Substituted N-benzylpyrazine-2-carboxamides: synthesis and biological evaluation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23132136
PubMed Central
PMC6268022
DOI
10.3390/molecules171113183
PII: molecules171113183
Knihovny.cz E-zdroje
- MeSH
- amidy chemická syntéza farmakologie MeSH
- antibiotika tuberkulostatická chemická syntéza farmakologie MeSH
- antifungální látky chemická syntéza farmakologie MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- herbicidy chemická syntéza farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis účinky léků MeSH
- pyraziny chemická syntéza farmakologie MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- Trichophyton účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- amidy MeSH
- antibiotika tuberkulostatická MeSH
- antifungální látky MeSH
- herbicidy MeSH
- pyraziny MeSH
A series of twelve amides was synthesized via aminolysis of substituted pyrazinecarboxylic acid chlorides with substituted benzylamines. Compounds were characterized with analytical data and assayed in vitro for their antimycobacterial, antifungal, antibacterial and photosynthesis-inhibiting activity. 5-tert-Butyl-6-chloro-N-(4-methoxybenzyl)pyrazine-2-carboxamide (12) has shown the highest antimycobacterial activity against Mycobacterium tuberculosis (MIC = 6.25 µg/mL), as well as against other mycobacterial strains. The highest antifungal activity against Trichophyton mentagrophytes, the most susceptible fungal strain tested, was found for 5-chloro-N-(3-trifluoromethylbenzyl)-pyrazine-2-carboxamide (2, MIC = 15.62 µmol/L). None of the studied compounds exhibited any activity against the tested bacterial strains. Except for 5-tert-butyl-6-chloro-N-benzylpyrazine-2-carboxamide (9, IC(50) = 7.4 µmol/L) and 5-tert-butyl-6-chloro-N-(4-chlorobenzyl)pyrazine-2-carboxamide (11, IC(50) = 13.4 µmol/L), only moderate or weak photosynthesis-inhibiting activity in spinach chloroplasts (Spinacia oleracea L.) was detected.
Zobrazit více v PubMed
WHO. 2011/2012 Tuberculosis Global Facts. [(accessed on 14 September 2012)]. Available online: http://www.who.int/tb/publications/2011/factsheet_tb_2011.pdf.
Goletti D., Weissman D., Jackson R.W., Graham N.M., Vlahov D., Klein R.S., Munsiff S.S., Ortona L., Cauda R., Fauci A.S. Effect of Mycobacterium tuberculosis on HIV replication. Role of immune activation. J. Immunol. 1996;157:1271–1278. PubMed
Lima C.H.S., Bispo M.L.F., de Souza M.V.N. Pirazinamida: Um Fármaco Essencial no Tratamento da Tuberculose. Rev. Virtual Quim. 2011;3:159–180.
Zhang Y., Mitchison D. The curious characteristics of pyrazinamide: A review. Int. J. Tubercul. Lung Dis. 2003;7:6–21. PubMed
Konno K., Feldmann F.M., McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 1967;95:461–469. PubMed
Scorpio A., Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 1996;2:662–667. doi: 10.1038/nm0696-662. PubMed DOI
Zhang Y., Wade M.M., Scorpio A., Zhang H., Sun Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52:790–795. doi: 10.1093/jac/dkg446. PubMed DOI
Ngo S.C., Zimhony O., Chung W.J., Sayahi H., Jacobs W.R., Jr., Welch J.T. Inhibition of isolated mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51:2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC
Zimhony O., Cox J.S., Welch J.T., Vilcheze C., Jacobs W.R. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FAS-I) of Mycobacterium tuberculosis. Nat. Med. 2000;6:1043–1047. doi: 10.1038/79558. PubMed DOI
Zimhony O., Vilcheze C., Arai M., Welch J.T., Jacobs W.R. Pyrazinoic acid and its n-propyl ester inhibit fatty acid synthase type I in replicating tubercle bacilli. Antimicrob. Agents Chemother. 2007;51:752–754. doi: 10.1128/AAC.01369-06. PubMed DOI PMC
Sayahi H., Zimhony O., Jacobs W.R., Shekhtman A., Welch J.T. Pyrazinamide, but not pyrazinoic acid, is a competitive inhibitor of NADPH binding to Mycobacterium tuberculosis fatty acid synthase I. Bioorg. Med. Chem. Lett. 2011;21:4804–4807. doi: 10.1016/j.bmcl.2011.06.055. PubMed DOI PMC
Boshoff H.I., Mizrahi V., Barry C.E. Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 2002;184:2167–2172. doi: 10.1128/JB.184.8.2167-2172.2002. PubMed DOI PMC
Shi W., Zhang X., Jiang X., Yuan H., Lee J.S., Barry C.E., 3rd, Wang H., Zhang W., Zhang Y. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science. 2011;333:1630–1632. doi: 10.1126/science.1208813. PubMed DOI PMC
Doležal M., Kráľová K. Synthesis and Evaluation of Pyrazine Derivatives with Herbicidal Activity. In: Soloneski S., Larramendy M.L., editors. Herbicides, Theory and Applications. InTech; Vienna, Austria: 2011. pp. 581–610.
