The Surface-Topography Challenge: A Multi-Laboratory Benchmark Study to Advance the Characterization of Topography
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40726540
PubMed Central
PMC12296861
DOI
10.1007/s11249-025-02014-y
PII: 2014
Knihovny.cz E-zdroje
- Klíčová slova
- Challenge, Multi-scale topography, Open Science, Roughness metrics, Surface topography,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Surface performance is critically influenced by topography in virtually all real-world applications. The current standard practice is to describe topography using one of a few industry-standard parameters. The most commonly reported number is R a, the average absolute deviation of the height from the mean line (at some, not necessarily known or specified, lateral length scale). However, other parameters, particularly those that are scale-dependent, influence surface and interfacial properties; for example the local surface slope is critical for visual appearance, friction, and wear. The present Surface-Topography Challenge was launched to raise awareness for the need of a multi-scale description, but also to assess the reliability of different metrology techniques. In the resulting international collaborative effort, 153 scientists and engineers from 64 research groups and companies across 20 countries characterized statistically equivalent samples from two different surfaces: a "rough" and a "smooth" surface. The results of the 2088 measurements constitute the most comprehensive surface description ever compiled. We find wide disagreement across measurements and techniques when the lateral scale of the measurement is ignored. Consensus is established through scale-dependent parameters while removing data that violates an established resolution criterion and deviates from the majority measurements at each length scale. Our findings suggest best practices for characterizing and specifying topography. The public release of the accumulated data and presented analyses enables global reuse for further scientific investigation and benchmarking. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11249-025-02014-y.
AC2T research GmbH Viktor Kaplan Strasse 2 C 2700 Wiener Neustadt Austria
BD Medical Pharmaceutical Systems 1 Becton Drive Franklin Lakes NY 07417 USA
BD Medical Pharmaceutical Systems 11 Rue Aristide Verges 38801 Le Pont de Claix France
CEITEC Brno University of Technology Purkynova 123 61200 Brno Czech Republic
Center for Advancing Electronics Dresden TU Dresden 01069 Dresden Germany
Centre des matériaux MINES Paris PSL CNRS UMR 7633 21 allée des Marronniers 78000 Versailles France
CSIR Central Salt and Marine Chemicals Research Institute Bhavnagar Gujrat 364002 India
Czech Metrology Institute Okružní 31 63800 Brno Czech Republic
Department of Materials ETH Zürich Leopold Ruzicka Weg 4 8093 Zürich Switzerland
FAMU FSU College of Engineering Mech Eng Dept 2003 Levy Ave Tallahassee FL 32310 USA
Fraunhofer Institute for Mechanics of Materials IWM Tribology Wöhlerstr 11 79108 Freiburg Germany
Freiburg Materials Research Center University of Freiburg Stefan Meier Str 21 79104 Freiburg Germany
IFISUR Universidad Nacional del Sur CONICET Av Alem 1253 Bahía Blanca Buenos Aires CP 8000 Argentina
Independent Researcher Chennai TN 600041 India
LaMCoS UMR 5259 INSA Lyon CNRS Bldg S Germain 27bis Ave Jean Capelle 69621 Villeurbanne France
LTDS CNRS UMR5513 Ecole Centrale de Lyon 36 Avenue Guy de Collongue 69130 Ecully France
Materials Department University of California Santa Barbara Santa Barbara CA 93106 USA
Materials Science Institute of Madrid ICMM CSIC C Sor Juana Inés de la Cruz 3 28049 Madrid Spain
Mechanical Engineering Indian Institute of Science C 5 Raman Ave Bengaluru 560012 India
OptoSurf GmbH Nobelstr 9 13 76275 Ettlingen Germany
Peter Grünberg Institute Forschungszentrum Jülich 52425 Jülich Germany
Polytec GmbH Polytecplatz 1 7 76337 Waldbronn Germany
Robert Bosch GmbH Robert Bosch Campus 1 Renningen 71272 Germany
Saint Gobain Omniseal Solutions Heiveldekens 22 2550 Kontich Belgium
Samarkand State University University blv 15 140104 Samarkand Uzbekistan
Science and Technology Division Corning Incorporated 184 Science Center Dr Painted Post NY 14870 USA
Southwest Research Institute 6220 Culebra Rd San Antonio TX 78238 USA
Zobrazit více v PubMed
Binder, L.: Der Widerstand von Kontakten. Elektrotechnik und Maschinenbau
Fuller, K.N.G., Tabor, D.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. Lond. A
Sayles, R. S., Thomas, T. R.; Surface topography as a nonstationary random process. Nature
Mandelbrot, B.B., Passoja, D.E., Paullay, A.J.: Fractal character of fracture surfaces of metals. Nature.
