Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres

. 2012 Jan 10 ; 17 (1) : 613-44. [epub] 20120110

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid22233564

In this study, a series of thirty-five substituted quinoline-2-carboxamides and thirty-three substituted naphthalene-2-carboxamides were prepared and characterized. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial species. N-Cycloheptylquinoline-2-carboxamide, N-cyclohexylquinoline-2-carboxamide and N-(2-phenylethyl)quinoline-2-carboxamide showed higher activity against M. tuberculosis than the standards isoniazid or pyrazinamide and 2-(pyrrolidin-1-ylcarbonyl)quinoline and 1-(2-naphthoyl)pyrrolidine expressed higher activity against M. kansasii and M. avium paratuberculosis than the standards isoniazid or pyrazinamide. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC(50) value of the most active compound N-benzyl-2-naphthamide was 7.5 μmol/L. For all compounds, the structure-activity relationships are discussed.

Zobrazit více v PubMed

Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. pp. 51–114.

Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC

Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC

Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., Csollei J., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Dolezal M., Kralova K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity. In: Soloneski S., Larramendy M.L., editors. Herbicides, Theory and Applications. InTech; Rijeka, Croatia: 2011. pp. 581–610.

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Harris C.R., Thorarensen A. Advances in the discovery of novel antibacterial agents during the year 2002. Curr. Med. Chem. 2004;11:2213–2243. PubMed

Andries K., Verhasselt P., Guillemont J., Gohlmann H.W., Neefs J.M., Winkler H., van Gestel J., Timmerman P., Zhu M., Lee E., et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–227. PubMed

Vangapandu S., Jain M., Jain R., Kaur S., Singh P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004;12:2501–2508. doi: 10.1016/j.bmc.2004.03.045. PubMed DOI

Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. doi: 10.2174/157340605774598108. PubMed DOI

Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. PubMed

Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. doi: 10.3390/molecules14031145. PubMed DOI PMC

Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Dohnal J., et al. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC

Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. PubMed PMC

Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI

Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., et al. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. doi: 10.1016/j.bmcl.2007.09.040. PubMed DOI

Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. PubMed

Semar M., Anke H., Arendholz W.R., Velten R., Steglich W. Lachnellins A, B, C, D, and naphthalene-1,3,8-triol, biologically active compounds from a Lachnellula species (Ascomycetes) Z. Naturforsch C. 1996;51:500–512. PubMed

Ulubelen A., Topcu G., Johansson C.B. Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J. Nat. Prod. 1997;60:1275–1280. doi: 10.1021/np9700681. PubMed DOI

Ezra D., Hess W.M., Strobel G.A. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology. 2004;150:4023–4031. doi: 10.1099/mic.0.27334-0. PubMed DOI

Huang W., Li J., Zhang W., Zhou Y., Xie C., Luo Y., Li Y., Wang J., Li J., Lu W. Synthesis of miltirone analogues as inhibitors of Cdc25 phosphatases. Bioorg. Med. Chem. Lett. 2006;16:1905–1908. doi: 10.1016/j.bmcl.2005.12.080. PubMed DOI

Hedstrom L.K., Striepen B. (Brandeis University & University of Georfia Research Foundation). Compounds and methods for treating mammalian gastrointestinal parasitic infections. US2010/0022547 A1. US Patent. 2010 Jan 28;

Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. PubMed

Black C.C. Photosynthetic phosphorylation and associated reactions in the presence of a new group of uncouplers: Salicylanilides. Biochim.Biophys. Acta. 1968;162:294–296. doi: 10.1016/0005-2728(68)90113-8. PubMed DOI

Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. Engl. 1991;3:1621–1633.

Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI

Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.

Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Vol. 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.

Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI

Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI

Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI

Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed

Taft R.W., Jr. Separation of polar, steric, and resonance effects in reactivity. In: Newman M.S., editor. Steric Effect in Organic Chemistry. John Wiley & Sons; New York, NY, USA: 1956. Chapter 13.

Takahata Y., Chong D.P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 2005;103:509–515. doi: 10.1002/qua.20533. DOI

Chapman N.B., Shorter J. Advances in Linear Free Energy Relationships. Plenum Press; London, UK: 1972.

Wang X., Wang D.Z. Aerobic oxidation of secondary benzylic alcohols and direct oxidative amidation of aryl aldehydes promoted by sodium hydride. Tetrahedron. 2011;67:3406–3411. doi: 10.1016/j.tet.2011.03.052. DOI

Coppa F., Fontana F., Lazzarini E., Minisci F. A facile, convenient and selective homolytic carbamoylation of heteroaromatic bases. Heterocycles. 1993;36:2687–2696. doi: 10.3987/COM-93-6459. DOI

Kampen G.C.T., Andersen H.S. (Novo Nordisk A/S). Combination therapy using an 11β-hydroxysteroid dehydrogenase type 1 inhibitor and a glucocorticoid receptor agonist to minimize the side effects associated with glucocorticoid receptor agonist therapy. WO 2004089415 A2. PCT Int. Appl. 2004 Oct 21 ;

Davis J.W. Studies with quinolines. I. Synthesis of quinaldic acid and some of its amide derivatives. J. Org. Chem. 1959;24:1691–1694. doi: 10.1021/jo01093a016. DOI

Ren W., Yamane M. Mo(CO)6-Mediated carbamoylation of aryl halides. J. Org. Chem. 2010;75:8410–8415. doi: 10.1021/jo101611g. PubMed DOI

Gracheva I.N., Ioffina D.I., Tochilkin A.I., Gorkin V.Z. Monoamine oxidase inhibitors based on 2-, 4-, and 8-substituted quinolones. Pharm. Chem. J. 1991;25:160–165. doi: 10.1007/BF00772012. DOI

Dzadzic P.M., Bastic B.L., Piletic M.V. Reaction between 2-quinolinecarboxylic acid and some aromatic and heterocyclic amines. Glas. Hem. Drus. Beograd. 1971;36:137–142.

