Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial

. 2022 ; 13 () : 888809. [epub] 20220829

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36105404

BACKGROUND: Autologous cell therapy (ACT) is a new treatment method for patients with diabetes and no-option chronic limb-threatening ischemia (NO-CLTI). We aimed to assess the impact of ACT on NO-CLTI in comparison with standard treatment (ST) in a randomized controlled trial. METHODS: Diabetic patients with NO-CLTI were randomized to receive either ACT (n=21) or ST (n=19). After 12 weeks, those in the ST group, who did not improve were treated with ACT. The effect of ACT on ischemia and wound healing was assessed by changes in transcutaneous oxygen pressure (TcPO2) and the number of healed patients at 12 weeks. Pain was evaluated by Visual Analogue Scale (VAS). Amputation rates and amputation-free survival (AFS) were assessed in both groups. RESULTS: During the first 12 weeks, TcPO2 increased in the ACT group from 20.8 ± 9.6 to 41.9 ± 18.3 mm Hg (p=0.005) whereas there was no change in the ST group (from 21.2 ± 11.4 to 23.9 ± 13.5 mm Hg). Difference in TcPO2 in the ACT group compared to ST group was 21.1 mm Hg (p=0.034) after 12 weeks. In the period from week 12 to week 24, when ST group received ACT, the TcPO2 in this group increased from 20.1 ± 13.9 to 41.9 ± 14.8 (p=0.005) while it did not change significantly in the ACT in this period. At 24 weeks, there was no significant difference in mean TcPO2 between the two groups. Wound healing was greater at 12 weeks in the ACT group compared to the ST group (5/16 vs. 0/13, p=0.048). Pain measured using VAS was reduced in the ACT group after 12 weeks compared to the baseline, and the difference in scores was again significant (p<0.001), but not in the ST group. There was no difference in rates of major amputation and AFS between ACT and ST groups at 12 weeks. CONCLUSIONS: This study has showed that ACT treatment in patients with no-option CLTI and diabetic foot significantly improved limb ischemia and wound healing after 12 weeks compared to conservative standard therapy. Larger randomized controlled trials are needed to study the benefits of ACT in patients with NO-CLTI and diabetic foot disease. TRIAL REGISTRATION: The trial was registered in the National Board of Health (EudraCT 2016-001397-15).

Zobrazit více v PubMed

Conte MS, Bradbury AW, Kolh P, White JV, Dick F, Fitridge R, et al. . Global vascular guidelines on the management of chronic limb-threatening ischemia. J Vasc Surg (2019) 69:3S–125S e140. doi: 10.1016/j.jvs.2019.02.016 PubMed DOI PMC

Uccioli L, Meloni M, Izzo V, Giurato L, Merolla S, Gandini R. Critical limb ischemia: current challenges and future prospects. Vasc Health Risk Manag (2018) 14:63–74. doi: 10.2147/VHRM.S125065 PubMed DOI PMC

Neagu C, Buzea A, Agache A, Georgescu D, Patrascu T. Surgical revascularization in chronic limb-threatening ischemia in diabetic patients. Chirurgia (Bucur) (2018) 113:668–77. doi: 10.21614/chirurgia.113.5.668 PubMed DOI

Dalla Paola L, Cimaglia P, Carone A, Scavone G, Boscarino G, Bernucci D, et al. . Limb salvage in diabetic patients with no-option critical limb ischemia: outcomes of a specialized center experience. Diabetes Foot Ankle (2019) 10:1696012. doi: 10.1080/2000625X.2019.1696012 PubMed DOI PMC

Dayama A, Tsilimparis N, Kolakowski S, Matolo NM, Humphries MD. Clinical outcomes of bypass-first versus endovascular-first strategy in patients with chronic limb-threatening ischemia due to infrageniculate arterial disease. J Vasc Surg (2019) 69:156–163 e151. doi: 10.1016/j.jvs.2018.05.244 PubMed DOI PMC

Beltran-Camacho L, Rojas-Torres M, Duran-Ruiz MC. Current status of angiogenic cell therapy and related strategies applied in critical limb ischemia. Int J Mol Sci (2021) 22:1–27. doi: 10.3390/ijms22052335 PubMed DOI PMC

Gao W, Chen D, Liu G, Ran X. Autologous stem cell therapy for peripheral arterial disease: a systematic review and meta-analysis of randomized controlled trials. Stem Cell Res Ther (2019) 10:140. doi: 10.1186/s13287-019-1254-5 PubMed DOI PMC

Soria-Juan B, Escacena N, Capilla-Gonzalez V, Aguilera Y, Llanos L, Tejedo JR, et al. . Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 diabetes mellitus. Front Immunol (2019) 10:1151. doi: 10.3389/fimmu.2019.01151 PubMed DOI PMC

Xie B, Luo H, Zhang Y, Wang Q, Zhou C, Xu D. Autologous stem cell therapy in critical limb ischemia: A meta-analysis of randomized controlled trials. Stem Cells Int (2018) 2018:7528464. doi: 10.1155/2018/7528464 PubMed DOI PMC

