Antimycobacterial and photosynthetic electron transport inhibiting activity of ring-substituted 4-arylamino-7-chloroquinolinium chlorides
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24002140
PubMed Central
PMC6270397
DOI
10.3390/molecules180910648
PII: molecules180910648
Knihovny.cz E-zdroje
- MeSH
- antituberkulotika chemická syntéza farmakologie MeSH
- buněčné linie MeSH
- chinolinové sloučeniny chemická syntéza farmakologie MeSH
- chloridy chemická syntéza farmakologie MeSH
- chloroplasty účinky léků metabolismus MeSH
- fotosyntéza účinky léků MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium účinky léků MeSH
- preklinické hodnocení léčiv MeSH
- rozpustnost MeSH
- Spinacia oleracea účinky léků metabolismus MeSH
- transport elektronů účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antituberkulotika MeSH
- chinolinové sloučeniny MeSH
- chloridy MeSH
In this study, a series of twenty-five ring-substituted 4-arylamino-7-chloroquinolinium chlorides were prepared and characterized. The compounds were tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts and also primary in vitro screening of the synthesized compounds was performed against mycobacterial species. 4-[(2-Bromophenyl)amino]-7-chloroquinolinium chloride showed high biological activity against M. marinum, M. kansasii, M. smegmatis and 7-chloro-4-[(2-methylphenyl)amino]quinolinium chloride demonstrated noteworthy biological activity against M. smegmatis and M. avium subsp. paratuberculosis. The most effective compounds demonstrated quite low toxicity (LD₅₀ > 20 μmol/L) against the human monocytic leukemia THP-1 cell line within preliminary in vitro cytotoxicity screening. The tested compounds were found to inhibit PET in photosystem II. The PET-inhibiting activity expressed by IC₅₀ value of the most active compound 7-chloro-4-[(3-trifluoromethylphenyl)amino]quinolinium chloride was 27 μmol/L and PET-inhibiting activity of ortho-substituted compounds was significantly lower than this of meta- and para-substituted ones. The structure-activity relationships are discussed for all compounds.
Zobrazit více v PubMed
World Health Organization . Global Tuberculosis Report 2012. WHO Press; Geneva, Switzerland: 2012.
Wagner D., Young L.S. Nontuberculous mycobacterial infections: A clinical review. Infection. 2004;32:257–270. doi: 10.1007/s15010-004-4001-4. PubMed DOI
World Health Organization . WHO Global Strategy for Containment of Antimicrobial Resistance 2001. WHO Press; Geneva, Switzerland: 2001.
Koul A., Arnoult E., Lounis N., Guillemont J., Andries K. The challenge of new drug discovery for tuberculosis. Nature. 2011;469:483–490. doi: 10.1038/nature09657. PubMed DOI
Acharya N., Varshney U. Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, A fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J. Mol. Biol. 2002;318:1251–1264. doi: 10.1016/S0022-2836(02)00053-0. PubMed DOI
Broussard G.W., Ennis D.G. Mycobacterium marinum produces long-term chronic infections in medaka: A new animal model for studying human tuberculosis. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007;145:45–54. doi: 10.1016/j.cbpc.2006.07.012. PubMed DOI PMC
Valente W.J., Pienaar E., Fast A., Fluitt A., Whitney S.E., Fenton R.J., Barletta R.G., Chacon O., Viljoen H.J. A kinetic study of in vitro lysis of Mycobacterium smegmatis. Chem. Eng. Sci. 2009;64:1944–1952. doi: 10.1016/j.ces.2008.12.015. PubMed DOI PMC
Matveychuk A., Fuks L., Priess R., Hahim I., Shitrit D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Resp. Med. 2012;106:1472–1477. doi: 10.1016/j.rmed.2012.06.023. PubMed DOI
Roth H.J., Fenner H. Arzneistoffe. 3rd ed. Deutscher Apotheker Verlag; Stuttgart, Germany: 2000.
