• This record comes from PubMed

Successful kinetic impact into an asteroid for planetary defence

. 2023 Apr ; 616 (7957) : 443-447. [epub] 20230301

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

Grant support
80MSFC20D0004 NASA - United States
20-DARTPSP20-0007 NASA - United States

Links

PubMed 36858073
PubMed Central PMC10115643
DOI 10.1038/s41586-023-05810-5
PII: 10.1038/s41586-023-05810-5
Knihovny.cz E-resources

Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.

Comment In

PubMed

See more in PubMed

Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies (National Academies Press, 2010); 10.17226/12842.

Interagency Working Group for Detecting and Mitigating the Impact of Earth-bound Near-Earth Objects National Near-Earth Object Preparedness Strategy and Action Plan (United States National Science & Technology Council, 2018).

Committee on the Planetary Science and Astrobiology Decadal Survey, Space Studies Board, Division on Engineering and Physical Sciences & National Academies of Sciences, Engineering, and Medicine Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022); 10.17226/26522.

Rivkin AS, et al. The Double Asteroid Redirection Test (DART): planetary defense investigations and requirements. Planet. Sci. J. 2021;2:173. doi: 10.3847/PSJ/ac063e. DOI

A’Hearn MF, et al. Deep impact: excavating comet Tempel 1. Science. 2005;310:258–264. doi: 10.1126/science.1118923. PubMed DOI

Arakawa M, et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science. 2020;368:67–71. doi: 10.1126/science.aaz1701. PubMed DOI

Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature10.1038/s41586-023-05805-2 (2023). PubMed PMC

Fletcher, Z. J. et al. Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO): design, fabrication, test, and operation. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave (eds Coyle, L. E. et al.) 121800E (SPIE, 2022); 10.1117/12.2627873.

Rush, B. P. et al. Optical navigation for the DART mission. In 33rd AAS/AIAA Space Flight Mechanics Meeting AAS 23-234 (2023).

Adams, E. et al. Double Asteroid Redirection Test: the Earth strikes back. In 2019 IEEE Aerospace Conference 1–11 (IEEE, 2019); 10.1109/AERO.2019.8742007.

Bekker, D., Smith, R. & Tran, M. Q. Guiding DART to impact—the FPGA SoC design of the DRACO image processing pipeline. In 2021 IEEE Space Computing Conference 122–133 (IEEE, 2021); 10.1109/SCC49971.2021.00020.

Naidu SP, et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus. 2020;348:113777. doi: 10.1016/j.icarus.2020.113777. DOI

Pravec P, et al. Photometric observations of the binary near-Earth asteroid (65803) Didymos in 2015–2021 prior to DART impact. Planet. Sci. J. 2022;3:175. doi: 10.3847/PSJ/ac7be1. DOI

Scheirich P, Pravec P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 2022;3:163. doi: 10.3847/PSJ/ac7233. DOI

Zuber MT, et al. The shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder. Science. 2000;289:2097–2101. doi: 10.1126/science.289.5487.2097. PubMed DOI

Watanabe S, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top–shaped rubble pile. Science. 2019;364:268–272. doi: 10.1126/science.aav8032. PubMed DOI

Fujiwara A, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science. 2006;312:1330–1334. doi: 10.1126/science.1125841. PubMed DOI

Huang J, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2. Sci Rep. 2013;3:3411. doi: 10.1038/srep03411. PubMed DOI PMC

Barnouin OS, et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. 2019;12:247–252. doi: 10.1038/s41561-019-0330-x. PubMed DOI PMC

Ostro SJ, et al. Radar imaging of binary near-Earth asteroid (66391) 1999 KW4. Science. 2006;314:1276–1280. doi: 10.1126/science.1133622. PubMed DOI

Becker TM, et al. Physical modeling of triple near-Earth asteroid (153591) 2001 SN263 from radar and optical light curve observations. Icarus. 2015;248:499–515. doi: 10.1016/j.icarus.2014.10.048. DOI

Naidu SP, et al. Radar imaging and characterization of the binary near-Earth Asteroid (185851) 2000 DP107. Astron. J. 2015;150:54. doi: 10.1088/0004-6256/150/2/54. DOI

Pravec P, et al. Binary asteroid population. 3. Secondary rotations and elongations. Icarus. 2016;267:267–295. doi: 10.1016/j.icarus.2015.12.019. DOI

Pravec P, Harris AW, Kušnirák P, Galád A, Hornoch K. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus. 2012;221:365–387. doi: 10.1016/j.icarus.2012.07.026. DOI

Stickle AM, et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 2022;3:248. doi: 10.3847/PSJ/ac91cc. DOI

Lauretta DS, et al. The unexpected surface of asteroid (101955) Bennu. Nature. 2019;568:55–60. doi: 10.1038/s41586-019-1033-6. PubMed DOI PMC

Hirata N, et al. A survey of possible impact structures on 25143 Itokawa. Icarus. 2009;200:486–502. doi: 10.1016/j.icarus.2008.10.027. DOI

Barnouin OS, Daly RT, Cintala MJ, Crawford DA. Impacts into coarse-grained spheres at moderate impact velocities: implications for cratering on asteroids and planets. Icarus. 2019;325:67–83. doi: 10.1016/j.icarus.2019.02.004. DOI

Hirata N, et al. The spatial distribution of impact craters on Ryugu. Icarus. 2020;338:113527. doi: 10.1016/j.icarus.2019.113527. DOI

Daly, R. T. et al. The morphometry of impact craters on Bennu. Geophys. Res. Lett.47, e2020GL089672 (2020).

Jawin, E. R. et al. Global patterns of recent mass movement on asteroid (101955) Bennu. J. Geophys. Res. Planets125, e2020JE006475 (2020).

Tatsumi E, Sugita S. Cratering efficiency on coarse-grain targets: implications for the dynamical evolution of asteroid 25143 Itokawa. Icarus. 2018;300:227–248. doi: 10.1016/j.icarus.2017.09.004. DOI

Okawa H, et al. Effect of boulder size on ejecta velocity scaling law for cratering and its implication for formation of tiny asteroids. Icarus. 2022;387:115212. doi: 10.1016/j.icarus.2022.115212. DOI

Ormö J, et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids. Earth Planet. Sci. Lett. 2022;594:117713. doi: 10.1016/j.epsl.2022.117713. DOI

Raducan SD, Jutzi M, Zhang Y, Ormö J, Michel P. Reshaping and ejection processes on rubble-pile asteroids from impacts. Astron. Astrophys. 2022;665:L10. doi: 10.1051/0004-6361/202244807. DOI

de León J, Licandro J, Duffard R, Serra-Ricart M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res. 2006;37:178–183. doi: 10.1016/j.asr.2005.05.074. DOI

Dunn TL, Burbine TH, Bottke WF, Clark JP. Mineralogies and source regions of near-Earth asteroids. Icarus. 2013;222:273–282. doi: 10.1016/j.icarus.2012.11.007. DOI

Flynn GJ, Consolmagno GJ, Brown P, Macke RJ. Physical properties of the stone meteorites: implications for the properties of their parent bodies. Geochemistry. 2018;78:269–298. doi: 10.1016/j.chemer.2017.04.002. DOI

Michel P, et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J. 2022;3:160. doi: 10.3847/PSJ/ac6f52. DOI

Gaskell RW, et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 2008;43:1049–1061. doi: 10.1111/j.1945-5100.2008.tb00692.x. DOI

Barnouin OS, et al. Digital terrain mapping by the OSIRIS-REx mission. Planet. Space Sci. 2020;180:104764. doi: 10.1016/j.pss.2019.104764. DOI

Palmer EE, et al. Practical stereophotoclinometry for modeling shape and topography on planetary missions. Planet. Sci. J. 2022;3:102. doi: 10.3847/PSJ/ac460f. DOI

Daly RT, et al. Shape modeling of Dimorphos for the Double Asteroid Redirection Test (DART) Planet. Sci. J. 2022;3:207. doi: 10.3847/PSJ/ac7523. DOI

Al Asad MM, et al. Validation of stereophotoclinometric shape models of asteroid (101955) Bennu during the OSIRIS-REx mission. Planet. Sci. J. 2021;2:82. doi: 10.3847/PSJ/abe4dc. DOI

Barnouin-Jha OS, et al. Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus. 2008;198:108–124. doi: 10.1016/j.icarus.2008.05.026. DOI

Burke KN, et al. Particle size–frequency distributions of the OSIRIS-REx candidate sample sites on asteroid (101955) Bennu. Remote Sens. 2021;13:1315. doi: 10.3390/rs13071315. DOI

Pajola M, et al. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov–Gerasimenko. Astron. Astrophys. 2015;583:A37. doi: 10.1051/0004-6361/201525975. DOI

Agrusa HF, et al. The excited spin state of Dimorphos resulting from the DART impact. Icarus. 2021;370:114624. doi: 10.1016/j.icarus.2021.114624. DOI

Scheirich P, et al. A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL—indication of the BYORP effect. Icarus. 2021;360:114321. doi: 10.1016/j.icarus.2021.114321. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...