Brown, C.A., Hansen, H.N., Jiang, X.J., Blateyron, F., Berglund, J., Senin, N., Bartkowiak, T., Dixon, B., Le Goïc, G., Quinsat, Y., et al.: Multiscale analyses and characterizations of surface topographies. CIRP Ann.
Teichert, C., MacKay, J.F., Savage, D.E., Lagally, M.G., Brohl, M., Wagner, P.: Comparison of surface roughness of polished silicon wafers measured by light scattering topography, soft-x-ray scattering, and atomic-force microscopy. Appl. Phys. Lett.
Candela, T., Renard, F., Klinger, Y., Mair, K., Schmittbuhl, J., Brodsky, E.E.: Roughness of fault surfaces over nine decades of length scales. J. Geophys. Res.-Sol. Ea.
Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett.
Gujrati, A., Khanal, S.R., Pastewka, L., Jacobs, T.D.B.: Combining TEM, AFM, and profilometry for quantitative topography characterization across all scales. ACS Appl. Mater. Interf. PubMed
ASME B46.1, Surface Texture (Surface Roughness, Waviness, and Lay). American Society of Mechanical Engineers, New York City, USA (2019)
ISO 21920, Geometrical product specifications (GPS) — Surface texture: Profile. International Organization for Standardization, Geneva, CH (2021)
Persson, B. N. J.: Functional properties of rough surfaces from an analytical theory of mechanical contact, MRS Bull.
Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A
Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear.
Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. PubMed
Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys.
Kalker, J.J., Randen, Y.: A minimum principle for frictionless elastic contact with application to non-Hertzian half-space contact problems. J. Eng. Math.
Stanley, H.M., Kato, T.: An FFT-based method for rough surface contact. J. Tribol.
Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E PubMed
Pei, L., Hyun, S., Molinari, J.-F., Robbins, M.O.: Finite element modeling of elasto-plastic contact between rough surfaces. J. Mech. Phys. Solids
Campañá, C., Müser, M. H.: Contact mechanics of real vs. randomly rough surfaces: A Green’s function molecular dynamics study. EPL.
Müser, M. H., Dapp, W. B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T. A., Persson, B. N. J., Harris, K., Bennett, A., Schulze, K., Rohde, S., Ifju, P., Gregory Sawyer, W., Angelini, T., Esfahani, H. A., Kadkhodaei, M., Akbarzadeh, S., Wu, J.-J., Vorlaufer, G., Vernes, A., Solhjoo, S., Vakis, A. I., Jackson, R. L., Xu, Y., Streator, J., Rostami, A., Dini, D., Medina, S., Carbone, G., Bottiglione, F., Afferrante, L., Monti, J., Pastewka, L., Robbins, M. O., Greenwood, J. A.: Meeting the contact-mechanics challenge. Tribol. Lett.
Jacobs, T. D. B., Miller, N., Müser, M. H., Pastewka, L.: The surface-topography challenge: Problem definition. arXiv:2206.13384 (2022). 10.48550/arXiv.2206.13384
Friedrich, C., Berg, G., Broszeit, E., Rick, F., Holland, J.: PVD CrxN coatings for tribological application on piston rings. Surf. Coat. Technol.
Lorenzo-Martin, C., Ajayi, O., Erdemir, A., Fenske, G.R., Wei, R.: Effect of microstructure and thickness on the friction and wear behavior of CrN coatings. Wear
Li, Q., Yang, L., Wang, Z., Zhang, H., Liu, Z., Chen, Q.: The superior properties of CrN coatings prepared by high power pulsed reactive magnetron sputtering. AIP Adv.