Janin Y.L. Antituberculosis drugs: Ten years of research. Bioorg. Med. Chem. 2007;15:2479–2513. doi: 10.1016/j.bmc.2007.01.030. PubMed DOI
Rivers E.C., Mancera R.L. New anti-tuberculosis drugs with novel mechanisms of action. Curr. Med. Chem. 2008;15:1956–1967. doi: 10.2174/092986708785132906. PubMed DOI
Vangapandu S., Jain M., Jain R., Kaurb S., Singh P.P. Ring-substituted quinolines as potential anti-tuberculosis agents. Bioorg. Med. Chem. 2004;12:2501–2508. doi: 10.1016/j.bmc.2004.03.045. PubMed DOI
Nayyar A., Monga V., Malde A., Coutinho E., Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg. Med. Chem. 2007;15:626–640. doi: 10.1016/j.bmc.2006.10.064. PubMed DOI
Musiol R., Jampilek J., Buchta V., Silva L., Niedbala H., Podeszwa B., Palka A., Majerz-Maniecka K., Oleksyn B., Polanski J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem. 2006;14:3592–3598. doi: 10.1016/j.bmc.2006.01.016. PubMed DOI
Musiol R., Jampilek J., Nycz J.E., Pesko M., Carroll J., Kralova K., Vejsova M., O’Mahony J., Coffey A., Mrozek A., Polanski J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules. 2010;15:288–304. doi: 10.3390/molecules15010288. PubMed DOI PMC
Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., et al. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules. 2012;17:613–644. doi: 10.3390/molecules17010613. PubMed DOI PMC
Serda M., Mrozek-Wilczkiewicz A., Jampilek J., Pesko M., Kralova K., Vejsova M., Musiol R., Polanski J. Investigation of biological properties for (hetero)aromatic thiosemicarbazones. Molecules. 2012;17:13483–13502. doi: 10.3390/molecules171113483. PubMed DOI PMC
Cieslik W., Musiol R., Nycz J., Jampilek J., Vejsova M., Wolff M., Machura B., Polanski J. Contribution to investigation of antimicrobial activity of styrylquinolines. Bioorg. Med. Chem. 2012;20:6960–6968. doi: 10.1016/j.bmc.2012.10.027. PubMed DOI
Solomon V.R., Lee H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem. 2011;18:1488–1508. doi: 10.2174/092986711795328382. PubMed DOI
Koul A., Choidas A., Treder M., Tyagi A.K., Drlica K., Singh Y., Ullrich A. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J. Bacteriol. 2000;182:5425–5432. PubMed PMC
Koul A., Herget T., Kleb B., Ullrich A. Interplay between mycobacteria and host signalling pathways. Nat. Rev. Microbiol. 2004;2:189–202. doi: 10.1038/nrmicro840. PubMed DOI
Manger M., Scheck M., Prinz H., von Kries J.P., Langer T., Saxena K., Schwalbe H., Furstner A., Rademann J., Waldmann H. Discovery of Mycobacterium tuberculosis protein tyrosine phosphatase A (MptpA) inhibitors based on natural products and a fragment-based approach. ChemBioChem. 2005;6:1749–1753. doi: 10.1002/cbic.200500171. PubMed DOI
Greenstein A.E., Grundner C., Echols N., Gay L.M., Lombana T.N., Miecskowski C.A., Pullen K.E., Sung P.Y., Alber T. Structure/function studies of Ser/Thr and Tyr protein phosphorylation in Mycobacterium tuberculosis. J. Mol. Microbiol. Biotechnol. 2005;9:167–181. doi: 10.1159/000089645. PubMed DOI
Muller D., Krick A., Kehraus S., Mehner C., Hart M., Kupper F.C., Saxena K., Prinz H., Schwalbe H., Janning P., et al. Sponge-related cyanobacterial peptides with Mycobacterium tuberculosis protein tyrosine phosphatase inhibitory activity. J. Med. Chem. 2006;49:4871–4878. doi: 10.1021/jm060327w. PubMed DOI
Malhotra V., Arteaga-Cortes L.T., Clay G., Clark-Curtiss J.E. Mycobacterium tuberculosis protein kinase K confers survival advantage during early infection in mice and regulates growth in culture and during persistent infection: Implications for immune modulation. Microbiology. 2010;156:2829–2841. doi: 10.1099/mic.0.040675-0. PubMed DOI PMC
Malhotra V., Okon B.P., Clark-Curtiss J.E. Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. J. Bacteriol. 2012;194:4184–4196. PubMed PMC
Strong H.L. Substituted quinoline herbicide intermediates and process. 5625068 A. U.S. Patent. 1997 Apr 29;
Grossmann K. Quinclorac belongs to a new class of highly selective auxin herbicides. Weed Sci. 1998;46:707–716.
Grossmann K., Kwiatkowski J., Tresch S. Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium. aparine L.) J. Exp. Bot. 2001;362:1811–1816. doi: 10.1093/jexbot/52.362.1811. PubMed DOI
Tan S., Evans R.R., Dahmer M.L., Singh B.K., Shaner D.L. Imidazolinone-tolerant crops: History, current status and future. Pest. Manag. Sci. 2005;61:246–257. doi: 10.1002/ps.993. PubMed DOI
Gollut J.J.R., Gayet A.J.A. Process for the preparation of a quinoline carboxylic acid. WO2013072376 A1. 2013 May 23;
Musiol R., Jampilek J., Kralova K., Richardson D.R., Kalinowski D., Podeszwa B., Finster J., Niedbala H., Palka A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem. 2007;15:1280–1288. doi: 10.1016/j.bmc.2006.11.020. PubMed DOI
Musiol R., Tabak D., Niedbala H., Podeszwa B., Jampilek J., Kralova K., Dohnal J., Finster J., Mencel A., Polanski J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis inhibiting activity. Bioorg. Med. Chem. 2008;16:4490–4499. doi: 10.1016/j.bmc.2008.02.065. PubMed DOI
Draber W., Tietjen K., Kluth J.F., Trebst A. Herbicides in photosynthesis research. Angew. Chem. 1991;3:1621–1633.
Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron-transport. Biochim. Biophys. Acta. 1977;460:113–125. doi: 10.1016/0005-2728(77)90157-8. PubMed DOI
Trebst A., Draber W. Structure activity correlations of recent herbicides in photosynthetic reactions. In: Greissbuehler H., editor. Advances in Pesticide Science. Pergamon Press; Oxford, UK: 1979. pp. 223–234.
Bowyer J.R., Camilleri P., Vermaas W.F.J. Photosystem II and its interaction with herbicides. In: Baker N.R., Percival M.P., editors. Herbicides, Topics in Photosynthesis. Volume 10. Elsevier; Amsterdam, The Netherlands: 1991. pp. 27–85.
Delaney J., Clarke E., Hughes D., Rice M. Modern agrochemical research: A missed opportunity for drug discovery? Drug Discov. Today. 2006;11:839–845. doi: 10.1016/j.drudis.2006.07.002. PubMed DOI
Duke S.O. Herbicide and pharmaceutical relationships. Weed Sci. 2010;58:334–339. doi: 10.1614/WS-09-102.1. DOI
Swanton C.J., Mashhadi H.R., Solomon K.R., Afifi M.M., Duke S.O. Similarities between the discovery and regulation of pharmaceuticals and pesticides: In support of a better understanding of the risks and benefits of each. Pest. Manag. Sci. 2011;67:790–797. doi: 10.1002/ps.2179. PubMed DOI
Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. PubMed PMC
Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Fajkusova D., Pesko M., Keltosova S., Guo J., Oktabec Z., Vejsova M., Kollar P., Coffey A., Csollei J., Kralova K., et al. Anti-infective and herbicidal activity of N-substituted 2-aminobenzothiazoles. Bioorg. Med. Chem. 2012;20:7059–7068. doi: 10.1016/j.bmc.2012.10.007. PubMed DOI
Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Gonec T., Bobal P., Kauerova T., Oravec M., Kollar P., et al. Antibacterial and herbicidal activity of ring-substituted 3-hydroxynaphthalene-2-carboxanilides. Molecules. 2013;18:7977–7997. doi: 10.3390/molecules18077977. PubMed DOI PMC
Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., et al. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules. 2013;18:9397–9419. doi: 10.3390/molecules18089397. PubMed DOI PMC
Garuti L., Roberti M., Bottegoni G. Irreversible protein kinases inhibitors. Curr. Med. Chem. 2011;18:2981–2994. doi: 10.2174/092986711796391705. PubMed DOI
Schenone S., Brullo C., Musumeci F., Radi M., Castagnolo D. Curr. Med. Chem. 2011;18:5061–5078. doi: 10.2174/092986711797636135. PubMed DOI
Lawrence R.M., Dennis K.C., O’Neill P.M., Hahn D.U., Roeder M., Struppe C. Development of a scalable synthetic route to GSK369796 (N-tert-butyl isoquine), a novel 4-aminoquinoline antimalarial drug. Org. Process. Res. Dev. 2008;12:294–297. doi: 10.1021/op7002776. DOI
Kralova K., Sersen F., Pesko M., Klimesova V., Waisser K. Photosynthesis-inhibiting effects of 2-benzylsulphanylbenzimidazoles in spinach chloroplasts. Chem. Pap. 2012;66:795–799. doi: 10.2478/s11696-012-0192-9. DOI
Izawa S. Acceptors and donors for chloroplast electron transport. In: Colowick P., Kaplan N.O., editors. Methods in Enzymology. Volume 69. Academic Press; London, UK: 1980. pp. 413–434. Part C.
Kralova K., Sersen F., Sidoova E. Effect of 2-alkylthio-6-aminobenzothiazoles and their 6-N-substituted derivatives on photosynthesis inhibition in spinach chloroplasts. Gen. Phys. Biophys. 1993;12:421–427. PubMed
Kralova K., Sersen F., Miletin M., Hartl J. Inhibition of photosynthetic electron transport by some anilides of 2-alkylpyridine-4-carboxylic acids in spinach chloroplasts. Chem. Pap. 1998;52:52–55.
Kralova K., Sersen F., Pesko M., Waisser K., Kubicova L. 5-Bromo- and 3,5-dibromo-2-hydroxy-N-phenylbenzamides–inhibitors of photosynthesis. Chem. Pap. 2013 doi: 10.2478/s11696-013-0416-7. DOI
Kralova K., Sersen F., Klimesova V., Waisser K. 2-Alkylsulphanyl-4-pyridine-carbothioamides - Inhibitors of oxygen evolution in freshwater alga Chlorella vulgaris. Chem. Pap. 2011;65:909–912. doi: 10.2478/s11696-011-0082-6. DOI
Servusova B., Eibinova D., Dolezal M., Kubicek V., Paterova P., Pesko M., Kralova K. Substituted N-benzylpyrazine-2-carboxamides: Synthesis and biological evaluation. Molecules. 2012;17:13183–13198. doi: 10.3390/molecules171113183. PubMed DOI PMC
Atal N., Saradhi P.P., Mohanty P. Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yields. Plant. Cell. Physiol. 1995;32:943–951.
Kralova K., Sersen F., Kubicova L., Waisser K. Inhibitory effects of substituted benzanilides on photosynthetic electron transport in spinach chloroplasts. Chem. Pap. 1999;53:328–331.
Rath T., Roderfeld M., Blocher S., Rhode A., Basler T., Akineden O., Abdulmawjood A., Halwe J.M., Goethe R., Bulte M., et al. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP) DNA is not associated with altered MMP expression in ulcerative colitis. BMC Gastroenterology. 2011;11:34–54. doi: 10.1186/1471-230X-11-34. PubMed DOI PMC
Barlin G.B., Ireland S.J., Nguyen T.M.T., Kotecka B., Rieckmann K.H. Potential antimalarials. XX. Mannich base derivatives of 2-[7-(chloroquinolin-4-ylamino and 7-bromo(and 7-trifluoromethyl)-1,5-naphthyridin-4-ylamino]-4-chloro(or 4- or 6-t-butyl or 4- or 5-fluoro)-phenols and 4(or 6)-t-butyl-2-(7-trifluoromethylquinolin-4-ylamino)phenol. Aust. J. Chem. 1997;47:1143–1154.
Burckhalter J.H., DeWald H.A., Tendick F.H. An alternate synthesis of camoquin. J. Am. Chem. Soc. 1950;72:1024–1025. doi: 10.1021/ja01158a504. DOI
Francois B. N-(4-Quinolinyl)glycine derivatives, antiinflammatory and pain killing agents. DE 1965638 A. 1970 Sep 3;
Price C.C., Leonard N.J., Peel E.W., Reitsema R.H. Some 4-amino-7-chloroquinoline derivatives. J. Am. Chem. Soc. 1946;68:1807–1808. doi: 10.1021/ja01213a039. PubMed DOI
Masarovicova E., Kralova K. Approaches to Measuring Plant Photosynthesis Activity. In: Pessarakli M., editor. Handbook of Photosynthesis. 2nd ed. Taylor & Francis Group; Boca Raton, FL, USA: 2005. pp. 617–656.
Kralova K., Sersen F., Sidoova E. Photosynthesis inhibition produced by 2-alkylthio-6-R-benzothiazoles. Chem. Pap. 1992;46:348–350.
Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.
Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. in press. PubMed
Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., et al. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorg. Med. Chem. 2013 in press. PubMed
Synthesis and Biological Evaluation of N-Alkoxyphenyl-3-hydroxynaphthalene-2-carboxanilides