Derivatives of 3-Aminopyrazine-2-carboxamides: Synthesis, Antimicrobial Evaluation, and in Vitro Cytotoxicity
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV 260 401
Ministry of Education, Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN co-funded by ERDF
PubMed
30925695
PubMed Central
PMC6479349
DOI
10.3390/molecules24071212
PII: molecules24071212
Knihovny.cz E-zdroje
- Klíčová slova
- aminopyrazine, antibacterial activity, antifungal activity, antimycobacterial activity, cytotoxicity, pyrazinamide derivatives,
- MeSH
- antibakteriální látky chemická syntéza chemie farmakologie MeSH
- antifungální látky farmakologie MeSH
- Bacteria účinky léků MeSH
- buněčná smrt účinky léků MeSH
- buňky Hep G2 MeSH
- houby účinky léků MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- molekulární konformace MeSH
- pyraziny chemická syntéza chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- antifungální látky MeSH
- pyraziny MeSH
We report the design, synthesis, and in vitro antimicrobial activity of a series of N-substituted 3-aminopyrazine-2-carboxamides with free amino groups in position 3 on the pyrazine ring. Based on various substituents on the carboxamidic moiety, the series is subdivided into benzyl, alkyl, and phenyl derivatives. The three-dimensional structures of the title compounds were predicted using energy minimization and low mode molecular dynamics under AMBER10:EHT forcefield. Compounds were evaluated for antimycobacterial, antibacterial, and antifungal activities in vitro. The most active compound against Mycobacterium tuberculosis H37Rv (Mtb) was 3-amino-N-(2,4-dimethoxyphenyl)pyrazine-2-carboxamide (17, MIC = 12.5 µg/mL, 46 µM). Antimycobacterial activity against Mtb and M. kansasii along with antibacterial activity increased among the alkyl derivatives with increasing the length of carbon side chain. Antibacterial activity was observed for phenyl and alkyl derivatives, but not for benzyl derivatives. Antifungal activity was observed in all structural subtypes, mainly against Trichophyton interdigitale and Candida albicans. The four most active compounds (compounds 10, 16, 17, 20) were evaluated for their in vitro cytotoxicity in HepG2 cancer cell line; only compound 20 was found to exert some level of cytotoxicity. Compounds belonging to the current series were compared to previously published, structurally related compounds in terms of antimicrobial activity to draw structure activity relationships conclusions.
Zobrazit více v PubMed
World Health Organization Global Tuberculosis Report 2018. WHO/CDC/TB/2018.20. [(accessed on 20 February 2019)]; Available online: http://www.who.int/tb/publications/global_report/en/
World Health Organisation . The End TB Strategy. Global Strategy and Targets for Tuberculosis Prevention, Care and Control after 2015. WHO; Geneva, Switzerland: 2016. [(accessed on 20 February 2019)]. Available online: http://www.who.int/tb/ post2015_ TBstrategy.pdf?ua=1.
Singh P., Mishra A.K., Malonia S.K., Chauhan D.S., Sharma V.D., Venkatesan K., Katoch V.M. The Paradox of Pyrazinamide: An Update on the Molecular Mechanisms of Pyrazinamide Resistance in Mycobacteria. J. Commun. Dis. 2006;38:288–298. PubMed
Tripathi R.P., Tewari N., Dwivedi N., Tiwari V.K. Fighting tuberculosis: An old disease with new challenges. Med. Res. Rev. 2005;25:93–131. doi: 10.1002/med.20017. PubMed DOI
Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: A review. Int. J. Tuberc. Lung Dis. 2003;7:6–21. PubMed
Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R., Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI
Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R., Jr. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC
Shi W.L., Chen J.Z., Feng J., Cui P., Zhang S., Weng X.H., Zhang W., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC
Kim H., Shibayama K., Rimbara E., Mori S. Biochemical Characterization of Quinolinic Acid Phosphoribosyltransferase from Mycobacterium tuberculosis H37Rv and Inhibition of Its Activity by Pyrazinamide. PLoS ONE. 2014;9:e100062. doi: 10.1371/journal.pone.0100062. PubMed DOI PMC
Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC
Yang J., Liu Y., Bi J., Cai Q., Liao X., Li W., Guo C., Zhang Q., Lin T., Zhao Y., et al. Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol. Microbiol. 2015;95:791–803. doi: 10.1111/mmi.12892. PubMed DOI
Dillon N.A., Peterson N.D., Feaga H.A., Keiler K.C., Baughn A.D. Anti-tubercular Activity of Pyrazinamide is Independent of trans-Translation and RpsA. Sci. Rep. 2017;7:6135. doi: 10.1038/s41598-017-06415-5. PubMed DOI PMC
Simoes M.F., Valente E., Gomez M.J.R., Anes E., Constantino L. Lipophilic pyrazinoic acid amide and ester prodrugs Stability, activation and activity against M. tuberculosis. Eur. J. Pharm. Sci. 2009;37:257–263. doi: 10.1016/j.ejps.2009.02.012. PubMed DOI