Röttger, M. C., Sanner, A., Thimons, L. A., Junge, T., Gujrati, A., Monti, J. M., Nöhring, W. G., Jacobs, T. D. B., Pastewka, L.: contact.engineering - create, analyze and publish digital surface twins from topography measurements across many scales. Surf. Topogr. Metrol. Prop.
Repitsch, C., Zangl, K., Helmli, F., Danzl, R.: Focus variation. In: Advances in Optical Surface Texture Metrology. pp. 3–1. IOP Publishing Bristol, UK (2020). 10.1088/978-0-7503-2528-8
Jonkman, J., Brown, C.M., Wright, G.D., Anderson, K.I., North, A.J.: Tutorial: guidance for quantitative confocal microscopy. Nature Prot. PubMed
Lee, B.S., Strand, T.C.: Profilometry with a coherence scanning microscope. Appl. Optics PubMed
Deck, L., De Groot, P.: High-speed noncontact profiler based on scanning white-light interferometry. Appl. Optics PubMed
Gabor, D.: A new microscopic principle. Nature. PubMed
Hariharan, P.:
Fratz, M., Seyler, T., Bertz, A., Carl, D.: Digital holography in production: an overview. Light: Adv. Manuf.
Hudson, B.: The application of stereo-techniques to electron micrographs. J. Microsc.
Wieland, M., Textor, M., Spencer, N. D., Brunette, D. M.: Wavelength-dependent roughness: a quantitative approach to characterizing the topography of rough titanium surfaces. Int. J. Oral Max. Impl. PubMed
Neggers, J., Héripré, E., Bonnet, M., Boivin, D., Tanguy, A., Hallais, S., Gaslain, F., Rouesne, E., Roux, S.: Principal image decomposition for multi-detector backscatter electron topography reconstruction. Ultramicroscopy PubMed
Teague, E.C., Scire, F.E., Baker, S.M., Jensen, S.W.: Three-dimensional stylus profilometry. Wear
Whitehouse, D. J.: Handbook of surface metrology. Institute of Physics Pub. (1994).
Bec, S., Tonck, A., Georges, J.-M., Georges, E., Loubet, J.-L.: Improvements in the indentation method with a surface force apparatus. Phil. Mag. A.
Baker, S.P.: Between nanoindentation and scanning force microscopy: measuring mechanical properties in the nanometer regime. Thin Solid Films
Binnig, G., Quate, C.F., Gerber, C.: Atomic force microscope. Phys. Rev. Lett. PubMed
Meyer, E., Hug, H. J., Bennewitz, R.:
Jäger, G., Manske, E., Hausotte, T., Müller, A., Balzer, F.: Nanopositioning and nanomeasuring machine NPMM-200–a new powerful tool for large-range micro- and nanotechnology. Surf. Topogr.: Metrol. Prop.
Shi, Q., Roux, S., Latourte, F., Hild, F., Loisnard, D., Brynaert, N.: Measuring topographies from conventional SEM acquisitions. Ultramicroscopy. PubMed
Chadha, V., Miller, N., Ding, R., Beschorner, K.E., Jacobs, T.D.: Evaluating scanning electron microscopy for the measurement of small-scale topography. Surf. Topogr.: Metrol. Prop. PubMed PMC
Carim, A., Sinclair, R.: The evolution of Si/SiO2 interface roughness. J. Electrochem. Soc.
Khanal, S. R., Gujrati, A., Vishnubhotla, S. B., Nowakowski, P., Bonifacio, C. S., Pastewka, L., Jacobs, T. D. B.: Characterization of small-scale surface topography using transmission electron microscopy, Surf. Topogr.: Metrol. Prop.
Stover, J. C.: Optical scattering: Measurements and Analysis, Third Edition. SPIE Press (2012). 10.1117/3.975276
Chason, E., Mayer, T.: Thin film and surface characterization by specular x-ray reflectivity. Critical Reviews in Solid State and Material Sciences
Brodmann, R., Gerstorfer, O., Thurn, G.: Optical roughness measuring instrument for fine-machined surfaces. Opt. Eng.
Nečas, D., Klapetek, P.: Gwyddion: an open-source software for SPM data analysis. Open Physics.
Miedema, F.: Open Science: the Very Idea. Springer Nature (2022). 10.1007/978-94-024-2115-6
Huber P. J., Ronchetti, E. M.: Robust statistics. John Wiley & Sons (2011). 10.1002/9780470434697
Sagy, A., Brodsky, E.E., Axen, G.J.: Evolution of fault-surface roughness with slip. Geology
Brodsky, E.E., Kirkpatrick, J.D., Candela, T.: Constraints from fault roughness on the scale-dependent strength of rocks. Geology
Candela, T., Brodsky, E. E.: The minimum scale of grooving on faults, Geology
Jacobs, T.D.B., Junge, T., Pastewka, L.: Quantitative characterization of surface topography using spectral analysis. Surf. Topogr.: Metrol. Prop.
Leach, R.: Optical measurement of surface topography. Springer-Verlag (2011).10.1007/978-3-642-12012-1
Foreman, M.R., Giusca, C.L., Coupland, J.M., Török, P., Leach, R.K.: Determination of the transfer function for optical surface topography measuring instruments—a review. Meas. Sci. Technol.
Church, E. L., Takacs, P. Z.: Church, E.L., Takacs, P.Z.: Instrumental effects in surface finish measurement. In: Proc. SPIE.
Church, E. L., Takacs, P. Z.: Effects of the nonvanishing tip size in mechanical profile measurements. In: Proc. SPIE
Sanner, A., Nöhring, W.G., Thimons, L.A., Jacobs, T.D.B., Pastewka, L.: Scale-dependent roughness parameters for topography analysis. Appl. Surf. Sci. Adv.
Musolff, C., Malburg, M. C.:
Wang, A., Müser, M.H.: On the usefulness of the height-difference-autocorrelation function for contact mechanics. Tribol. Int.
Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: Percolation and leakage. Phys. Rev. Lett. PubMed
Scheibert, J., Leurent, S., Prevost, A., Debrégeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science PubMed
Sahli, R., Prot, A., Wang, A., Müser, M., Piovarci, M., Didyk, P., Bennewitz, R.: Tactile perception of randomly rough surfaces, Sci. Rep. PubMed PMC
Woeppel, K., Dhawan, V., Shi, D., Cui, X.T.: Nanotopography-enhanced biomimetic coating maintains bioactivity after weeks of dry storage and improves chronic neural recording. Biomaterials PubMed PMC
Rice, S.O.: Reflection of electromagnetic waves from slightly rough surfaces. Commun. Pure Appl. Math.
Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-Herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. PubMed
ISO 5436-2, Geometrical product specifications (GPS) — Surface texture: Profile method; Measurement standards — Part 2: Software measurement standards, International Organization for Standardization, Geneva, CH (2012).
Church, E.L., Jenkinson, H.A., Zavada, J.M.: Relationship between surface scattering and microtopographic features. Opt. Eng.
Schröder, S., Duparré, A., Coriand, L., Tünnermann, A., Penalver, D.H., Harvey, J.E.: Modeling of light scattering in different regimes of surface roughness. Opt. Express PubMed
Feidenhans’l, N.A., Hansen, P.-E., Pilný, L., Madsen, M.H., Bissacco, G., Petersen, J.C., Taboryski, R.: Comparison of optical methods for surface roughness characterization. Meas. Sci. Technol.
Beckmann, P.: II Scattering of light by rough surfaces. In: Progress in optics. pp. 53–69. Elsevier (1967). 10.1016/S0079-6638(08)70579-1
Eifler, M., Brodmann, B., Hansen, P.E., Seewig, J.: Traceable functional characterization of surface topography with angular-resolved scattering light measurement. Surf. Topogr.
Nečas, D., Valtr, M., Klapetek, P.: How levelling and scan line corrections ruin roughness measurement and how to prevent it. Sci. Rep. PubMed PMC
Nečas, D., Klapetek, P.: One-dimensional autocorrelation and power spectrum density functions of irregular regions. Ultramicroscopy PubMed