Orbital period change of Dimorphos due to the DART kinetic impact

. 2023 Apr ; 616 (7957) : 448-451. [epub] 20230301

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid36858072

Grantová podpora
80MSFC20D0004 NASA - United States

Odkazy

PubMed 36858072
PubMed Central PMC10115635
DOI 10.1038/s41586-023-05805-2
PII: 10.1038/s41586-023-05805-2
Knihovny.cz E-zdroje

The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible2,3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4-6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.

Komentář v

PubMed

Zobrazit více v PubMed

Cheng AF, et al. AIDA DART asteroid deflection test: planetary defense and science objectives. Planet. Space Sci. 2018;157:104–115. doi: 10.1016/j.pss.2018.02.015. DOI

Stickle AM, et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 2022;3:248. doi: 10.3847/PSJ/ac91cc. DOI

Raducan SD, Jutzi M. Global-scale reshaping and resurfacing of asteroids by small-scale impacts, with applications to the DART and Hera missions. Planet. Sci. J. 2022;3:128. doi: 10.3847/PSJ/ac67a7. DOI

Pravec P, et al. Photometric observations of the binary near-Earth asteroid (65803) Didymos in 2015–2021 prior to DART impact. Planet. Sci. J. 2022;3:175. doi: 10.3847/PSJ/ac7be1. DOI

Naidu SP, et al. Anticipating the DART impact: orbit estimation of Dimorphos using a simplified model. Planet. Sci. J. 2022;3:234. doi: 10.3847/PSJ/ac91c0. DOI

Scheirich P, Pravec P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 2022;3:163. doi: 10.3847/PSJ/ac7233. DOI

Rivkin AS, et al. The Double Asteroid Redirection Test (DART): planetary defense investigations and requirements. Planet. Sci. J. 2021;2:173. doi: 10.3847/PSJ/ac063e. DOI

Fang J, Margot J-L. Near-Earth binaries and triples: origin and evolution of spin-orbital properties. Astron. J. 2012;143:24. doi: 10.1088/0004-6256/143/1/24. DOI

de León J, Licandro J, Duffard R, Serra-Ricart M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res. 2006;37:178–183. doi: 10.1016/j.asr.2005.05.074. DOI

Dunn TL, Burbine TH, Bottke WF, Clark JP. Mineralogies and source regions of near-Earth asteroids. Icarus. 2013;222:273–282. doi: 10.1016/j.icarus.2012.11.007. DOI

Naidu SP, et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus. 2020;348:113777. doi: 10.1016/j.icarus.2020.113777. DOI

Ieva S, et al. Spectral rotational characterization of the Didymos system prior to the DART impact. Planet. Sci. J. 2022;3:183. doi: 10.3847/PSJ/ac7f34. DOI

National Research Council. Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies (National Academies Press, 2010).

Interagency Working Group for Detecting and Mitigating the Impact of Earth-bound Near-Earth Objects. National Near-Earth Object Preparedness Strategy and Action Plan (2018).

Meyer AJ, et al. Libration-induced orbit period variations following the DART impact. Planet. Sci. J. 2021;2:242. doi: 10.3847/PSJ/ac3bd1. DOI

Daly, R. T. et al. DART: an autonomous kinetic impact into a near-earth asteroid for planetary defense. Nature (2023). PubMed PMC

Pravec P, et al. Photometric survey of binary near-Earth asteroids. Icarus. 2006;181:63–93. doi: 10.1016/j.icarus.2005.10.014. DOI

Li, J.-Y. et al. Ejecta evolution of the first human-activated asteroid produced by DART impact. Nature (2023).

Fahnestock EG, et al. Pre-encounter predictions of DART impact ejecta behavior and observability. Planet. Sci. J. 2022;3:206. doi: 10.3847/PSJ/ac7fa1. DOI

Fletcher, Z. J. et al. in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave (eds Coyle, L. E., Perrin, M. D. & Matsuura, S.) 121800E (SPIE, 2022).

