Orbital period change of Dimorphos due to the DART kinetic impact
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
80MSFC20D0004
NASA - United States
PubMed
36858072
PubMed Central
PMC10115635
DOI
10.1038/s41586-023-05805-2
PII: 10.1038/s41586-023-05805-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The Double Asteroid Redirection Test (DART) spacecraft successfully performed the first test of a kinetic impactor for asteroid deflection by impacting Dimorphos, the secondary of near-Earth binary asteroid (65803) Didymos, and changing the orbital period of Dimorphos. A change in orbital period of approximately 7 min was expected if the incident momentum from the DART spacecraft was directly transferred to the asteroid target in a perfectly inelastic collision1, but studies of the probable impact conditions and asteroid properties indicated that a considerable momentum enhancement (β) was possible2,3. In the years before impact, we used lightcurve observations to accurately determine the pre-impact orbit parameters of Dimorphos with respect to Didymos4-6. Here we report the change in the orbital period of Dimorphos as a result of the DART kinetic impact to be -33.0 ± 1.0 (3σ) min. Using new Earth-based lightcurve and radar observations, two independent approaches determined identical values for the change in the orbital period. This large orbit period change suggests that ejecta contributed a substantial amount of momentum to the asteroid beyond what the DART spacecraft carried.
Astronomical Institute of the Czech Academy of Sciences Ondřejov Czech Republic
Carnegie Institution for Science Las Campanas Observatory La Serena Chile
Green Bank Observatory Green Bank WV USA
Isfahan University of Technology Isfahan Iran
Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA
Johns Hopkins University Applied Physics Laboratory Laurel MD USA
Las Cumbres Observatory Goleta CA USA
Lowell Observatory Flagstaff AZ USA
Magdalena Ridge Observatory New Mexico Institute of Mining and Technology Socorro NM USA
National Radio Astronomy Observatory Charlottesville VA USA
Niels Bohr Institute University of Copenhagen Copenhagen Denmark
Northern Arizona University Flagstaff AZ USA
Seoul National University Gwanak gu Seoul Korea
SETI Institute Mountain View CA USA
United States Naval Academy Annapolis MD USA
Universidad Católica de la Santísima Concepción Concepción Chile
Universidad de Antofagasta Antofagasta Chile
Universität Hamburg Hamburg Germany
University of California Santa Barbara Santa Barbara CA USA
University of Edinburgh Royal Observatory Edinburgh UK
University of Maryland College Park MD USA
Zobrazit více v PubMed
Cheng AF, et al. AIDA DART asteroid deflection test: planetary defense and science objectives. Planet. Space Sci. 2018;157:104–115. doi: 10.1016/j.pss.2018.02.015. DOI
Stickle AM, et al. Effects of impact and target parameters on the results of a kinetic impactor: predictions for the Double Asteroid Redirection Test (DART) mission. Planet. Sci. J. 2022;3:248. doi: 10.3847/PSJ/ac91cc. DOI
Raducan SD, Jutzi M. Global-scale reshaping and resurfacing of asteroids by small-scale impacts, with applications to the DART and Hera missions. Planet. Sci. J. 2022;3:128. doi: 10.3847/PSJ/ac67a7. DOI
Pravec P, et al. Photometric observations of the binary near-Earth asteroid (65803) Didymos in 2015–2021 prior to DART impact. Planet. Sci. J. 2022;3:175. doi: 10.3847/PSJ/ac7be1. DOI
Naidu SP, et al. Anticipating the DART impact: orbit estimation of Dimorphos using a simplified model. Planet. Sci. J. 2022;3:234. doi: 10.3847/PSJ/ac91c0. DOI
Scheirich P, Pravec P. Preimpact mutual orbit of the DART target binary asteroid (65803) Didymos derived from observations of mutual events in 2003–2021. Planet. Sci. J. 2022;3:163. doi: 10.3847/PSJ/ac7233. DOI
Rivkin AS, et al. The Double Asteroid Redirection Test (DART): planetary defense investigations and requirements. Planet. Sci. J. 2021;2:173. doi: 10.3847/PSJ/ac063e. DOI
Fang J, Margot J-L. Near-Earth binaries and triples: origin and evolution of spin-orbital properties. Astron. J. 2012;143:24. doi: 10.1088/0004-6256/143/1/24. DOI
de León J, Licandro J, Duffard R, Serra-Ricart M. Spectral analysis and mineralogical characterization of 11 olivine–pyroxene rich NEAs. Adv. Space Res. 2006;37:178–183. doi: 10.1016/j.asr.2005.05.074. DOI
Dunn TL, Burbine TH, Bottke WF, Clark JP. Mineralogies and source regions of near-Earth asteroids. Icarus. 2013;222:273–282. doi: 10.1016/j.icarus.2012.11.007. DOI
Naidu SP, et al. Radar observations and a physical model of binary near-Earth asteroid 65803 Didymos, target of the DART mission. Icarus. 2020;348:113777. doi: 10.1016/j.icarus.2020.113777. DOI
Ieva S, et al. Spectral rotational characterization of the Didymos system prior to the DART impact. Planet. Sci. J. 2022;3:183. doi: 10.3847/PSJ/ac7f34. DOI
National Research Council. Defending Planet Earth: Near-Earth-Object Surveys and Hazard Mitigation Strategies (National Academies Press, 2010).
Interagency Working Group for Detecting and Mitigating the Impact of Earth-bound Near-Earth Objects. National Near-Earth Object Preparedness Strategy and Action Plan (2018).
