Successful kinetic impact into an asteroid for planetary defence
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
80MSFC20D0004
NASA - United States
20-DARTPSP20-0007
NASA - United States
PubMed
36858073
PubMed Central
PMC10115643
DOI
10.1038/s41586-023-05810-5
PII: 10.1038/s41586-023-05810-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Although no known asteroid poses a threat to Earth for at least the next century, the catalogue of near-Earth asteroids is incomplete for objects whose impacts would produce regional devastation1,2. Several approaches have been proposed to potentially prevent an asteroid impact with Earth by deflecting or disrupting an asteroid1-3. A test of kinetic impact technology was identified as the highest-priority space mission related to asteroid mitigation1. NASA's Double Asteroid Redirection Test (DART) mission is a full-scale test of kinetic impact technology. The mission's target asteroid was Dimorphos, the secondary member of the S-type binary near-Earth asteroid (65803) Didymos. This binary asteroid system was chosen to enable ground-based telescopes to quantify the asteroid deflection caused by the impact of the DART spacecraft4. Although past missions have utilized impactors to investigate the properties of small bodies5,6, those earlier missions were not intended to deflect their targets and did not achieve measurable deflections. Here we report the DART spacecraft's autonomous kinetic impact into Dimorphos and reconstruct the impact event, including the timeline leading to impact, the location and nature of the DART impact site, and the size and shape of Dimorphos. The successful impact of the DART spacecraft with Dimorphos and the resulting change in the orbit of Dimorphos7 demonstrates that kinetic impactor technology is a viable technique to potentially defend Earth if necessary.
Astronomical Institute AS CR Ondrejov Czech Republic
Auburn University Auburn AL USA
Centro de Astrobiologiá CSIC INTA Torrejón de Ardoz Spain
Imperial College London London UK
INAF Astronomical Observatory of Padova Padua Italy
Institute of Geology of the Czech Academy of Sciences Prague Czech Republic
Institute of Space Sciences Barcelona Spain
ISAE SUPAERO Université de Toulouse Toulouse France
Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Johns Hopkins University Baltimore MD USA
Lowell Observatory Flagstaff AZ USA
Massachusetts Institute of Technology Cambridge MA USA
Michigan State University East Lansing MI USA
Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science Berlin Germany
Nabla Zero Labs South Pasadena CA USA
Northern Arizona University Flagstaff AZ USA
Planetary Science Institute Tucson AZ USA
Politecnico di Milano Milan Italy
Southwest Research Institute Boulder CO USA
Technical University of Kenya Nairobi Kenya
Université Côte d'Azur Observatoire de la Côte d'Azur CNRS Laboratoire Lagrange Nice France
University of Arizona Tucson AZ USA
University of Bern Bern Switzerland
University of Colorado Boulder CO USA
See more in PubMed
Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies (National Academies Press, 2010); 10.17226/12842.
Interagency Working Group for Detecting and Mitigating the Impact of Earth-bound Near-Earth Objects National Near-Earth Object Preparedness Strategy and Action Plan (United States National Science & Technology Council, 2018).
Committee on the Planetary Science and Astrobiology Decadal Survey, Space Studies Board, Division on Engineering and Physical Sciences & National Academies of Sciences, Engineering, and Medicine Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (National Academies Press, 2022); 10.17226/26522.
Rivkin AS, et al. The Double Asteroid Redirection Test (DART): planetary defense investigations and requirements. Planet. Sci. J. 2021;2:173. doi: 10.3847/PSJ/ac063e. DOI
A’Hearn MF, et al. Deep impact: excavating comet Tempel 1. Science. 2005;310:258–264. doi: 10.1126/science.1118923. PubMed DOI
Arakawa M, et al. An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime. Science. 2020;368:67–71. doi: 10.1126/science.aaz1701. PubMed DOI
Thomas, C. A. et al. Orbital period change of Dimorphos due to the DART kinetic impact. Nature10.1038/s41586-023-05805-2 (2023). PubMed PMC
Fletcher, Z. J. et al. Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO): design, fabrication, test, and operation. In Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave (eds Coyle, L. E. et al.) 121800E (SPIE, 2022); 10.1117/12.2627873.