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamide. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI
Doležal M., Tumová L., Kešetovičová D., Tuma J., Kráľová K. Substituted N-phenylpyrazine-2-carboxamides, their synthesis and evaluation as herbicides and abiotic elicitors. Molecules. 2007;12:2589–2598. doi: 10.3390/12122589. PubMed DOI PMC
Doležal M., Kráľová K., Šeršeň F., Miletín M. The site of action of pyrazine-2-carboxylic acids in the photosynthetic apparatus. Folia Pharm. Univ. Carol. 2001;26:13–20.
Dolezal M., Kesetovic D., Zitko J. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17:3506–3514. doi: 10.2174/138161211798194477. PubMed DOI
Matulenko M.A., Lee C.H., Jiang M., Frey R.R., Cowart M.D., Bayburt E.K., DiDomenico S. 5-(3-Bromophenyl)-7-(6-morpholin-4-ylpyridin-3-yl)pyrido[2,3-d]pyrimidin-4-ylamine: Structure-activity relationships of 7-substituted heteroaryl analogs as non-nucleoside adenosine kinase inhibitors. Bioorg. Med. Chem. 2005;13:3705–3720. doi: 10.1016/j.bmc.2005.03.023. PubMed DOI
Abe Y., Shigeta Y., Uchimaru F., Okada S., Ozasayma E. Methyl 6-methoxypyrazine-2-carboxylate. JP Patent 44012898, 1969. Chem. Abstr. 1969;71:112979.
Doležal M., Hartl J., Miletín M., Macháček M., Kráľová K. Synthesis and photosynthesis-inhibiting activity of some anilides of substituted pyrazine-2-carboxylic acids. Chem. Pap. 1999;53:126–130.
Jones R.N., Barry A.L. Optimal dilution susceptibility testing conditions, recommendations for MIC interpretation, and quality-control guidelines for the ampicillin-sulbactam combination. J. Clin. Microbiol. 1987;25:1920–1925. PubMed PMC
Zitko J., Doležal M., Svobodová M., Vejsová M., Kuneš J., Kučera R., Jílek P. Synthesis and antimycobacterial properties of N-substituted 6-amino-5-cyanopyrazine-2-carboxamides. Bioorg. Med. Chem. 2011;19:1471–1476. doi: 10.1016/j.bmc.2010.12.054. PubMed DOI
Govindjee. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI
Kráľová K., Šerseň F., Kubicová L., Waisser K. Inhibitory effects of substituted benzanilides on Photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1999;53:328–331.
Kubicová L., Kráľová K., Šerseň F., Gregor J., Waisser K. Effects of substituted salicylanilides on the photosynthetic apparatus of spinach chloroplasts. Folia Pharm. Univ. Carol. 2000;25:89–96.
Clayden J. Organic Chemistry. Oxford University Press; Oxford, UK: 2008. pp. 276–296.
National Committee for Clinical Laboratory Standards (NCCLS) Method for Antifungal Disc Diffusion Susceptibility Testing of Yeasts: Approved Guideline M44-A. NCCLS; Wayne, PA, USA: 2004.
Doležal M., Jampílek J., Osička Z., Kuneš J., Buchta V., Víchová P. Substituted 5-aroylpyrazine-2-carboxylic acid derivatives: synthesis and biological activity. Farmaco. 2003;58:1105–1111. doi: 10.1016/S0014-827X(03)00163-0. PubMed DOI
Masarovičová E., Kráľová K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosyntheis. 2nd. Taylor & Francis group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kráľová K., Šeršeň F., Sidóová E. Photosynthesis Inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Fedke C. Biochemistry and Physiology of Herbicide Action. Springer Verlag; Berlin, Germany: 1982.
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides
Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides
New potentially active pyrazinamide derivatives synthesized under microwave conditions
Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides