Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
22233564
PubMed Central
PMC6268315
DOI
10.3390/molecules17010613
PII: molecules17010613
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky chemická syntéza farmakologie MeSH
- chinoliny chemická syntéza farmakologie MeSH
- chloroplasty účinky léků MeSH
- fotosyntéza účinky léků MeSH
- herbicidy chemická syntéza farmakologie MeSH
- hydrofobní a hydrofilní interakce MeSH
- inhibiční koncentrace 50 MeSH
- LD50 MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium účinky léků MeSH
- nádorové buněčné linie MeSH
- naftaleny chemická syntéza farmakologie MeSH
- Spinacia oleracea účinky léků MeSH
- transport elektronů účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- chinoliny MeSH
- herbicidy MeSH
- naftaleny MeSH
In this study, a series of thirty-five substituted quinoline-2-carboxamides and thirty-three substituted naphthalene-2-carboxamides were prepared and characterized. They were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. Primary in vitro screening of the synthesized compounds was also performed against four mycobacterial species. N-Cycloheptylquinoline-2-carboxamide, N-cyclohexylquinoline-2-carboxamide and N-(2-phenylethyl)quinoline-2-carboxamide showed higher activity against M. tuberculosis than the standards isoniazid or pyrazinamide and 2-(pyrrolidin-1-ylcarbonyl)quinoline and 1-(2-naphthoyl)pyrrolidine expressed higher activity against M. kansasii and M. avium paratuberculosis than the standards isoniazid or pyrazinamide. The most effective antimycobacterial compounds demonstrated insignificant toxicity against the human monocytic leukemia THP-1 cell line. The PET-inhibiting activity expressed by IC(50) value of the most active compound N-benzyl-2-naphthamide was 7.5 μmol/L. For all compounds, the structure-activity relationships are discussed.
Zobrazit více v PubMed
Roth H.J., Fenner H. Arzneistoffe. 3rd. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000. pp. 51–114.
Good N.E. Inhibitors of the Hill reaction. Plant Physiol. 1961;36:788–803. doi: 10.1104/pp.36.6.788. PubMed DOI PMC
Dolezal M., Palek L., Vinsova J., Buchta V., Jampilek J., Kralova K. Substituted pyrazinecarboxamides: Synthesis and biological evaluation. Molecules. 2006;11:242–256. doi: 10.3390/11040242. PubMed DOI PMC
Dolezal M., Cmedlova P., Palek L., Vinsova J., Kunes J., Buchta V., Jampilek J., Kralova K. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 2008;43:1105–1113. doi: 10.1016/j.ejmech.2007.07.013. PubMed DOI
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15:8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., Csollei J., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Dolezal M., Kralova K. Synthesis and evaluation of pyrazine derivatives with herbicidal activity. In: Soloneski S., Larramendy M.L., editors. Herbicides, Theory and Applications. InTech; Rijeka, Croatia: 2011. pp. 581–610.
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkyl-carbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Harris C.R., Thorarensen A. Advances in the discovery of novel antibacterial agents during the year 2002. Curr. Med. Chem. 2004;11:2213–2243. PubMed
Andries K., Verhasselt P., Guillemont J., Gohlmann H.W., Neefs J.M., Winkler H., van Gestel J., Timmerman P., Zhu M., Lee E., et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307:223–227. PubMed
Vangapandu S., Jain M., Jain R., Kaur S., Singh P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004;12:2501–2508. doi: 10.1016/j.bmc.2004.03.045. PubMed DOI
Jampilek J., Dolezal M., Kunes J., Buchta V., Kralova K. Quinaldine derivatives: Preparation and biological activity. Med. Chem. 2005;1:591–599. doi: 10.2174/157340605774598108. PubMed DOI
Musiol R., Jampilek J., Buchta V., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. PubMed
Jampilek J., Musiol R., Pesko M., Kralova K., Vejsova M., Carroll J., Coffey A., Finster J., Tabak D., Niedbala H., et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules. 2009;14:1145–1159. doi: 10.3390/molecules14031145. PubMed DOI PMC
Jampilek J., Musiol R., Finster J., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Dohnal J., et al. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules. 2009;14:4246–4265. doi: 10.3390/molecules14104246. PubMed DOI PMC
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., et al. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. PubMed PMC
Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum fornovel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI
Podeszwa B., Niedbala H., Polanski J., Musiol R., Tabak D., Finster J., Serafin K., Wietrzyk J., Boryczka S., Mol W., et al. Investigating the antiproliferative activity of quinoline-5,8-dione analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007;17:6138–6141. doi: 10.1016/j.bmcl.2007.09.040. PubMed DOI
Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. PubMed
Semar M., Anke H., Arendholz W.R., Velten R., Steglich W. Lachnellins A, B, C, D, and naphthalene-1,3,8-triol, biologically active compounds from a Lachnellula species (Ascomycetes) Z. Naturforsch C. 1996;51:500–512. PubMed
Ulubelen A., Topcu G., Johansson C.B. Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J. Nat. Prod. 1997;60:1275–1280. doi: 10.1021/np9700681. PubMed DOI
Ezra D., Hess W.M., Strobel G.A. New endophytic isolates of Muscodor albus, a volatile-antibiotic-producing fungus. Microbiology. 2004;150:4023–4031. doi: 10.1099/mic.0.27334-0. PubMed DOI
Huang W., Li J., Zhang W., Zhou Y., Xie C., Luo Y., Li Y., Wang J., Li J., Lu W. Synthesis of miltirone analogues as inhibitors of Cdc25 phosphatases. Bioorg. Med. Chem. Lett. 2006;16:1905–1908. doi: 10.1016/j.bmcl.2005.12.080. PubMed DOI
Hedstrom L.K., Striepen B. (Brandeis University & University of Georfia Research Foundation). Compounds and methods for treating mammalian gastrointestinal parasitic infections. US2010/0022547 A1. US Patent. 2010 Jan 28;
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. PubMed
Black C.C. Photosynthetic phosphorylation and associated reactions in the presence of a new group of uncouplers: Salicylanilides. Biochim.Biophys. Acta. 1968;162:294–296. doi: 10.1016/0005-2728(68)90113-8. PubMed DOI
Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. Int. Ed. Engl. 1991;3:1621–1633.
Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI
Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.
Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Vol. 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.
Shaner D.L. Herbicide safety relative to common targets in plants and mammals. Pest Manag. Sci. 2004;60:17–24. doi: 10.1002/ps.782. PubMed DOI
Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI
Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI
Norrington F.E., Hyde R.M., Williams S.G., Wotton R. Physicochemical-activity relations in practice. 1. Rational and self-consistent data bank. J. Med. Chem. 1975;18:604–607. PubMed
Taft R.W., Jr. Separation of polar, steric, and resonance effects in reactivity. In: Newman M.S., editor. Steric Effect in Organic Chemistry. John Wiley & Sons; New York, NY, USA: 1956. Chapter 13.
Takahata Y., Chong D.P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 2005;103:509–515. doi: 10.1002/qua.20533. DOI
Chapman N.B., Shorter J. Advances in Linear Free Energy Relationships. Plenum Press; London, UK: 1972.
Wang X., Wang D.Z. Aerobic oxidation of secondary benzylic alcohols and direct oxidative amidation of aryl aldehydes promoted by sodium hydride. Tetrahedron. 2011;67:3406–3411. doi: 10.1016/j.tet.2011.03.052. DOI
Coppa F., Fontana F., Lazzarini E., Minisci F. A facile, convenient and selective homolytic carbamoylation of heteroaromatic bases. Heterocycles. 1993;36:2687–2696. doi: 10.3987/COM-93-6459. DOI
Kampen G.C.T., Andersen H.S. (Novo Nordisk A/S). Combination therapy using an 11β-hydroxysteroid dehydrogenase type 1 inhibitor and a glucocorticoid receptor agonist to minimize the side effects associated with glucocorticoid receptor agonist therapy. WO 2004089415 A2. PCT Int. Appl. 2004 Oct 21 ;
Davis J.W. Studies with quinolines. I. Synthesis of quinaldic acid and some of its amide derivatives. J. Org. Chem. 1959;24:1691–1694. doi: 10.1021/jo01093a016. DOI
Ren W., Yamane M. Mo(CO)6-Mediated carbamoylation of aryl halides. J. Org. Chem. 2010;75:8410–8415. doi: 10.1021/jo101611g. PubMed DOI
Gracheva I.N., Ioffina D.I., Tochilkin A.I., Gorkin V.Z. Monoamine oxidase inhibitors based on 2-, 4-, and 8-substituted quinolones. Pharm. Chem. J. 1991;25:160–165. doi: 10.1007/BF00772012. DOI
Dzadzic P.M., Bastic B.L., Piletic M.V. Reaction between 2-quinolinecarboxylic acid and some aromatic and heterocyclic amines. Glas. Hem. Drus. Beograd. 1971;36:137–142.
Petrie C., Orme M.W., Baindur N., Robbins K.G., Harris S.M., Kontoyianni M., Hurley L.H., Kerwin S.M., Mundy G.R. (Zymogenetics, Inc. & Osteoscreen, Inc. & University of Texas). Compositions and Methods for Treating Bone Deficit Conditions. WO 1997015308. WO Patent. 1997 May 1;
Chan L., Jin H., Stefanac T., Wang W., Lavallee J.F., Bedard J., May S. Isoquinoline-6-carboxamides as potent and selective anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. Med. Chem. Lett. 1999;9:2583–2586. doi: 10.1016/S0960-894X(99)00435-7. PubMed DOI
Schaefer W., Neubert P. Massenspektren heterocyclischer carbonsaureamide-I: Pyridin- und chinolincarbonsaureanilide. Tetrahedron. 1969;25:315–327.
Kiselyov A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: A convenient one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett. 2005;46:4851–4854. doi: 10.1016/j.tetlet.2005.05.066. DOI
Vieth P. Zur Kenntnis der β-Naphtoesaure. Chem. Ber. 1875;8:1278–1281. doi: 10.1002/cber.187500802113. DOI
Rahman O., Kihlberg T., Langstrom B. Aryl triflates and [11C]/(13C)carbon monoxide in the synthesis of 11C-/13C-amides. J. Org. Chem. 2003;68:3558–3562. doi: 10.1021/jo026763h. PubMed DOI
Berndt D.C., Faburada A.L. Reaction of acyl azide and amines. Kinetics and mechanism. J. Org. Chem. 1982;47:4167–4169. doi: 10.1021/jo00142a033. DOI
Lauwagie S., Millet R., Pommery J., Depreux P., Henichart J.P. Expeditious synthesis of 2-aryl-substituted imidazolines and imidazoles. Heterocycles. 2006;68:1149–1162. doi: 10.3987/COM-06-10708. DOI
Hofmann A.W. Uber die Menaphtoxylsaure und ihre Abkommlinge. Chem. Ber. 1868;1:38–43. doi: 10.1002/cber.18680010116. DOI
Zhang X., Guo L., Wu F.Y., Jiang Y.B. Development of fluorescent sensing of anions under excited-state intermolecular proton transfer signaling mechanism. Org. Lett. 2003;5:2667–2670. doi: 10.1021/ol034846u. PubMed DOI
Liu L.H., Guo L., Liu C.H., Zhang X., Jiang Y.B. Intramolecular charge transfer with 1-naphthanilides and 2-naphthanilides. Chin. J. Chem. 2005;23:857–864. doi: 10.1002/cjoc.200590857. DOI
Kushner S., Cassell R.I., Morton J., Williams J.H. Anticonvulsants. N-Benzylamides. J. Org. Chem. 1951;16:1283–1288.
Barbero N., Carril M., San Martin R., Dominguez S. Copper-catalysed intramolecular O-arylation of aryl chlorides and bromides: A straightforward approach to benzo[d]oxazoles in water. Tetrahedron. 2007;63:10425–10432. doi: 10.1016/j.tet.2007.08.013. DOI
Abramovitch R.A., Hey D.H., Long R.A. Internuclear cyclisation. Part XII. The synthesis of some benzophenanthridones. Abnormal reaction of 1-amino-N-methyl-2-naphthanilide. J. Chem. Soc. 1957:1781–1788.
Masarovicova E., Kralova K. Approaches to measuring plant photosynthesis activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides
Proline-Based Carbamates as Cholinesterase Inhibitors
Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides
Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides
Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides