Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides

. 2013 Aug 06 ; 18 (8) : 9397-419. [epub] 20130806

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23924993

In this study, a series of twenty-two ring-substituted 2-hydroxynaphthalene-1‑carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium marinum, M. kasasii, M. smegmatis. and M. avium paratuberculosis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 2-Hydroxy-N-phenylnaphthalene-1-carboxanilide and 2-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-1-carboxamide (IC₅₀ = 29 µmol/L) were the most active PET inhibitors. Some of tested compounds showed the antibacterial and antimycobacterial activity against the tested strains comparable or higher than the standards ampicillin or isoniazid. Thus, for example, 2-hydroxy-N-(3-nitrophenyl)naphthalene-1-carboxamide showed MIC = 26.0 µmol/L against methicillin-resistant S. aureus and MIC = 51.9 µmol/L against M. marinum, or 2-hydroxy-N-phenylnaphthalene-1-carboxamide demonstrated MIC = 15.2 µmol/L against M. kansasii. The structure-activity relationships for all compounds are discussed.

Zobrazit více v PubMed

World Health Organization . WHO Global Strategy for Containment of Antimicrobial Resistance 2001. WHO Press; Geneva, Switzerland: 2001.

World Health Organization . Global Tuberculosis Report 2012. WHO Press; Geneva, Switzerland: 2012.

World Health Organization . World Health Statistics 2013. WHO Press; Geneva, Switzerland: 2013.

Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI

Martinez S., McAdams H.P., Batchu C.S. The many faces of pulmonary nontuberculous mycobacterial infection. Am. J. Roentgenol. 2007;189:177–186. doi: 10.2214/AJR.07.2074. PubMed DOI

Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI

Roth H.J., Fenner H. Arzneistoffe. 3rd ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000.

Sjogren E.B., Rider M.A., Nelson P.H., Bingham S., Poulton A.L., Emanuel M.A., Komuniecki R. Synthesis and biological activity of a series of diaryl-substituted alpha-cyano-beta-hydroxypropenamides, a new class of anthelmintic agents. J. Med. Chem. 1991;34:3295–3301. doi: 10.1021/jm00115a020. PubMed DOI

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., Cizek A., Kralova K., Jampilek J. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC

Macielag M.J., Demers J.P., Fraga-Spano S.A., Hlasta J.D., Johnson G.S., Kanojia M.R., Russell K.R., Sui Z., Weidner-Wells A.M., Werblood H., et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem. 1998;41:2939–2945. doi: 10.1021/jm9803572. PubMed DOI

Kratky M., Vinsova J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. Sci. World J. 2012;2012:290628. PubMed PMC

Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI

Kratky M., Vinsova J., Novotna E., Mandikova J., Wsol V., Trejtnar F., Ulmann V., Stolarikova J., Fernandes S., Bhat S., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI

Kamat S., Buolamwini J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev. 2006;26:569–594. PubMed

Liechty C.H., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI

Guo L., Wang Q.L., Jiang Q.Q., Jiang J.J., Jiang Y.B. Anion-triggered substituent-dependent conformational switching of salicylanilides. New hints for understanding the inhibitory mechanism of salicylanilides. J. Org. Chem. 2007;72:9947–9953. doi: 10.1021/jo701823d. PubMed DOI

Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI

Boyce J.P., Brown M.E., Chin W., Fitzner J.N., Paxton R.J., Shen M., Stevens T., Wolfson F., Wright C.D. Identification of 14–3-3ζ by chemical affinity with salicylanilide inhibitors of interleukin-12p40 production. Bioconjugate Chem. 2008;19:1775–1784. doi: 10.1021/bc800078q. PubMed DOI

Cheng T.J.R., Wu Y.T., Yang S.T., Lo K.H., Chen S.K., Chen Y.H., Huang W.I., Yuan C.H., Guo C.W., Huang L.Y., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg. Med. Chem. 2010;18:8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI

Triola G., Wetzel S., Ellinger B., Koch M.A., Hubel J., Rauh D., Waldmann H. ATP competitive inhibitors of d-alanine-d-alanineligase based on protein kinase inhibitor scaffolds. Bioorg. Med. Chem. 2009;17:1079–1087. doi: 10.1016/j.bmc.2008.02.046. PubMed DOI

Chenna B.C., Shinkre B.A., King J.R., Lucius A.L., Narayana S.V.L., Velu S.E. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorg. Med. Chem. Lett. 2008;18:380–385. doi: 10.1016/j.bmcl.2007.10.051. PubMed DOI

Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI

Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI

Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC

Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., Jampilek J. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI

Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI

Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI

Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed

Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed

Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N'-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed

Bujdákova H., Kralova K., Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethiones. Pharmazie. 1995;50:156–156. PubMed

Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed

Kubicova L., Kralova K., Sersen F., Gregor J., Waisser K. Effects of substituted salicylanilides on the photosynthetic apparatus of spinach chloroplasts. Folia Pharm. Univ. Carol. 2000;25:89–96.

Sersen F., Kralova K., Macho V. New findings about the inhibitory action of phenylcarbamates and phenylthiocarbamates on photosynthetic apparatus. Pestic. Biochem. Physiol. 2000;68:113–118. doi: 10.1006/pest.2000.2499. DOI

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC

Kralova K., Sersen F., Pesko M., Klimesova V., Waisser K. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chem. Pap. 2012;66:795–799. doi: 10.2478/s11696-012-0192-9. DOI

Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; London, UK: 1980. pp. 413–434. Part C.

