Fast boulder fracturing by thermal fatigue detected on stony asteroids
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39080275
PubMed Central
PMC11289370
DOI
10.1038/s41467-024-50145-y
PII: 10.1038/s41467-024-50145-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Spacecraft observations revealed that rocks on carbonaceous asteroids, which constitute the most numerous class by composition, can develop millimeter-to-meter-scale fractures due to thermal stresses. However, signatures of this process on the second-most populous group of asteroids, the S-complex, have been poorly constrained. Here, we report observations of boulders' fractures on Dimorphos, which is the moonlet of the S-complex asteroid (65803) Didymos, the target of NASA's Double Asteroid Redirection Test (DART) planetary defense mission. We show that the size-frequency distribution and orientation of the mapped fractures are consistent with formation through thermal fatigue. The fractures' preferential orientation supports that these have originated in situ on Dimorphos boulders and not on Didymos boulders later transferred to Dimorphos. Based on our model of the fracture propagation, we propose that thermal fatigue on rocks exposed on the surface of S-type asteroids can form shallow, horizontally propagating fractures in much shorter timescales (100 kyr) than in the direction normal to the boulder surface (order of Myrs). The presence of boulder fields affected by thermal fracturing on near-Earth asteroid surfaces may contribute to an enhancement in the ejected mass and momentum from kinetic impactors when deflecting asteroids.
Agenzia Spaziale Italiana Roma Italy
Department of Aerospace Engineering Auburn University Auburn AL 36849 USA
Departments of Astronomy and Geology University of Maryland College Park MD USA
Dipartimento di Ingegneria Industriale Alma Mater Studiorum Università di Bologna Forlì Italy
Dipartimento di Scienze e Tecnologie Aerospaziali Politecnico di Milano Bovisa Campus Milano Italy
DLR Institute of Planetary Research Berlin Germany
IFAC CNR Sesto Fiorentino Firenze Italy
INAF Astronomical Observatory of Padova Vic Osservatorio 5 35122 Padova Italy
INAF Istituto di Astrofisica e Planetologia Spaziali Roma Italy
INAF Osservatorio Astrofisico di Arcetri Firenze Italy
INAF Osservatorio Astronomico di Capodimonte Napoli Italy
INAF Osservatorio Astronomico di Roma Monte Porzio Catone Roma Italy
INAF Osservatorio Astronomico di Trieste Trieste Italy
Institut Supérieur de l'Aéronautique et de l'Espace Université de Toulouse Toulouse France
Institute of Geology of the Czech Academy of Sciences Prague Czech Republic
IUFACyT Universidad de Alicante Alicante Spain
Johns Hopkins University Applied Physics Laboratory Laurel MD 20723 USA
Johns Hopkins University Baltimore MD USA
LESIA Observatorie de Paris PSL Paris France
Planetary Science Institute Tucson AZ USA
Royal Observatory of Belgium Uccle Belgium
School of Engineering Department of Systems Innovation The University of Tokyo Tokyo Japan
Space Research and Planetary Sciences Physikalisches Institut University of Bern Bern Switzerland
Space Science Data Center ASI Roma Italy
Universidad Complutense Madrid Spain
Université Côte d'Azur Observatoire de la Côte d'Azur CNRS Laboratoire Lagrange Nice France
Zobrazit více v PubMed
Delbo, M. et al. Thermal fatigue as the origin of regolith on small asteroids. Nature508, 233–236 (2014). 10.1038/nature13153 PubMed DOI
Molaro, J. L., Byrne, S. & Le, J. L. Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown. Icarus294, 247–261 (2017).10.1016/j.icarus.2017.03.008 DOI
Eppes, M. C., Willis, A., Molaro, J., Abernathy, S. & Zhou, B. Cracks in Martian boulders exhibit preferred orientations that point to solar-induced thermal stress. Nat. Commun.6, 6712 (2015). 10.1038/ncomms7712 PubMed DOI
Ruesch, O. et al. In situ fragmentation of lunar blocks and implications for impacts and solar-induced thermal stresses. Icarus336, 113431 (2020).10.1016/j.icarus.2019.113431 DOI
Molaro, J. L., Byrne, S. & Langer, S. A. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown. J. Geophys. Res. Planets120, 255–277 (2015).10.1002/2014JE004729 DOI
McFadden, L. D., Eppes, M. C., Gillespie, A. R. & Hallet, B. Physical weathering in arid landscapes due to diurnal variation in the direction of solar heating. Geol. Soc. Am. Bull.117, 161–173 (2005).10.1130/B25508.1 DOI
Eppes, M. C., McFadden, L. D., Wegmann, K. W. & Scuderi, L. A. Cracks in desert pavement rocks: Further insights into mechanical weathering by directional insolation. Geomorphology123, 97–108 (2010).10.1016/j.geomorph.2010.07.003 DOI
Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature568, 55–60 (2019). 10.1038/s41586-019-1033-6 PubMed DOI PMC
Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top–shaped rubble pile. Science364, 268–272 (2019). 10.1126/science.aav8032 PubMed DOI
Molaro, J. L. et al. “In situ evidence of thermally induced rock breakdown widespread on Bennu’s surface.”. Nat. Commun.11, 2913 (2020). 10.1038/s41467-020-16528-7 PubMed DOI PMC
Delbo, M. et al. Alignment of fractures on Bennu’s boulders indicative of rapid asteroid surface evolution. Nat. Geosci.15, 453–457 (2022).10.1038/s41561-022-00940-3 DOI
Sasaki, S. et al. Crack orientations of boulders and thermal fatigue on (162173) Ryugu. 43rd COSPAR Scientific Assembly, 270 (2021).