Petrie C., Orme M.W., Baindur N., Robbins K.G., Harris S.M., Kontoyianni M., Hurley L.H., Kerwin S.M., Mundy G.R. (Zymogenetics, Inc. & Osteoscreen, Inc. & University of Texas). Compositions and Methods for Treating Bone Deficit Conditions. WO 1997015308. WO Patent. 1997 May 1;

Chan L., Jin H., Stefanac T., Wang W., Lavallee J.F., Bedard J., May S. Isoquinoline-6-carboxamides as potent and selective anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 1999;9:2583–2586. doi: 10.1016/S0960-894X(99)00435-7. PubMed DOI

Schaefer W., Neubert P. Massenspektren heterocyclischer carbonsaureamide-I: Pyridin- und chinolincarbonsaureanilide. Tetrahedron. 1969;25:315–327.

Kiselyov A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: A convenient one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett. 2005;46:4851–4854. doi: 10.1016/j.tetlet.2005.05.066. DOI

Vieth P. Zur Kenntnis der β-Naphtoesaure. Chem. Ber. 1875;8:1278–1281. doi: 10.1002/cber.187500802113. DOI

Rahman O., Kihlberg T., Langstrom B. Aryl triflates and [11C]/(13C)carbon monoxide in the synthesis of 11C-/13C-amides. J. Org. Chem. 2003;68:3558–3562. doi: 10.1021/jo026763h. PubMed DOI

Berndt D.C., Faburada A.L. Reaction of acyl azide and amines. Kinetics and mechanism. J. Org. Chem. 1982;47:4167–4169. doi: 10.1021/jo00142a033. DOI

Lauwagie S., Millet R., Pommery J., Depreux P., Henichart J.P. Expeditious synthesis of 2-aryl-substituted imidazolines and imidazoles. Heterocycles. 2006;68:1149–1162. doi: 10.3987/COM-06-10708. DOI

Hofmann A.W. Uber die Menaphtoxylsaure und ihre Abkommlinge. Chem. Ber. 1868;1:38–43. doi: 10.1002/cber.18680010116. DOI

Zhang X., Guo L., Wu F.Y., Jiang Y.B. Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org. Lett. 2003;5:2667–2670. doi: 10.1021/ol034846u. PubMed DOI

Liu L.H., Guo L., Liu C.H., Zhang X., Jiang Y.B. Intramolecular charge transfer with 1-naphthanilides and 2-naphthanilides. Chin. J. Chem. 2005;23:857–864. doi: 10.1002/cjoc.200590857. DOI

Kushner S., Cassell R.I., Morton J., Williams J.H. Anticonvulsants. N-Benzylamides. J. Org. Chem. 1951;16:1283–1288.

Barbero N., Carril M., San Martin R., Dominguez S. Copper-catalysed intramolecular O-arylation of aryl chlorides and bromides: A straightforward approach to benzo[d]oxazoles in water. Tetrahedron. 2007;63:10425–10432. doi: 10.1016/j.tet.2007.08.013. DOI

Abramovitch R.A., Hey D.H., Long R.A. Internuclear cyclisation. Part XII. The synthesis of some benzophenanthridones. Abnormal reaction of 1-amino-N-methyl-2-naphthanilide. J. Chem. Soc. 1957:1781–1788.

Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.

Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors

. 2019 Oct 29 ; 20 (21) : . [epub] 20191029

Design and synthesis of anticancer 1-hydroxynaphthalene-2-carboxanilides with a p53 independent mechanism of action

. 2019 Apr 23 ; 9 (1) : 6387. [epub] 20190423

Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides

. 2018 Aug 07 ; 19 (8) : . [epub] 20180807

Proline-Based Carbamates as Cholinesterase Inhibitors

. 2017 Nov 14 ; 22 (11) : . [epub] 20171114

Halogenated 1-Hydroxynaphthalene-2-Carboxanilides Affecting Photosynthetic Electron Transport in Photosystem II

. 2017 Oct 12 ; 22 (10) : . [epub] 20171012

Photosynthesis-Inhibiting Activity of 1-[(2-Chlorophenyl)carbamoyl]- and 1-[(2-Nitrophenyl)carbamoyl]naphthalen-2-yl Alkylcarbamates

. 2017 Jul 17 ; 22 (7) : . [epub] 20170717

Synthesis and antimycobacterial and photosynthesis-inhibiting evaluation of 2-[(E)-2-substituted-ethenyl]-1,3-benzoxazoles

. 2014 ; 2014 () : 705973. [epub] 20140813

Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides

. 2014 Jul 17 ; 19 (7) : 10386-409. [epub] 20140717

Synthesis and biological evaluation of 2-hydroxy-3-[(2-aryloxyethyl)amino]propyl 4-[(alkoxycarbonyl)amino]benzoates

. 2013 ; 2013 () : 274570. [epub] 20131029

Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides

. 2013 Sep 02 ; 18 (9) : 10648-70. [epub] 20130902

Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides

. 2013 Aug 06 ; 18 (8) : 9397-419. [epub] 20130806

Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides

. 2013 Jul 08 ; 18 (7) : 7977-97. [epub] 20130708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...