Meyer AJ, et al. Libration-induced orbit period variations following the DART impact. Planet. Sci. J. 2021;2:242. doi: 10.3847/PSJ/ac3bd1. DOI
Daly, R. T. et al. DART: an autonomous kinetic impact into a near-earth asteroid for planetary defense. Nature (2023). PubMed PMC
Pravec P, et al. Photometric survey of binary near-Earth asteroids. Icarus. 2006;181:63–93. doi: 10.1016/j.icarus.2005.10.014. DOI
Li, J.-Y. et al. Ejecta evolution of the first human-activated asteroid produced by DART impact. Nature (2023).
Fahnestock EG, et al. Pre-encounter predictions of DART impact ejecta behavior and observability. Planet. Sci. J. 2022;3:206. doi: 10.3847/PSJ/ac7fa1. DOI
Fletcher, Z. J. et al. in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave (eds Coyle, L. E., Perrin, M. D. & Matsuura, S.) 121800E (SPIE, 2022).
Statler TS, et al. After DART: using the first full-scale test of a kinetic impactor to inform a future planetary defense mission. Planet. Sci. J. 2022;3:244. doi: 10.3847/PSJ/ac94c1. DOI
Bowen IS, Vaughan AH. The optical design of the 40-in. telescope and of the Irenee DuPont telescope at Las Campanas Observatory, Chile. Appl. Opt. 1973;12:1430–1435. doi: 10.1364/AO.12.001430. PubMed DOI
Barbary K. SEP: Source Extractor as a library. J. Open Source Softw. 2016;1:58. doi: 10.21105/joss.00058. DOI
Ochsenbein F, Bauer P, Marcout J. The VizieR database of astronomical catalogues. Astron. Astrophys. Suppl. Ser. 2000;143:23–32. doi: 10.1051/aas:2000169. DOI
Giorgini, J. D. et al. in AAS/Division for Planetary Sciences Meeting Abstracts Vol. 28, 1158 (1996).
Montegriffo, P. et al. Gaia Data Release 3: the Galaxy in your preferred colours. Synthetic photometry from Gaia low-resolution spectra. Astron. Astrophys.10.1051/0004-6361/202243709 (2022).
Brown TM, et al. Las Cumbres Observatory Global Telescope network. Publ. Astron. Soc. Pac. 2013;125:1031–1055. doi: 10.1086/673168. DOI
Saunders, E. S., Lampoudi, S., Lister, T. A., Norbury, M. & Walker, Z. in Observatory Operations: Strategies, Processes, and Systems V (eds Peck, A. B., Benn, C. R. & Seaman, R. L.) 91490E (SPIE, 2014).
Lister TA, et al. NEOExchange - an online portal for NEO and Solar System science. Icarus. 2021;364:114387. doi: 10.1016/j.icarus.2021.114387. DOI
McCully, C. et al. in Software and Cyberinfrastructure for Astronomy V (eds Guzman, J. C. & Ibsen, J.) 107070K (SPIE, 2018).
Gaia Collaboration et al. Gaia Data Release 2: summary of the contents and survey properties. Astron. Astrophys. 2018;616:A1. doi: 10.1051/0004-6361/201833051. DOI
Kelley, M. & Lister, T. mkelley/calviacat: v1.3.0. 10.5281/ZENODO.7019180 (2022).
Lang D, Hogg DW, Mierle K, Blanton M, Roweis S. Astrometry.net: blind astrometric calibration of arbitrary astronomical images. Astron. J. 2010;139:1782–1800. doi: 10.1088/0004-6256/139/5/1782. DOI
Kokotanekova R, et al. Rotation of cometary nuclei: new light curves and an update of the ensemble properties of Jupiter-family comets. Mon. Not. R. Astron. Soc. 2017;471:2974–3007. doi: 10.1093/mnras/stx1716. DOI
Gaia Collaboration et al. Gaia Data Release 3: summary of the content and survey properties. Astron. Astrophys.https://www.aanda.org/articles/aa/pdf/forth/aa43940-22.pdf (2022).
Mommert M. PHOTOMETRYPIPELINE: an automated pipeline for calibrated photometry. Astron. Comput. 2017;18:47–53. doi: 10.1016/j.ascom.2016.11.002. DOI
Pravec P, et al. Two-period lightcurves of 1996 FG3, 1998 PG, and (5407) 1992 AX: one probable and two possible binary asteroids. Icarus. 2000;146:190–203. doi: 10.1006/icar.2000.6375. DOI
Ostro SJ. Planetary radar astronomy. Rev. Mod. Phys. 1993;65:1235–1279. doi: 10.1103/RevModPhys.65.1235. DOI
Scheirich P, Pravec P. Modeling of lightcurves of binary asteroids. Icarus. 2009;200:531–547. doi: 10.1016/j.icarus.2008.12.001. DOI
Scheirich P, et al. The binary near-Earth Asteroid (175706) 1996 FG3 — an observational constraint on its orbital evolution. Icarus. 2015;245:56–63. doi: 10.1016/j.icarus.2014.09.023. DOI
Scheirich P, et al. A satellite orbit drift in binary near-Earth asteroids (66391) 1999 KW4 and (88710) 2001 SL9 – indication of the BYORP effect. Icarus. 2021;360:114321. doi: 10.1016/j.icarus.2021.114321. DOI
Acton C, Bachman N, Semenov B, Wright E. A look towards the future in the handling of space science mission geometry. Planet. Space Sci. 2018;150:9–12. doi: 10.1016/j.pss.2017.02.013. DOI
Margot, J.-L., Pravec, P., Taylor, P., Carry, B. & Jacobson, S. in Asteroids IV (eds Michel, P., DeMeo, F. E. & Bottke, W. F.) (Univ. Arizona Press, 2015).