Cambioni, S. et al. Fine-regolith production on asteroids controlled by rock porosity. Nature598, 49–52 (2021). 10.1038/s41586-021-03816-5 PubMed DOI
Buczkowski, D. L., Barnouin-Jha, O. S. & Prockter, L. M. 433 Eros lineaments: global mapping and analysis. Icarus193, 39–52 (2008).10.1016/j.icarus.2007.06.028 DOI
Nakamura, A. M. et al. Impact process of boulders on the surface of asteroid 25143 Itokawa—fragments from collisional disruption. Earth Planets Space60, 7–12 (2008).10.1186/BF03352756 DOI
El Mir, C., Ramesh, K. T. & Delbo, M. The efficiency of thermal fatigue in regolith generation on small airless bodies. Icarus333, 356–370 (2019).10.1016/j.icarus.2019.06.001 DOI
De Léon, J. et al. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res.37, 178–183 (2006).10.1016/j.asr.2005.05.074 DOI
De León, J. et al. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys.517, A23 (2010).10.1051/0004-6361/200913852 DOI
Ieva, S. et al. “Spectral rotational characterization of the Didymos system prior to the DART impact.”. Planet. Sci. J.3, 183 (2022).10.3847/PSJ/ac7f34 DOI
Dunn, T. L. et al. Mineralogies and source regions of near-Earth asteroids. Icarus222, 273–282 (2013).10.1016/j.icarus.2012.11.007 DOI
Walsh, K. J. & Jacobson, S. A. Formation and evolution of binary asteroids. In Asteroids IV (eds Michel, P. et al.) 375–393. (Univ. of Arizona, Tucson, 2015).
Pajola, M. et al. Anticipated geological assessment of the (65803) didymos–dimorphos system, target of the DART–LICIACube mission. Planet. Sci. J.3, 210 (2022).10.3847/PSJ/ac880d DOI
Barnouin, O. S. et al. The geology and evolution of the Near-Earth binary asteroid system (65803) Didymos. Nat. Commun.10.1038/s41467-024-50146-x (2024). PubMed PMC
Fletcher, Z. J. et al. Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO): design, fabrication, test, and operation. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave, Vol. 12180 (SPIE, 2022).
Daly, R. T. et al. Successful kinetic impact into an asteroid for planetary defence. Nature616, 443–447 (2023). 10.1038/s41586-023-05810-5 PubMed DOI PMC
Cheng, A. F. et al. Momentum transfer from the DART mission kinetic impact on asteroid Dimorphos. Nature616, 457–460 (2023). 10.1038/s41586-023-05878-z PubMed DOI PMC
Chabot, N. et al. Achievement of the planetary defense investigations of the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J.5, 49 (2024).
Statler, T. S. et al. After DART: using the first full-scale test of a kinetic impactor to inform a future planetary defense mission. Planet. Sci. J.3, 244 (2022).10.3847/PSJ/ac94c1 DOI
Flynn, G. J. et al. Limits on asteroid kinetic impact deflection from hypervelocity cratering. 84th Annual Meeting of the Meteoritical Society, No. 2609, Vol. 84 (2021).
Ernst, C. M. et al. The Small Body Mapping Tool (SBMT) for accessing, visualizing, and analyzing spacecraft data in three dimensions. 49th Annual Lunar and Planetary Science Conference. No. 2083 (2018).
