3-Substituted N-Benzylpyrazine-2-carboxamide Derivatives: Synthesis, Antimycobacterial and Antibacterial Evaluation
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
28335571
PubMed Central
PMC6155222
DOI
10.3390/molecules22030495
PII: molecules22030495
Knihovny.cz E-resources
- Keywords
- antibacterial activity, antimycobacterial activity, benzylamines, cytotoxicity, enoyl-ACP-reductase, molecular docking, pyrazinamide derivatives,
- MeSH
- Anti-Bacterial Agents chemical synthesis chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Molecular Structure MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Pyrazines chemical synthesis chemistry pharmacology MeSH
- Molecular Docking Simulation MeSH
- Staphylococcus aureus drug effects MeSH
- Staphylococcus epidermidis drug effects MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Pyrazines MeSH
A series of substituted N-benzyl-3-chloropyrazine-2-carboxamides were prepared as positional isomers of 5-chloro and 6-chloro derivatives, prepared previously. During the aminolysis of the acyl chloride, the simultaneous substitution of chlorine with benzylamino moiety gave rise to N-benzyl-3-(benzylamino)pyrazine-2-carboxamides as side products, in some cases. Although not initially planned, the reaction conditions were modified to populate this double substituted series. The final compounds were tested against four mycobacterial strains. N-(2-methylbenzyl)-3-((2-methylbenzyl)amino)pyrazine-2-carboxamide (1a) and N-(3,4-dichlorobenzyl)-3-((3,4-dichlorobenzyl)amino)pyrazine-2-carboxamide (9a) proved to be the most effective against Mycobacterium tuberculosis H37Rv, with MIC = 12.5 μg·mL-1. Compounds were screened for antibacterial activity. The most active compound was 3-chloro-N-(2-chlorobenzyl)pyrazine-2-carboxamide (5) against Staphylococcus aureus with MIC = 7.81 μM, and Staphylococcus epidermidis with MIC = 15.62 μM. HepG2 in vitro cytotoxicity was evaluated for the most active compounds; however, no significant toxicity was detected. Compound 9a was docked to several conformations of the enoyl-ACP-reductase of Mycobacterium tuberculosis. In some cases, it was capable of H-bond interactions, typical for most of the known inhibitors.
See more in PubMed
O’Connell K.M.G., Hodgkinson J.T., Sore H.F., Welch M., Salmond G.P.C., Spring D.R. Combating Multidrug-Resistant Bacteria: Current Strategies for the Discovery of Novel Antibacterials. Angew. Chem. Int. Ed. 2013;52:10706–10733. doi: 10.1002/anie.201209979. PubMed DOI
World Health Organisation . Global Action Plan on Antimicrobial Resistance. World Health Organisation; Geneva, Switzerland: 2015. [(accessed on 16 January 2017)]. WHA68/2015/REC/1. Available online: http://www.who.int/antimicrobial-resistance/publications/global-action-plan/en/
World Health Organization . Global Tuberculosis Report 2016. World Health Organisation; Geneva, Switzerland: 2016. [(accessed on 16 January 2017)]. WHA68/2015/REC/1. Available online: http://www.who.int/tb/publications/global_report/en/
Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J., et al. Alkylamino derivatives of N-Benzylpyrazine-2-carboxamide: Synthesis and antimycobacterial evaluation. MedChemComm. 2015;6:1311–1317. doi: 10.1039/C5MD00178A. DOI
Lima C.H.S., Henriques M.G.M.O., Candea A.L.P., Lourenco M.C.S., Bezerra F.A.F.M., Ferreira M.L., Kaiser C.R., de Souza M.V.N. Synthesis and Antimycobacterial Evaluation of N′-(E)-heteroaromaticpyrazine-2-carbohydrazide Derivatives. Med. Chem. 2011;7:245–249. doi: 10.2174/157340611795564303. PubMed DOI
Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC
Fernandes J.P.D., Pavan F.R., Leite C.Q.F., Felli V.M.A. Synthesis and evaluation of a pyrazinoic acid prodrug in Mycobacterium tuberculosis. Saudi Pharm. J. 2014;22:376–380. doi: 10.1016/j.jsps.2013.12.005. PubMed DOI PMC
Singh P., Mishra A.K., Malonia S.K., Chauhan D.S., Sharma V.D., Venkatesan K., Katoch V.M. The paradox of pyrazinamide: An update on the molecular mechanisms of pyrazinamide resistance in Mycobacteria. J. Commun. Dis. 2006;38:288–298. PubMed
Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E, III, Wang H., Zhang W., Zhang Y. Pyrazinamide Inhibits Trans-Translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC
Sayahi H., Pugliese K.M., Zimhony O., Jacobs W.R., Jr., Shekhtman A., Welch J.T. Analogs of the Antituberculous Agent Pyrazinamide Are Competitive Inhibitors of NADPH Binding to M. tuberculosis Fatty Acid Synthase I. Chem. Biodivers. 2012;9:2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI
Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2014;3:e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC
Kalinda A.S., Aldrich C.C. Pyrazinamide: A Frontline Drug Used for Tuberculosis. Molecular Mechanism of Action Resolved after 50 Years? ChemMedChem. 2012;7:558–560. doi: 10.1002/cmdc.201100587. PubMed DOI
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kral’ova K. Substituted N-Benzylpyrazine-2-carboxamides: Synthesis and Biological Evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Servusova B., Vobickova J., Paterova P., Kubicek V., Kunes J., Dolezal M., Zitko J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013;23:3589–3591. doi: 10.1016/j.bmcl.2013.04.021. PubMed DOI
Semelkova L., Konecna K., Paterova P., Kubicek V., Kunes J., Novakova L., Marek J., Naesens L., Pesko M., Kralova K., et al. Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides. Molecules. 2015;20:8687–8711. doi: 10.3390/molecules20058687. PubMed DOI PMC
Zitko J., Dolezal M. Enoyl acyl carrier protein reductase inhibitors: An updated patent review (2011–2015) Expert Opin. Ther. Pat. 2016;26:1079–1094. doi: 10.1080/13543776.2016.1211112. PubMed DOI
Jampilek J., Dolezal M., Kunes J., Satinsky D., Raich I. Novel regioselective preparation of 5-chloropyrazine-2-carbonitrile from pyrazine-2-carboxamide and coupling study of substituted phenylsulfanylpyrazine-2-carboxylic acid derivatives. Curr. Org. Chem. 2005;9:49–60. doi: 10.2174/1385272053369312. DOI
Jandourek O., Dolezal M., Paterova P., Kubicek V., Pesko M., Kunes J., Coffey A., Guo J., Kralova K. N-Substituted 5-Amino-6-methylpyrazine-2,3-dicarbonitriles: Microwave-Assisted Synthesis and Biological Properties. Molecules. 2014;19:651–671. doi: 10.3390/molecules19010651. PubMed DOI PMC