Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23924993
PubMed Central
PMC6270026
DOI
10.3390/molecules18089397
PII: molecules18089397
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- herbicidy chemie farmakologie MeSH
- methicilin rezistentní Staphylococcus aureus účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium účinky léků MeSH
- naftoly chemie farmakologie MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- transport elektronů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2-naphthol MeSH Prohlížeč
- antibakteriální látky MeSH
- herbicidy MeSH
- naftoly MeSH
In this study, a series of twenty-two ring-substituted 2-hydroxynaphthalene-1‑carboxanilides were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium marinum, M. kasasii, M. smegmatis. and M. avium paratuberculosis. The compounds were also tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 2-Hydroxy-N-phenylnaphthalene-1-carboxanilide and 2-hydroxy-N-(3-trifluoromethylphenyl)naphthalene-1-carboxamide (IC₅₀ = 29 µmol/L) were the most active PET inhibitors. Some of tested compounds showed the antibacterial and antimycobacterial activity against the tested strains comparable or higher than the standards ampicillin or isoniazid. Thus, for example, 2-hydroxy-N-(3-nitrophenyl)naphthalene-1-carboxamide showed MIC = 26.0 µmol/L against methicillin-resistant S. aureus and MIC = 51.9 µmol/L against M. marinum, or 2-hydroxy-N-phenylnaphthalene-1-carboxamide demonstrated MIC = 15.2 µmol/L against M. kansasii. The structure-activity relationships for all compounds are discussed.
Zobrazit více v PubMed
World Health Organization . WHO Global Strategy for Containment of Antimicrobial Resistance 2001. WHO Press; Geneva, Switzerland: 2001.
World Health Organization . Global Tuberculosis Report 2012. WHO Press; Geneva, Switzerland: 2012.
World Health Organization . World Health Statistics 2013. WHO Press; Geneva, Switzerland: 2013.
Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI
Martinez S., McAdams H.P., Batchu C.S. The many faces of pulmonary nontuberculous mycobacterial infection. Am. J. Roentgenol. 2007;189:177–186. doi: 10.2214/AJR.07.2074. PubMed DOI
Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI
Roth H.J., Fenner H. Arzneistoffe. 3rd ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000.
Sjogren E.B., Rider M.A., Nelson P.H., Bingham S., Poulton A.L., Emanuel M.A., Komuniecki R. Synthesis and biological activity of a series of diaryl-substituted alpha-cyano-beta-hydroxypropenamides, a new class of anthelmintic agents. J. Med. Chem. 1991;34:3295–3301. doi: 10.1021/jm00115a020. PubMed DOI
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., Cizek A., Kralova K., Jampilek J. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Macielag M.J., Demers J.P., Fraga-Spano S.A., Hlasta J.D., Johnson G.S., Kanojia M.R., Russell K.R., Sui Z., Weidner-Wells A.M., Werblood H., et al. Substituted salicylanilides as inhibitors of two-component regulatory systems in bacteria. J. Med. Chem. 1998;41:2939–2945. doi: 10.1021/jm9803572. PubMed DOI
Kratky M., Vinsova J., Buchta V. In vitro antibacterial and antifungal activity of salicylanilide benzoates. Sci. World J. 2012;2012:290628. PubMed PMC
Imramovsky A., Vinsova J., Monreal-Ferriz J., Dolezal R., Jampilek J., Kaustova J., Kunc F. New antituberculotics originated from salicylanilides with promising in vitro activity against atypical mycobacterial strains. Bioorg. Med. Chem. 2009;17:3572–3579. doi: 10.1016/j.bmc.2009.04.008. PubMed DOI
Kratky M., Vinsova J., Novotna E., Mandikova J., Wsol V., Trejtnar F., Ulmann V., Stolarikova J., Fernandes S., Bhat S., et al. Salicylanilide derivatives block Mycobacterium tuberculosis through inhibition of isocitrate lyase and methionine aminopeptidase. Tuberculosis. 2012;92:434–439. doi: 10.1016/j.tube.2012.06.001. PubMed DOI
Kamat S., Buolamwini J.K. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med. Res. Rev. 2006;26:569–594. PubMed
Liechty C.H., Sequin U., Bold G., Furet P., Meyer T., Traxler P. Salicylanilides as inhibitors of the protein tyrosine kinase epidermal growth factor receptor. Eur. J. Med. Chem. 2004;39:11–26. doi: 10.1016/j.ejmech.2003.09.010. PubMed DOI
Guo L., Wang Q.L., Jiang Q.Q., Jiang J.J., Jiang Y.B. Anion-triggered substituent-dependent conformational switching of salicylanilides. New hints for understanding the inhibitory mechanism of salicylanilides. J. Org. Chem. 2007;72:9947–9953. doi: 10.1021/jo701823d. PubMed DOI
Brown M.E., Fitzner J.N., Stevens T., Chin W., Wright C.D., Boyce J.P. Salicylanilides: Selective inhibitors of interleukin-12p40 production. Bioorg. Med. Chem. 2008;16:8760–8764. doi: 10.1016/j.bmc.2008.07.024. PubMed DOI
Boyce J.P., Brown M.E., Chin W., Fitzner J.N., Paxton R.J., Shen M., Stevens T., Wolfson F., Wright C.D. Identification of 14–3-3ζ by chemical affinity with salicylanilide inhibitors of interleukin-12p40 production. Bioconjugate Chem. 2008;19:1775–1784. doi: 10.1021/bc800078q. PubMed DOI
Cheng T.J.R., Wu Y.T., Yang S.T., Lo K.H., Chen S.K., Chen Y.H., Huang W.I., Yuan C.H., Guo C.W., Huang L.Y., et al. High-throughput identification of antibacterials against methicillin-resistant Staphylococcus aureus (MRSA) and the transglycosylase. Bioorg. Med. Chem. 2010;18:8512–8529. doi: 10.1016/j.bmc.2010.10.036. PubMed DOI
Triola G., Wetzel S., Ellinger B., Koch M.A., Hubel J., Rauh D., Waldmann H. ATP competitive inhibitors of d-alanine-d-alanineligase based on protein kinase inhibitor scaffolds. Bioorg. Med. Chem. 2009;17:1079–1087. doi: 10.1016/j.bmc.2008.02.046. PubMed DOI
Chenna B.C., Shinkre B.A., King J.R., Lucius A.L., Narayana S.V.L., Velu S.E. Identification of novel inhibitors of bacterial surface enzyme Staphylococcus aureus Sortase A. Bioorg. Med. Chem. Lett. 2008;18:380–385. doi: 10.1016/j.bmcl.2007.10.051. PubMed DOI
Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI
Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC
Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., Jampilek J. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI
Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.
Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.
Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest. Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI
Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI
Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI
Kralova K., Sersen F., Cizmarik J. Inhibitory effect of piperidinoethylesters of alkoxyphenylcarbamic acids on photosynthesis. Gen. Physiol. Biophys. 1992;11:261–267. PubMed
Kralova K., Bujdakova H., Kuchta T., Loos D. Correlation between biological activity and the structure of 6-amino-2-R-thiobenzothiazoles. Anti-yeast activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:460–461. PubMed
Kralova K., Kallova J., Loos D., Devinsky F. Correlation between biological activity and the structure of N,N'-bis(alkyldimethyl)-1,6-hexanediammonium dibromides. Antibacterial activity and inhibition of photochemical activity of chloroplasts. Pharmazie. 1994;49:857–858. PubMed
Bujdákova H., Kralova K., Sidoova E. Antifungal and antialgal activity of 3-(2-alkylthio-6-benzothiazolylaminomethyl)-2-benzoxazolinethiones. Pharmazie. 1995;50:156–156. PubMed
Kralova K., Bujdakova H., Cizmarik J. Antifungal and antialgal activity of piperidinopropyl esters of alkoxy substituted phenylcarbamic acids. Pharmazie. 1995;50:440–441. PubMed
Kubicova L., Kralova K., Sersen F., Gregor J., Waisser K. Effects of substituted salicylanilides on the photosynthetic apparatus of spinach chloroplasts. Folia Pharm. Univ. Carol. 2000;25:89–96.
Sersen F., Kralova K., Macho V. New findings about the inhibitory action of phenylcarbamates and phenylthiocarbamates on photosynthetic apparatus. Pestic. Biochem. Physiol. 2000;68:113–118. doi: 10.1006/pest.2000.2499. DOI
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Kralova K., Sersen F., Pesko M., Klimesova V., Waisser K. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chem. Pap. 2012;66:795–799. doi: 10.2478/s11696-012-0192-9. DOI
Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; London, UK: 1980. pp. 413–434. Part C.
Govindjee A. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant Physiol. 1995;22:131–160. doi: 10.1071/PP9950131. DOI
Kallen A.J., Mu Y., Bulens S., Reingold A., Petit S., Gershman K., Ray S.M., Harrison L.H., Lynfield R., Dumyati G., et al. Health care-associated invasive MRSA infections, 2005–2008. JAMA. 2010;304:641–647. doi: 10.1001/jama.2010.1115. PubMed DOI
Liu C., Bayer A., Cosgrove S.E., Daum R.S., Fridkin S.K., Gorwitz R.J., Kaplan S.L., Karchmer A.W., Levine D.P., Murray B.E., et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011;52:285–292. PubMed
Acharya N., Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 2002;318:1251–1264. doi: 10.1016/S0022-2836(02)00053-0. PubMed DOI
Broussard G.W., Ennis D.G. Mycobacterium marinum produces long-term chronic infections in medaka: A new animal model for studying human tuberculosis. Comp. Biochem. Phys. C. 2007;145:45–54. PubMed PMC
Valente W.J., Pienaar E., Fast A., Fluitt A., Whitney S.E., Fenton R.J., Barletta R.G., Chacon O., Viljoen H.J. A kinetic study of in vitro lysis of Mycobacterium smegmatis. Chem. Eng. Sci. 2009;64:1944–1952. doi: 10.1016/j.ces.2008.12.015. PubMed DOI PMC
Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI
Rath T., Roderfeld M., Blocher S., Rhode A., Basler T., Akineden O., Abdulmawjood A., Halwe J.M., Goethe R., Bulte M., Roeb E. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis. BMC Gastroenterol. 2011;11:34. doi: 10.1186/1471-230X-11-34. PubMed DOI PMC
Malik I., Bukovsky M., Andriamainty F., Galisinova J. Antimicrobial activity of meta-alkoxyphenylcarbamates containing substituted N-phenylpiperazine fragment. Braz. J. Microbiol. 2012;43:959–965. PubMed PMC
Katritzky A.R., Singh S.K., Cai C., Bobrov S. Direct synthesis of esters and amides from unprotected hydroxyaromatic and—aliphatic carboxylic acids. J. Org. Chem. 2006;71:3364–3374. doi: 10.1021/jo052293q. PubMed DOI
Hahn G. ((Naphtol-Chemie Offenbach)). Verfahren zur Herstellung von Arylamiden der 2-Oxynaphthalin-1-carbonsäure. 838290. PCT Int. Appl. D. 1949 May 8;
Chipalkatti V.B., Manivannan K., Desai R.M., Gopal M. ((Shriram Institute for Industrial Research)). Hydroxy aromatic acid amides. 69680. PTC Int. Apl. 1962 Aug 5;
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically. Approved Standard—Fifth Edition. NCCLS; Wayne, PA, USA: 2000. CISI document M7-A5.
National Committee for Clinical Laboratory Standards . Performance Standards for Antimicrobial Susceptibility Testing: 12th Informational Supplement M100-S12. NCCLS; Wayne, PA, USA: 2002.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Photosynthesis-Inhibiting Activity of N-(Disubstituted-phenyl)-3-hydroxynaphthalene-2-carboxamides
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Investigation of Hydro-Lipophilic Properties of N-Alkoxyphenylhydroxynaphthalenecarboxamides †
N-Alkoxyphenylhydroxynaphthalenecarboxamides and Their Antimycobacterial Activity
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides
Synthesis and Biological Evaluation of N-Alkyl-3-(alkylamino)-pyrazine-2-carboxamides
Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides
New potentially active pyrazinamide derivatives synthesized under microwave conditions