo P.M., Lucca D.A. Advances in engineered surfaces for functional performance. CIRP Ann. Manuf. Technol. 2008;57:750–769. doi: 10.1016/j.cirp.2008.09.003. DOI
Bhushan B. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity. Beilstein J. Nanotechnol. 2011;2:66–84. doi: 10.3762/bjnano.2.9. PubMed DOI PMC
Barabási A.L., Stanley H.E. Fractal Concepts in Surface Growth. Cambridge University Press; New York, NY, USA: 1995.
Levi A.C., Kotrla M. Theory and simulation of crystal growth. J. Phys. Condens. Matter. 1997;9:299–344. doi: 10.1088/0953-8984/9/2/001. DOI
Kardar M., Parisi G., Zhang Y. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 1986;56:889–892. doi: 10.1103/PhysRevLett.56.889. PubMed DOI
Wio H.S., Escudero C., Revelli J.A., Deza R.R., de la Lama M.S. Recent developments on the Kardar–Parisi–Zhang surface-growth equation. Philos. T. Roy. Soc. A. 2011;369:396–411. doi: 10.1098/rsta.2010.0259. PubMed DOI
Ales A., Lopez J.M. Faceted patterns and anomalous surface roughening driven by long-range temporally correlated noise. Phys. Rev. E. 2019;99:062139. doi: 10.1103/PhysRevE.99.062139. PubMed DOI
Kessler D.A., Levine H., Tu Y. Interface fluctuations in random media. Phys. Rev. A. 1991;43:4551(R). doi: 10.1103/PhysRevA.43.4551. PubMed DOI
Singh R., Mollick S.A., Saini M., Guha P., Som T. Experimental and simulation studies on temporal evolution of chemically etched Si surface: Tunable light trapping and cold cathode electron emission properties. J. Appl. Phys. 2019;125:164302. doi: 10.1063/1.5079481. DOI
Weeks J.D., Gilmer G.H., Jackson K.A. Analytical theory of crystal growth. J. Chem. Phys. 1976;65:712–720. doi: 10.1063/1.433086. DOI
Meakin P., Jullien R. Modeling of Optical Thin Films. Volume 0821. SPIE; Bellingham, WA, USA: 1988. Simple Ballistic Deposition Models For The Formation Of Thin Films; pp. 45–55.
Russ J.C. Fractal Surfaces. Volume 1 Springer Science; New York, NY, USA: 1994.
Vold M.J. A numerical approach to the problem of sediment volume. J. Coll. Sci. 1959;14:168–174. doi: 10.1016/0095-8522(59)90041-8. DOI
Sarma S.D., Tamborenea P. A new universality class for kinetic growth: One-dimensional molecular-beam epitaxy. Phys. Rev. Lett. 1991;66:325–328. doi: 10.1103/PhysRevLett.66.325. PubMed DOI
Wolf D.E., Villain J. Growth with surface diffusion. Europhys. Lett. 1990;13:389–394. doi: 10.1209/0295-5075/13/5/002. DOI
Drotar J.T., Zhao Y.P., Lu T.M., Wang G.C. Surface roughening in shadowing growth and etching in 2+1 dimensions. Phys. Rev. B. 2000;62:2118–2125. doi: 10.1103/PhysRevB.62.2118. DOI
Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys. 1953;21:1087–1092. doi: 10.1063/1.1699114. DOI
Hastings W.K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications. Biometrika. 1970;57:97–109. doi: 10.1093/biomet/57.1.97. DOI
Schwoebel R., Shipsey E. Step motion on crystal surfaces. J. Appl. Phys. 1966;37:3682–3686. doi: 10.1063/1.1707904. DOI
Schwoebel R. Step motion on crystal surfaces 2. J. Appl. Phys. 1969;40:614–618. doi: 10.1063/1.1657442. DOI
Haußer F., Voigt A. Ostwald ripening of two-dimensional homoepitaxial islands. Phys. Rev. B. 2005;72:035437. doi: 10.1103/PhysRevB.72.035437. DOI
Evans J.W., Thiel P.A., Bartelt M. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006;61:1–128. doi: 10.1016/j.surfrep.2005.08.004. DOI
Lai K.C., Han Y., Spurgeon P., Huang W., Thiel P.A., Liu D.J., Evans J.W. Reshaping, Intermixing, and Coarsening for Metallic Nanocrystals: Nonequilibrium Statistical Mechanical and Coarse-Grained Modeling. Chem. Rev. 2019;119:6670–6768. doi: 10.1021/acs.chemrev.8b00582. PubMed DOI
Chiodini S., Straub A., Donati S., Albonetti C., Borgatti F., Stoliar P., Murgia M., Biscarini F. Morphological Transitions in Organic Ultrathin Film Growth Imaged by In Situ Step-by-Step Atomic Force Microscopy. J. Phys. Chem. C. 2020;124:14030–14042. doi: 10.1021/acs.jpcc.0c03279. DOI
Allen M.P. Computational Soft Matter: From Synthetic Polymers to Proteins. In: Attig N., Binder K., Grubmüller H., Kremer K., editors. NIC Series. John von Neumann Institute for Computing; Jülich, Germany: 2004. pp. 1–28.