Clauset, A., Shalizi, C. R. & Newman, M. E. Power-law distributions in empirical data. SIAM Rev.51, 661–703 (2009).10.1137/070710111 DOI
Matonti, C. et al. Bilobate comet morphology and internal structure controlled by shear deformation. Nat. Geosci.12, 157–162 (2019).10.1038/s41561-019-0307-9 DOI
Giuffrida, A. et al. Fracture simulation parameters of fractured reservoirs: analogy with outcropping carbonates of the Inner Apulian Platform, southern Italy. J. Struct. Geol.123, 18–41 (2019).10.1016/j.jsg.2019.02.007 DOI
Nakano, R. & Hirabayashi, M. Finite element method approach 3-dimensional thermophysical model for YORP torque computation. Icarus404, 115647 (2023).10.1016/j.icarus.2023.115647 DOI
Rivkin, A. et al. Near to mid-infrared spectroscopy of (65803) Didymos with JWST: characterization observations supporting the double asteroid redirection test. Planet. Sci. J.4, 214 (2023).10.3847/PSJ/ad04d8 DOI
Rozitis et al. Observing the variation of asteroid thermal inertia with heliocentric distance. Mon. Not. R. Astron. Soc.477, 1782–1802 (2018).10.1093/mnras/sty640 DOI
Cambioni, S. et al. Constraining the thermal properties of planetary surfaces using machine learning: application to airless bodies. Icarus325, 16–30 (2019).10.1016/j.icarus.2019.01.017 DOI
Richardson, D. C. et al. Predictions for the dynamical states of the Didymos system before and after the planned DART impact. Planet. Sci. J.3, 157 (2022).10.3847/PSJ/ac76c9 DOI
Nakamura, T. et al. Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science333, 1113–1116 (2011). 10.1126/science.1207758 PubMed DOI
Bryson, K. L., Ostrowski, D. R. & Blasizzo, A. Meteorite flaws and scaling for atmospheric entry. Plant. Space Sci.164, 85–90 (2018).10.1016/j.pss.2018.06.018 DOI
Trógolo, Nair et al. Lifted particles from the fast spinning primary of the near-Earth asteroid (65803) Didymos. Icarus397, 115521 (2023).10.1016/j.icarus.2023.115521 DOI
Richardson, D. C. The dynamical state of the Didymos system before and after the DART impact. Planet. Sci. J.3, 157 (2022).10.3847/PSJ/ac76c9 DOI
Ravaji, B., Ali-Lagoa, V., Delbo, M. & Wilkerson, J. W. Unraveling the mechanics of thermal stress weathering: rate-effects, size-effects, and scaling laws. J. Geophys. Res. Planets124, 3304–3328 (2019).10.1029/2019JE006019 DOI
Granvik, M. et al. Super-catastrophic disruption of asteroids at small perihelion distances. Nature530, 303–306 (2016). 10.1038/nature16934 PubMed DOI
Lauretta, D. S. et al. Episodes of particle ejection from the surface of the active asteroid (101955) Bennu. Science366, eaay6470 (2019).10.1126/science.aay3544 PubMed DOI
Raducan, S. D., Davison, T. M. & Collins, G. S. The effects of asteroid layering on ejecta mass-velocity distribution and implications for impact momentum transfer. Planet. Space Sci.180, 104756 (2020).10.1016/j.pss.2019.104756 DOI
Stickle, A. M. et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J.3, 248 (2022).10.3847/PSJ/ac91cc DOI
Michel, P. et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J.3, 160 (2022).10.3847/PSJ/ac6f52 DOI
Daly, M. G. et al. The OSIRIS-REx laser altimeter (OLA) investigation and instrument. Space Sci. Rev.212, 899–924 (2017).10.1007/s11214-017-0375-3 DOI
Nakano, R. et al. NASA’s Double Asteroid Redirection Test (DART): mutual orbital period change due to reshaping in the near-earth binary asteroid system (65803) Didymos. Planet. Sci. J.3, 148 (2022).10.3847/PSJ/ac7566 DOI
Yu, Y. et al. A finite element method for computational full two-body problem: I. The mutual potential and derivatives over bilinear tetrahedron elements. Celest. Mech. Dyn. Astron.131, 1–21 (2019).10.1007/s10569-019-9930-4 DOI
Davidsson, B. J. R. & Rickman, H. Surface roughness and three-dimensional heat conduction in thermophysical models. Icarus243, 58–77 (2014).10.1016/j.icarus.2014.08.039 DOI
Pelivan, I. et al. Thermophysical modeling of Didymos’ moon for the Asteroid Impact Mission. Adv. Space Res.59, 1936–1949 (2017).10.1016/j.asr.2016.12.041 DOI
Pajola, M. et al. Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos. Nat. Commun.10.1038/s41467-024-50148-9 (2024). PubMed PMC
Roth, N. X. et al. ALMA observations of the DART impact: characterizing the ejecta at sub-millimeter wavelengths. Planet. Sci. J.4, 206 (2023).10.3847/PSJ/acfcaa DOI
El-Mahadia, I. The Elastic Properties of Carbonaceous Chondrites. PhD thesis, Univ. Calgary (2012).