Semelkova L., Konecna K., Paterova P., Kubicek V., Kunes J., Novakova L., Marek J., Naesens L., Pesko M., Kralova K., et al. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides. Molecules. 2015;20:8687–8711. doi: 10.3390/molecules20058687. PubMed DOI PMC
Semelkova L., Jandourek O., Konecna K., Paterova P., Navratilova L., Trejtnar F., Kubíček V., Kuneš J., Doležal M., Zitko J. 3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation. Molecules. 2017;22:495. doi: 10.3390/molecules22030495. PubMed DOI PMC
Zitko J., Franco F., Paterova P. Synthesis and anti-infective evaluation of 5-amino-N-phenylpyrazine-2-carboxamides. Ceska Slov. Farm. 2015;64:19–24. PubMed
Kajino M., Morimoto S., Inaba A., Nagaya H. Preparation and Formulation of Quinazoline Derivatives as Allergy Inhibitors. 9914203. WO. 1999 Mar 25;
Luo H., Shi J., Lu L., Wu F., Zhou M., Hou X., Zhang W., Ding Z., Li R. Molecular dynamics-based self-organizing molecular field analysis on 3-amino-6-arylpyrazines as the ataxia telangiectasia mutated and Rad3 related (ATR) protein kinase inhibitors. Med. Chem. Res. 2014;23:747–758. doi: 10.1007/s00044-013-0665-6. DOI
Bouz G., Juhas M., Niklova P., Jandourek O., Paterova P., Janousek J., Tůmová L., Kovalíková Z., Kastner P., Doležal M., et al. Ureidopyrazine Derivatives: Synthesis and Biological Evaluation as Anti-infectives and Abiotic Elicitors. Molecules. 2017;22:1797. doi: 10.3390/molecules22101797. PubMed DOI PMC
Eric V., Bradley M. Amide Bond Formation: Beyond the Myth of Coupling Reagents. Chem. Soc. Rev. 2009;38:606–631. PubMed
Shalaeva M., Caron G., Abramov Y.A., O’Connell T.N., Plummer M.S., Yalamanchi G., Farley K.A., Goetz G.H., Philippe L., Shapiro M.J. Integrating Intramolecular Hydrogen Bonding (IMHB) Considerations in Drug Discovery Using Delta logP As a Tool. J. Med. Chem. 2013;56:4870–4879. doi: 10.1021/jm301850m. PubMed DOI
Hubbard T.A., Brown A.J., Bell I.A.W., Cockroft S.L. The Limit of Intramolecular H-Bonding. JACS. 2016;138:15114–15117. doi: 10.1021/jacs.6b09130. PubMed DOI
Nagy P.I. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution. Int. J. Mol. Sci. 2014;15:19562–19633. doi: 10.3390/ijms151119562. PubMed DOI PMC
Hsiao C.H., Tsai T.F., Hsueh P.R. Characteristics of skin and soft tissue infection caused by non-tuberculous mycobacteria in Taiwan. Int. J. Tuberc. Lung Dis. 2011;15:811–817. doi: 10.5588/ijtld.10.0481. PubMed DOI
Gupta A., Bhakta S. An integrated surrogate model for screening of drugs against Mycobacterium tuberculosis. J. Antimicrob. Chemother. 2012;67:1380–1391. doi: 10.1093/jac/dks056. PubMed DOI
Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Kunes J., Doležal M., Zitko J. Alkylamino derivatives of pyrazinamide: Synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2014;24:450–453. doi: 10.1016/j.bmcl.2013.12.054. PubMed DOI
Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J., et al. Alkylamino derivatives of N-benzylpyrazine-2-carboxamide: Synthesis and antimycobacterial evaluation. MedChemComm. 2015;6:1311–1317. doi: 10.1039/C5MD00178A. DOI
Zitko J., Servusova B., Janoutova A., Paterova P., Mandikova J., Garaj V., Vejsová M., Marek J., Doležal M. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem. 2015;23:174–183. doi: 10.1016/j.bmc.2014.11.014. PubMed DOI
Servusova-Vanaskova B., Paterova P., Garaj V., Mandikova J., Kunes J., Naesens L., Jilek P., Dolezal M., Zitko J. Synthesis and Antimicrobial Evaluation of 6-Alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Biol. Drug Des. 2015 doi: 10.1111/cbdd.12536. in press. PubMed DOI
El Bouazzi O., Hammi S., Bourkadi J.E., Tebaa A., Tanani D.S., Soulaymani-Bencheikh R., Badrane N., Bengueddour R. First line anti-tuberculosis induced hepatotoxicity: Incidence and risk factors. Pan Afr. Med. J. 2016;25:167. doi: 10.11604/pamj.2016.25.167.10060. PubMed DOI PMC
Tostmann A., Boeree M.J., Peters W.H.M., Roelofs H.M.J., Aarnoutse R.E., van der Ven A.J.A.M., Dekhuijzen P.N. Isoniazid and its toxic metabolite hydrazine induce in vitro pyrazinamide toxicity. Int. J. Antimicrob. Agents. 2008;31:577–580. doi: 10.1016/j.ijantimicag.2008.01.022. PubMed DOI
Ellingson R.C., Henry R.L., McDonald F.G. Pyrazine Chemistry. I. Derivatives of 3-Aminopyrazinoic Acid. JACS. 1945;67:1711–1713. doi: 10.1021/ja01226a028. DOI
Dermer O.C., King J. N-BENZYLAMIDES AS DERIVATIVES FOR IDENTIFYING THE ACYL GROUP IN ESTERS1,2. JOC. 1943;8:168–173. doi: 10.1021/jo01190a008. DOI
Clark J., Neath G., Smith C. Heterocyclic Studies. 7. Action of Methoxyamine and Methylhydrazines on 4-Hydroxypteridine and Its Methyl Derivatives. J. Chem. Soc. C-Org. 1969:1297–1301. doi: 10.1039/j39690001297. DOI
EUCAST DISCUSSION DOCUMENT E.Dis 5.1 Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infect. 2003;9:1–7. PubMed
EUCAST DEFINITIVE DOCUMENT E.DEF 7.3.1 . Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Yeasts. EUCAST; Växjö, Sweden: 2017. pp. 1–21.
EUCAST DEFINITIVE DOCUMENT E.DEF 9.3.1 . Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal Agents for Conidia Forming Moulds. EUCAST; Växjö, Sweden: 2017. pp. 1–23.