Statler TS, et al. After DART: using the first full-scale test of a kinetic impactor to inform a future planetary defense mission. Planet. Sci. J. 2022;3:244. doi: 10.3847/PSJ/ac94c1. DOI

Bowen IS, Vaughan AH. The optical design of the 40-in. telescope and of the Irenee DuPont telescope at Las Campanas Observatory, Chile. Appl. Opt. 1973;12:1430–1435. doi: 10.1364/AO.12.001430. PubMed DOI

Barbary K. SEP: Source Extractor as a library. J. Open Source Softw. 2016;1:58. doi: 10.21105/joss.00058. DOI

Ochsenbein F, Bauer P, Marcout J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 2000;143:23–32. doi: 10.1051/aas:2000169. DOI

Giorgini, J. D. et al. in AAS/Division for Planetary Sciences Meeting Abstracts Vol. 28, 1158 (1996).

Montegriffo, P. et al. Gaia Data Release 3: the Galaxy in your preferred colours. Synthetic photometry from Gaia low-resolution spectra. Astron. Astrophys.10.1051/0004-6361/202243709 (2022).

Brown TM, et al. Las Cumbres Observatory Global Telescope network. Publ. Astron. Soc. Pac. 2013;125:1031–1055. doi: 10.1086/673168. DOI

Saunders, E. S., Lampoudi, S., Lister, T. A., Norbury, M. & Walker, Z. in Observatory Operations: Strategies, Processes, and Systems V (eds Peck, A. B., Benn, C. R. & Seaman, R. L.) 91490E (SPIE, 2014).

Lister TA, et al. NEOExchange - an online portal for NEO and Solar System science. Icarus. 2021;364:114387. doi: 10.1016/j.icarus.2021.114387. DOI

McCully, C. et al. in Software and Cyberinfrastructure for Astronomy V (eds Guzman, J. C. & Ibsen, J.) 107070K (SPIE, 2018).

Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 2018;616:A1. doi: 10.1051/0004-6361/201833051. DOI

Kelley, M. & Lister, T. mkelley/calviacat: v1.3.0. 10.5281/ZENODO.7019180 (2022).

Lang D, Hogg DW, Mierle K, Blanton M, Roweis S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 2010;139:1782–1800. doi: 10.1088/0004-6256/139/5/1782. DOI

Kokotanekova R, et al. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets. Mon. Not. R. Astron. Soc. 2017;471:2974–3007. doi: 10.1093/mnras/stx1716. DOI

Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Astron. Astrophys.https://www.aanda.org/articles/aa/pdf/forth/aa43940-22.pdf (2022).

Mommert M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 2017;18:47–53. doi: 10.1016/j.ascom.2016.11.002. DOI

Pravec P, et al. Two-period lightcurves of 1996 FG3, 1998 PG, and (5407) 1992 AX: one probable and two possible binary asteroids. Icarus. 2000;146:190–203. doi: 10.1006/icar.2000.6375. DOI

Ostro SJ. Planetary radar astronomy. Rev. Mod. Phys. 1993;65:1235–1279. doi: 10.1103/RevModPhys.65.1235. DOI

Scheirich P, Pravec P. Modeling of lightcurves of binary asteroids. Icarus. 2009;200:531–547. doi: 10.1016/j.icarus.2008.12.001. DOI

Scheirich P, et al. The binary near-Earth Asteroid (175706) 1996 FG3 — an observational constraint on its orbital evolution. Icarus. 2015;245:56–63. doi: 10.1016/j.icarus.2014.09.023. DOI

Scheirich P, et al. A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL9 – indication of the BYORP effect. Icarus. 2021;360:114321. doi: 10.1016/j.icarus.2021.114321. DOI

Acton C, Bachman N, Semenov B, Wright E. A look towards the future in the handling of space science mission geometry. Planet. Space Sci. 2018;150:9–12. doi: 10.1016/j.pss.2017.02.013. DOI

Margot, J.-L., Pravec, P., Taylor, P., Carry, B. & Jacobson, S. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) (Univ. Arizona Press, 2015).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Successful kinetic impact into an asteroid for planetary defence

. 2023 Apr ; 616 (7957) : 443-447. [epub] 20230301

Ejecta from the DART-produced active asteroid Dimorphos

. 2023 Apr ; 616 (7957) : 452-456. [epub] 20230301

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...