Rush, B. P. et al. Optical navigation for the DART mission. In 33rd AAS/AIAA Space Flight Mechanics Meeting AAS 23-234 (2023).
Adams, E. et al. Double Asteroid Redirection Test: the Earth strikes back. In 2019 IEEE Aerospace Conference 1–11 (IEEE, 2019); 10.1109/AERO.2019.8742007.
Bekker, D., Smith, R. & Tran, M. Q. Guiding DART to impact—the FPGA SoC design of the DRACO image processing pipeline. In 2021 IEEE Space Computing Conference 122–133 (IEEE, 2021); 10.1109/SCC49971.2021.00020.
Naidu SP, et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus. 2020;348:113777. doi: 10.1016/j.icarus.2020.113777. DOI
Pravec P, et al. Photometric observations of the binary near-Earth asteroid (65803) Didymos in 2015–2021 prior to DART impact. Planet. Sci. J. 2022;3:175. doi: 10.3847/PSJ/ac7be1. DOI
Scheirich P, Pravec P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 2022;3:163. doi: 10.3847/PSJ/ac7233. DOI
Zuber MT, et al. The shape of 433 Eros from the NEAR-Shoemaker Laser Rangefinder. Science. 2000;289:2097–2101. doi: 10.1126/science.289.5487.2097. PubMed DOI
Watanabe S, et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—a spinning top–shaped rubble pile. Science. 2019;364:268–272. doi: 10.1126/science.aav8032. PubMed DOI
Fujiwara A, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa. Science. 2006;312:1330–1334. doi: 10.1126/science.1125841. PubMed DOI
Huang J, et al. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang’e-2. Sci Rep. 2013;3:3411. doi: 10.1038/srep03411. PubMed DOI PMC
Barnouin OS, et al. Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat. Geosci. 2019;12:247–252. doi: 10.1038/s41561-019-0330-x. PubMed DOI PMC
Ostro SJ, et al. Radar imaging of binary near-Earth asteroid (66391) 1999 KW4. Science. 2006;314:1276–1280. doi: 10.1126/science.1133622. PubMed DOI
Becker TM, et al. Physical modeling of triple near-Earth asteroid (153591) 2001 SN263 from radar and optical light curve observations. Icarus. 2015;248:499–515. doi: 10.1016/j.icarus.2014.10.048. DOI
Naidu SP, et al. Radar imaging and characterization of the binary near-Earth Asteroid (185851) 2000 DP107. Astron. J. 2015;150:54. doi: 10.1088/0004-6256/150/2/54. DOI
Pravec P, et al. Binary asteroid population. 3. Secondary rotations and elongations. Icarus. 2016;267:267–295. doi: 10.1016/j.icarus.2015.12.019. DOI
Pravec P, Harris AW, Kušnirák P, Galád A, Hornoch K. Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations. Icarus. 2012;221:365–387. doi: 10.1016/j.icarus.2012.07.026. DOI
Stickle AM, et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 2022;3:248. doi: 10.3847/PSJ/ac91cc. DOI
Lauretta DS, et al. The unexpected surface of asteroid (101955) Bennu. Nature. 2019;568:55–60. doi: 10.1038/s41586-019-1033-6. PubMed DOI PMC
Hirata N, et al. A survey of possible impact structures on 25143 Itokawa. Icarus. 2009;200:486–502. doi: 10.1016/j.icarus.2008.10.027. DOI
Barnouin OS, Daly RT, Cintala MJ, Crawford DA. Impacts into coarse-grained spheres at moderate impact velocities: implications for cratering on asteroids and planets. Icarus. 2019;325:67–83. doi: 10.1016/j.icarus.2019.02.004. DOI
Hirata N, et al. The spatial distribution of impact craters on Ryugu. Icarus. 2020;338:113527. doi: 10.1016/j.icarus.2019.113527. DOI
Daly, R. T. et al. The morphometry of impact craters on Bennu. Geophys. Res. Lett.47, e2020GL089672 (2020).