Govindjee A. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI

Kallen A.J., Mu Y., Bulens S., Reingold A., Petit S., Gershman K., Ray S.M., Harrison L.H., Lynfield R., Dumyati G., et al. Health care-associated invasive MRSA infections, 2005–2008. JAMA. 2010;304:641–647. doi: 10.1001/jama.2010.1115. PubMed DOI

Liu C., Bayer A., Cosgrove S.E., Daum R.S., Fridkin S.K., Gorwitz R.J., Kaplan S.L., Karchmer A.W., Levine D.P., Murray B.E., et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011;52:285–292. PubMed

Acharya N., Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 2002;318:1251–1264. doi: 10.1016/S0022-2836(02)00053-0. PubMed DOI

Broussard G.W., Ennis D.G. Mycobacterium marinum produces long-term chronic infections in medaka: A new animal model for studying human tuberculosis. Comp. Biochem. Phys. C. 2007;145:45–54. PubMed PMC

Valente W.J., Pienaar E., Fast A., Fluitt A., Whitney S.E., Fenton R.J., Barletta R.G., Chacon O., Viljoen H.J. A kinetic study of in vitro lysis of Mycobacterium smegmatis. Chem. Eng. Sci. 2009;64:1944–1952. doi: 10.1016/j.ces.2008.12.015. PubMed DOI PMC

Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI

Rath T., Roderfeld M., Blocher S., Rhode A., Basler T., Akineden O., Abdulmawjood A., Halwe J.M., Goethe R., Bulte M., Roeb E. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis. BMC Gastroenterol. 2011;11:34. doi: 10.1186/1471-230X-11-34. PubMed DOI PMC

Malik I., Bukovsky M., Andriamainty F., Galisinova J. Antimicrobial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;43:959–965. PubMed PMC

Katritzky A.R., Singh S.K., Cai C., Bobrov S. Direct synthesis of esters and amides from unprotected hydroxyaromatic and—aliphatic carboxylic acids. J. Org. Chem. 2006;71:3364–3374. doi: 10.1021/jo052293q. PubMed DOI

Hahn G. ((Naphtol-Chemie Offenbach)). Verfahren zur Herstellung von Arylamiden der 2-Oxynaphthalin-1-carbonsäure. 838290. PCT Int. Appl. D. 1949 May 8;

Chipalkatti V.B., Manivannan K., Desai R.M., Gopal M. ((Shriram Institute for Industrial Research)). Hydroxy aromatic acid amides. 69680. PTC Int. Apl. 1962 Aug 5;

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard—Fifth Edition. NCCLS; Wayne, PA, USA: 2000. CISI document M7-A5.

National Committee for Clinical Laboratory Standards . Performance Standards for Antimicrobial Susceptibility Testing: 12th Informational Supplement M100-S12. NCCLS; Wayne, PA, USA: 2002.

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides

. 2021 Jul 17 ; 26 (14) : . [epub] 20210717

Consensus-Based Pharmacophore Mapping for New Set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides

. 2020 Sep 09 ; 21 (18) : . [epub] 20200909

Ring-Substituted 1-Hydroxynaphthalene-2-Carboxanilides Inhibit Proliferation and Trigger Mitochondria-Mediated Apoptosis

. 2020 May 12 ; 21 (10) : . [epub] 20200512

Bioactivity of Methoxylated and Methylated 1-Hydroxynaphthalene-2-Carboxanilides: Comparative Molecular Surface Analysis

. 2019 Aug 18 ; 24 (16) : . [epub] 20190818

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †

. 2018 Jul 04 ; 23 (7) : . [epub] 20180704

Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain

. 2017 Nov 30 ; 22 (12) : . [epub] 20171130

Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

. 2017 Oct 12 ; 22 (10) : . [epub] 20171012

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

Synthesis and Antimicrobial Evaluation of 1-[(2-Substituted phenyl)carbamoyl]naphthalen-2-yl Carbamates

. 2016 Sep 07 ; 21 (9) : . [epub] 20160907

N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity

. 2016 Aug 16 ; 21 (8) : . [epub] 20160816

Antiproliferative and Pro-Apoptotic Effect of Novel Nitro-Substituted Hydroxynaphthanilides on Human Cancer Cell Lines

. 2016 Jul 28 ; 17 (8) : . [epub] 20160728

Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides

. 2015 May 27 ; 20 (6) : 9767-87. [epub] 20150527

Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides

. 2015 May 14 ; 20 (5) : 8687-711. [epub] 20150514

Synthesis and antimycobacterial and photosynthesis-inhibiting evaluation of 2-[(E)-2-substituted-ethenyl]-1,3-benzoxazoles

. 2014 ; 2014 () : 705973. [epub] 20140813

Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides

. 2014 Jul 17 ; 19 (7) : 10386-409. [epub] 20140717

New potentially active pyrazinamide derivatives synthesized under microwave conditions

. 2014 Jul 03 ; 19 (7) : 9318-38. [epub] 20140703

N-substituted 5-amino-6-methylpyrazine-2,3-dicarbonitriles: microwave-assisted synthesis and biological properties

. 2014 Jan 07 ; 19 (1) : 651-71. [epub] 20140107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...