Miyamoto S., Kollamn P.A. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid Water Models. J. Comp. Chem. 1992;13:952–962. doi: 10.1002/jcc.540130805. DOI
Meron E. Pattern-formation in excitable media. Phys. Rep. 1992;218:1–66. doi: 10.1016/0370-1573(92)90098-K. DOI
Winfree A.T. Spiral Waves of Chemical Activity. Science. 1972;175:634–636. doi: 10.1126/science.175.4022.634. PubMed DOI
Merzhanov A., Rumanov E. Physics of reaction waves. Rev. Mod. Phys. 1999;71:1173–1211. doi: 10.1103/RevModPhys.71.1173. DOI
Fernandez-Oto C., Escaff D., Cisternas J. Spiral vegetation patterns in high-altitude wetlands. Ecol. Complex. 2019;37:38–46. doi: 10.1016/j.ecocom.2018.12.003. DOI
Scott S.K., Wang J., Showalter K. Modelling studies of spiral waves and target patterns in premixed flames. J. Chem. Soc. Faraday T. 1997;93:1733–1739. doi: 10.1039/a608474e. DOI
Christoph J., Chebbok M., Richter C., Schröder-Schetelig J., Bittihn P., Stein S., Uzelac I., Fenton F.H., Hasenfuß G., Gilmour R.F., Jr., et al. Electromechanical vortex filaments during cardiac fibrillation. Nature. 2018;555:667–672. doi: 10.1038/nature26001. PubMed DOI
Turing A.M. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B. 1952;237:37–72.
Green J.B.A., Sharpe J. Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development. 2015;142:1203–1211. doi: 10.1242/dev.114991. PubMed DOI
Kondo S. An updated kernel-based Turing model for studying the mechanisms of biological pattern formation. J. Theor. Biol. 2017;414:120–127. doi: 10.1016/j.jtbi.2016.11.003. PubMed DOI
Vock S., Sasvári Z., Bran C., Rhein F., Wolff U., Kiselev N.S., Bogdanov A.N., Schultz L., Hellwig O., Neu V. Quantitative Magnetic Force Microscopy Study of the Diameter Evolution of Bubble Domains in a Co/Pd Multilayer. IEEE Trans. Magn. 2011;47:2352–2355. doi: 10.1109/TMAG.2011.2155630. DOI
Vock S., Hengst C., Wolf M., Tschulik K., Uhlemann M., Sasvári Z., Makarov D., Schmidt O.G., Schultz L., Neu V. Magnetic vortex observation in FeCo nanowires by quantitative magnetic force microscopy. Appl. Phys. Lett. 2014;105:172409. doi: 10.1063/1.4900998. DOI
Nečas D., Klapetek P., Neu V., Havlíček M., Puttock R., Kazakova O., Hu X., Zajíčková L. Determination of tip transfer function for quantitative MFM using frequency domain filtering and least squares method. Sci. Rep. 2019;9:3880. doi: 10.1038/s41598-019-40477-x. PubMed DOI PMC
Hu X., Dai G., Sievers S., Fernández-Scarioni A., Corte-León H., Puttock R., Barton C., Kazakova O., Ulvr M., Klapetek P., et al. Round robin comparison on quantitative nanometer scale magnetic field measurements by magnetic force microscopy. J. Magn. Magn. Mater. 2020;511:166947. doi: 10.1016/j.jmmm.2020.166947. DOI
Ising E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik. 1925;31:253–258. doi: 10.1007/BF02980577. (In German) DOI
Peierls R. On Ising’s model of ferromagnetism. Math. Proc. Camb. Philos. Soc. 1936;32:477–481. doi: 10.1017/S0305004100019174. DOI
Landau L.D., Lifshitz E.M. Statistical Physics, Part 1. Pergamon; New York, NY, USA: 1980.
Baxter R.J. Exactly Solved Models in Statistical Mechanics. Academic Press; London, UK: 1989.
Rothman D.H., Zaleski S. Lattice-gas models of phase separation: Interfaces, phase transitions, and multiphase flow. Rev. Mod. Phys. 1994;66:1417–1479. doi: 10.1103/RevModPhys.66.1417. DOI
De With G. Liquid-State Physical Chemistry: Fundamentals, Modeling, and Applications. Wiley-VCH; Weinheim, Germany: 2013.
Frost J.M., Cheynis F., Tuladhar S.M., Nelson J. Influence of Polymer-Blend Morphology on Charge Transport and Photocurrent Generation in Donor–Acceptor Polymer Blends. Nano Lett. 2006;6:1674–1681. doi: 10.1021/nl0608386. PubMed DOI
Ibarra-García-Padilla E., Malanche-Flores C.G., Poveda-Cuevas F.J. The hobbyhorse of magnetic systems: The Ising model. Eur. J. Phys. 2016;37:065103. doi: 10.1088/0143-0807/37/6/065103. DOI
Gierer A., Meinhardt H. A theory of biological pattern formation. Kybernetik. 1972;12:30–39. doi: 10.1007/BF00289234. PubMed DOI
Meinhardt H., Gierer A. Pattern formation by local self-activation and lateral inhibition. BioEssays. 2000;22:753–760. doi: 10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z. PubMed DOI
Liehr A.W. Dissipative Solitons in Reaction Diffusion Systems. Mechanism, Dynamics, Interaction. Volume 70 Springer; Berlin, Germany: 2013. (Springer Series in Synergetics).
Pismen L.M., Monine M.I., Tchernikov G.V. Patterns and localized structures in a hybrid non-equilibrium Ising model. Physica D. 2004;199:82–90. doi: 10.1016/j.physd.2004.08.006. DOI
Horvát S., Hantz P. Pattern formation induced by ion-selective surfaces: Models and simulations. J. Chem. Phys. 2005;123:034707. doi: 10.1063/1.1943409. PubMed DOI
De Gomensoro Malheiros M., Walter M. Pattern formation through minimalist biologically inspired cellular simulation; Proceedings of the Graphics Interface 2017; Edmonton, Alberta. 16–19 May 2017; pp. 148–155.
Marinello F., Balcon M., Schiavuta P., Carmignato S., Savio E. Thermal drift study on different commercial scanning probe microscopes during the initial warming-up phase. Meas. Sci. Technol. 2011;22:094016. doi: 10.1088/0957-0233/22/9/094016. DOI
Han C., Chung C.C. Reconstruction of a scanned topographic image distorted by the creep effect of a Z scanner in atomic force microscopy. Rev. Sci. Instrum. 2011;82:053709. doi: 10.1063/1.3590778. PubMed DOI
Klapetek P., Nečas D., Campbellová A., Yacoot A., Koenders L. Methods for determining and processing 3D errors and uncertainties for AFM data analysis. Meas. Sci. Technol. 2011;22:025501. doi: 10.1088/0957-0233/22/2/025501. DOI
Klapetek P., Grolich P., Nezval D., Valtr M., Šlesinger R., Nečas D. GSvit—An open source FDTD solver for realistic nanoscale optics simulations. Comput. Phys. Commun. 2021;265:108025. doi: 10.1016/j.cpc.2021.108025. DOI
Labuda A., Bates J.R., Grütter P.H. The noise of coated cantilevers. Nanotechnology. 2012;23:025503. doi: 10.1088/0957-4484/23/2/025503. PubMed DOI
Boudaoud M., Haddab Y., Gorrec Y.L., Lutz P. Study of thermal and acoustic noise interferences in low stiffness AFM cantilevers and characterization of their dynamic properties. Rev. Sci. Instrum. 2012;83:013704. doi: 10.1063/1.3673637. PubMed DOI
Huang Q.X., Fei Y.T., Gonda S., Misumi I., Sato O., Keem T., Kurosawa T. The interference effect in an optical beam deflection detection system of a dynamic mode AFM. Meas. Sci. Technol. 2005;17:1417–1423. doi: 10.1088/0957-0233/17/6/020. DOI
Méndez-Vilas A., González-Martín M., Nuevo M. Optical interference artifacts in contact atomic force microscopy images. Ultramicroscopy. 2002;92:243–250. doi: 10.1016/S0304-3991(02)00140-7. PubMed DOI
Legleiter J. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: Simulation and experiment. Nanotechnology. 2009;20:245703. doi: 10.1088/0957-4484/20/24/245703. PubMed DOI
Shih F.Y. Image Processing and Mathematical Morphology (Fundamentals and Applications) Taylor & Francis; London, UK: 2009.
Perlin K. A Unified Texture/Reflectance Model; Proceedings of the SIGGRAPH ’84 Advanced Image Synthesis Course Notes; Minneapolis, MN, USA. 23–27 July 1984.
Lagae A., Lefebvre S., Cook R., DeRose T., Drettakis G., Ebert D., Lewis J., Perlin K., Zwicker M. A Survey of Procedural Noise Functions. Comput. Graph. Forum. 2010;29:2579–2600. doi: 10.1111/j.1467-8659.2010.01827.x. DOI
Fournier A., Fussell D., Carpenter L. Computer rendering of stochastic models. Commun. ACM. 1982;25:371–384. doi: 10.1145/358523.358553. DOI
Berry M., Lewis Z. On the Weierstrass–Mandelbrot fractal function. Proc. R. Soc. A. 1980;370:459–484.
Buldyrev S.V., Barabási A.L., Caserta F., Havlin S., Stanley H.E., Vicsek T. Anomalous interface roughening in porous media: Experiment and model. Phys. Rev. A. 1992;45:R8313–R8316. doi: 10.1103/PhysRevA.45.R8313. PubMed DOI
Steinbach I. Phase-field models in materials science. Modelling Simul. Mater. Sci. Eng. 2009;17:073001. doi: 10.1088/0965-0393/17/7/073001. DOI
Ding W., Dai C., Yu T., Xu J., Fu Y. Grinding performance of textured monolayer CBN wheels: Undeformed chip thickness nonuniformity modeling and ground surface topography prediction. Int. J. Mach. Tool. Manu. 2017;122:66–80. doi: 10.1016/j.ijmachtools.2017.05.006. DOI
Der Weeen P.V., Zimer A.M., Pereira E.C., Mascaro L.H., Bruno O.M., Baets B.D. Modeling pitting corrosion by means of a 3D discrete stochastic model. Corros. Sci. 2014;82:133–144. doi: 10.1016/j.corsci.2014.01.010. DOI
Werner B.T. Eolian dunes: Computer simulations and attractor interpretation. Geology. 1995;23:1107–1110. doi: 10.1130/0091-7613(1995)023<1107:EDCSAA>2.3.CO;2. DOI
Pech A., Hingston P., Masek M., Lam C.P. Evolving Cellular Automata for Maze Generation. In: Chalup S., Blair A., Randall M., editors. Artificial Life and Computational Intelligence. Volume 8955. Springer; Cham, Switzerland: 2015. pp. 112–124. Lecture Notes in Artificial Intelligence.
Iben H.N., O’Brien J.F. Generating surface crack patterns. Graph. Models. 2009;71:198–208. doi: 10.1016/j.gmod.2008.12.005. DOI
Desbenoit B., Galin E., Akkouche S. Simulating and modeling lichen growth. Comput. Graph. Forum. 2004;23:341–350. doi: 10.1111/j.1467-8659.2004.00765.x. DOI
Efros A.A., Freeman W.T. Image Quilting for Texture Synthesis and Transfer; Proceedings of the SIGGRAPH 2001 Conference Proceedings; Computer Graphics, Los Angeles, CA, USA. 12–17 August 2001; pp. 341–346.
Lefebvre S., Hoppe H. Parallel controllable texture synthesis. ACM Trans. Graph. 2005;24:777–786. doi: 10.1145/1073204.1073261. DOI
Wei L., Lefebvre S., Kwatra V., Turk G. State of the Art in Example-based Texture Synthesis. In: Pauly M., Greiner G., editors. Eurographics 2009 State of The Art Reports. Eurographics Association; Munich, Germany: 2009. p. 3.
Nečas D., Valtr M., Klapetek P. How levelling and scan line corrections ruin roughness measurement and how to prevent it. Sci. Rep. 2020;10:15294. doi: 10.1038/s41598-020-72171-8. PubMed DOI PMC
Eifler M., Seewig F.S.J., Kirsch B., Aurich J.C. Manufacturing of new roughness standards for the linearity of the vertical axis—Feasibility study and optimization. Eng. Sci. Technol. Intl. J. 2016;19:1993–2001. doi: 10.1016/j.jestch.2016.06.009. DOI
Pérez-Ràfols F., Almqvist A. Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribol. Int. 2019;131:591–604. doi: 10.1016/j.triboint.2018.11.020. DOI
Klapetek P., Ohlídal I., Bílek J. Atomic force microscope tip influence on the fractal and multi-fractal analyses of the properties of ndomly rough surfaces. In: Wilkening G., Koenders L., editors. Nanoscale Calibration Standards and Methods. Wiley VCH; Weinheim, Germany: 2005. p. 452.
Consultative Committee for Length Recommendations of CCL/WG-N on: Realization of SI Metre Using Silicon Lattice and Transmission Electron Microscopy for Dimensional Nanometrology. [(accessed on 6 May 2021)];2019 Available online: https://www.bipm.org/utils/common/pdf/CC/CCL/CCL-GD-MeP-2.pdf.
Zhao Y., Wang G.C., Lu T.M. Characterization of Amorphous and Crystalline Rough Surface—Principles and Applications. Volume 37 Academic Press; San Diego, CA, USA: 2000. Experimental Methods in the Physical Sciences.
Sadewasser S., Leendertz C., Streicher F., Lux-Steiner M. The influence of surface topography on Kelvin probe force microscopy. Nanotechnology. 2009;20:505503. doi: 10.1088/0957-4484/20/50/505503. PubMed DOI
Fenwick O., Latini G., Cacialli F. Modelling topographical artifacts in scanning near-field optical microscopy. Synth. Met. 2004;147:171–173. doi: 10.1016/j.synthmet.2004.06.030. DOI
Martin O., Girard C., Dereux A. Dielectric versus topographic contrast in near-field microscopy. J. Opt. Soc. Am. 1996;13:1802–1808. doi: 10.1364/JOSAA.13.001801. DOI
Gucciardi P.G., Bachelier G., Allegrini M., Ahn J., Hong M., Chang S., Jhe W., Hong S.C., Baek S.H. Artifacts identification in apertureless near-field optical microscopy. J. Appl. Phys. 2007;101:064303. doi: 10.1063/1.2696066. DOI
Biscarini F., Ong K.Q., Albonetti C., Liscio F., Longobardi M., Mali K.S., Ciesielski A., Reguera J., Renner C., Feyter S.D., et al. Quantitative Analysis of Scanning Tunneling Microscopy Images of Mixed-Ligand-Functionalized Nanoparticles. Langmuir. 2013;29:13723–13734. doi: 10.1021/la403546c. PubMed DOI
Wang L., Wang L., Xu L., Chen W. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method. Comput. Math. Method Med. 2019;2019:7895061. doi: 10.1155/2019/7895061. PubMed DOI PMC
Sugimoto Y., Pou P., Abe M., Jelinek P., Perez R., Morita S., Custance O. Chemical identification of individual surface atoms by atomic force microscopy. Nature. 2007;446:64–67. doi: 10.1038/nature05530. PubMed DOI
Zhang K., Hatano T., Tien T., Herrmann G., Edwards C., Burgess S.C., Miles M. An adaptive non-raster scanning method in atomic force microscopy for simple sample shapes. Meas. Sci. Technol. 2015;26:035401. doi: 10.1088/0957-0233/26/3/035401. DOI
Han G., Lv L., Yang G., Niu Y. Super-resolution AFM imaging based on compressive sensing. Appl. Surf. Sci. 2020;508:145231. doi: 10.1016/j.apsusc.2019.145231. DOI
ISO/IEC Guide 98-3:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement. [(accessed on 6 May 2021)]; Available online: http://bipm.org/
Wiener N. The Homogeneous Chaos. Am. J. Math. 1938;60:897–936. doi: 10.2307/2371268. DOI
Augustin F., Gilg A., Paffrath M., Rentrop P., Wever U. A survey in mathematics for industry polynomial chaos for the approximation of uncertainties: Chances and limits. Eur. J. Appl. Math. 2008;19:149–190. doi: 10.1017/S0956792508007328. DOI
Oladyshkin S., Nowak W. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion. Reliab. Eng. Syst. Saf. 2012;106:179–190. doi: 10.1016/j.ress.2012.05.002. DOI
Amyot R., Flechsig H. BioAFMviewer: An interactive interface for simulated AFM scanning of biomolecular structures and dynamics. PLoS Comput. Biol. 2020;16:e1008444. doi: 10.1371/journal.pcbi.1008444. PubMed DOI PMC