Jawin, E. R. et al. Global patterns of recent mass movement on asteroid (101955) Bennu. J. Geophys. Res. Planets125, e2020JE006475 (2020).
Tatsumi E, Sugita S. Cratering efficiency on coarse-grain targets: implications for the dynamical evolution of asteroid 25143 Itokawa. Icarus. 2018;300:227–248. doi: 10.1016/j.icarus.2017.09.004. DOI
Okawa H, et al. Effect of boulder size on ejecta velocity scaling law for cratering and its implication for formation of tiny asteroids. Icarus. 2022;387:115212. doi: 10.1016/j.icarus.2022.115212. DOI
Ormö J, et al. Boulder exhumation and segregation by impacts on rubble-pile asteroids. Earth Planet. Sci. Lett. 2022;594:117713. doi: 10.1016/j.epsl.2022.117713. DOI
Raducan SD, Jutzi M, Zhang Y, Ormö J, Michel P. Reshaping and ejection processes on rubble-pile asteroids from impacts. Astron. Astrophys. 2022;665:L10. doi: 10.1051/0004-6361/202244807. DOI
de León J, Licandro J, Duffard R, Serra-Ricart M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res. 2006;37:178–183. doi: 10.1016/j.asr.2005.05.074. DOI
Dunn TL, Burbine TH, Bottke WF, Clark JP. Mineralogies and source regions of near-Earth asteroids. Icarus. 2013;222:273–282. doi: 10.1016/j.icarus.2012.11.007. DOI
Flynn GJ, Consolmagno GJ, Brown P, Macke RJ. Physical properties of the stone meteorites: implications for the properties of their parent bodies. Geochemistry. 2018;78:269–298. doi: 10.1016/j.chemer.2017.04.002. DOI
Michel P, et al. The ESA Hera mission: detailed characterization of the DART impact outcome and of the binary asteroid (65803) Didymos. Planet. Sci. J. 2022;3:160. doi: 10.3847/PSJ/ac6f52. DOI
Gaskell RW, et al. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 2008;43:1049–1061. doi: 10.1111/j.1945-5100.2008.tb00692.x. DOI
Barnouin OS, et al. Digital terrain mapping by the OSIRIS-REx mission. Planet. Space Sci. 2020;180:104764. doi: 10.1016/j.pss.2019.104764. DOI
Palmer EE, et al. Practical stereophotoclinometry for modeling shape and topography on planetary missions. Planet. Sci. J. 2022;3:102. doi: 10.3847/PSJ/ac460f. DOI
Daly RT, et al. Shape modeling of Dimorphos for the Double Asteroid Redirection Test (DART) Planet. Sci. J. 2022;3:207. doi: 10.3847/PSJ/ac7523. DOI
Al Asad MM, et al. Validation of stereophotoclinometric shape models of asteroid (101955) Bennu during the OSIRIS-REx mission. Planet. Sci. J. 2021;2:82. doi: 10.3847/PSJ/abe4dc. DOI
Barnouin-Jha OS, et al. Small-scale topography of 25143 Itokawa from the Hayabusa laser altimeter. Icarus. 2008;198:108–124. doi: 10.1016/j.icarus.2008.05.026. DOI
Burke KN, et al. Particle size–frequency distributions of the OSIRIS-REx candidate sample sites on asteroid (101955) Bennu. Remote Sens. 2021;13:1315. doi: 10.3390/rs13071315. DOI
Pajola M, et al. Size-frequency distribution of boulders ≥7 m on comet 67P/Churyumov–Gerasimenko. Astron. Astrophys. 2015;583:A37. doi: 10.1051/0004-6361/201525975. DOI
Agrusa HF, et al. The excited spin state of Dimorphos resulting from the DART impact. Icarus. 2021;370:114624. doi: 10.1016/j.icarus.2021.114624. DOI
Scheirich P, et al. A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL—indication of the BYORP effect. Icarus. 2021;360:114321. doi: 10.1016/j.icarus.2021.114321. DOI