Aboyans V, Ricco JB, Bartelink MEL, Björck M, Brodmann M, Cohnert T, et al. . 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European society for vascular surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: the European stroke organization (ESO)The task force for the diagnosis and treatment of peripheral arterial diseases of the European society of cardiology (ESC) and of the European society for vascular surgery (ESVS). Eur Heart J (2018) 39:763–816. doi: 10.1093/eurheartj/ehx095 PubMed DOI

Lopes L, Setia O, Aurshina A, Liu S, Hu H, Isaji T, et al. . Stem cell therapy for diabetic foot ulcers: a review of preclinical and clinical research. Stem Cell Res Ther (2018) 9:188. doi: 10.1186/s13287-018-0938-6 PubMed DOI PMC

Wahid FSA, Ismail NA, Wan Jamaludin WF, Muhamad NA, Mohamad Idris MA, Lai NM. Efficacy and safety of autologous cell-based therapy in patients with no-option critical limb ischaemia: A meta-analysis. Curr Stem Cell Res Ther (2018) 13:265–83. doi: 10.2174/1574888X13666180313141416 PubMed DOI

Benoit E, O’Donnell TF, Jr., Iafrati MD, Asher E, Bandyk DF, Hallett JW, et al. . The role of amputation as an outcome measure in cellular therapy for critical limb ischemia: implications for clinical trial design. J Transl Med (2011) 9:165. doi: 10.1186/1479-5876-9-165 PubMed DOI PMC

Pignon B, Sevestre MA, Kanagaratnam L, Pernod G, Stephan D, Emmerich J, et al. . Autologous bone marrow mononuclear cell implantation and its impact on the outcome of patients with critical limb ischemia- results of a randomized, double-blind, placebo-controlled trial. Circ J (2017) 81:1713–20. doi: 10.1253/circj.CJ-17-0045 PubMed DOI

Szabo GV, Kovesd Z, Cserepes J, Daroczy J, Belkin M, Acsady G. Peripheral blood-derived autologous stem cell therapy for the treatment of patients with late-stage peripheral artery disease-results of the short- and long-term follow-up. Cytotherapy (2013) 15:1245–52. doi: 10.1016/j.jcyt.2013.05.017 PubMed DOI

Li M, Zhou H, Jin X, Wang M, Zhang S, Xu L. Autologous bone marrow mononuclear cells transplant in patients with critical leg ischemia: preliminary clinical results. Exp Clin Transplant (2013) 11:435–9. doi: 10.6002/ect.2012.0129 PubMed DOI

Teraa M, Sprengers RW, Schutgens RE, Slaper-Cortenbach IC, van der Graaf Y, Algra A, et al. . Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: the randomized, double-blind, placebo-controlled rejuvenating endothelial progenitor cells via transcutaneous intra-arterial supplementation (JUVENTAS) trial. Circulation (2015) 131:851–60. doi: 10.1161/CIRCULATIONAHA.114.012913 PubMed DOI

Garra G, Singer AJ, Domingo A, Thode HC, Jr. The Wong-baker pain FACES scale measures pain, not fear. Pediatr Emerg Care (2013) 29:17–20. doi: 10.1097/PEC.0b013e31827b2299 PubMed DOI

Dubsky M, Jirkovska A, Bem R, Fejfarova V, Pagacova L, Sixta B, et al. . Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab Res Rev (2013) 29:369–76. doi: 10.1002/dmrr.2399 PubMed DOI

Dubsky M, Jirkovska A, Bem R, Fejfarová V, Pagacová L, Nemcová A, et al. . Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy (2014) 16:1733–8. doi: 10.1016/j.jcyt.2014.08.010 PubMed DOI

Madaric J, Klepanec A, Valachovicova M, Mistrik M, Bucova M, Olejarova I, et al. . Characteristics of responders to autologous bone marrow cell therapy for no-option critical limb ischemia. Stem Cell Res Ther (2016) 7:116. doi: 10.1186/s13287-016-0379-z PubMed DOI PMC

Powell RJ, Marston WA, Berceli SA, Guzman R, Henry TD, Longcore AT, et al. . Cellular therapy with ixmyelocel-T to treat critical limb ischemia: the randomized, double-blind, placebo-controlled RESTORE-CLI trial. Mol Ther (2012) 20:1280–6. doi: 10.1038/mt.2012.52 PubMed DOI PMC

Dubsky M, Jirkovska A, Bem R, Nemcova A, Fejfarova V, Jude EB. Cell therapy of critical limb ischemia in diabetic patients - state of art. Diabetes Res Clin Pract (2017) 126:263–71. doi: 10.1016/j.diabres.2017.02.028 PubMed DOI

Rigato M, Monami M, Fadini GP. Autologous cell therapy for peripheral arterial disease: Systematic review and meta-analysis of randomized, nonrandomized, and noncontrolled studies. Circ Res (2017) 120:1326–40. doi: 10.1161/CIRCRESAHA.116.309045 PubMed DOI

Biscetti F, Bonadia N, Nardella E, Cecchini AL, Landolfi R, Flex A. The role of the stem cells therapy in the peripheral artery disease. Int J Mol Sci (2019) 20:1–12. doi: 10.3390/ijms20092233 PubMed DOI PMC

Qadura M, Terenzi DC, Verma S, Al-Omran M, Hess DA. Concise review: Cell therapy for critical limb ischemia: An integrated review of preclinical and clinical studies. Stem Cells (2018) 36:161–71. doi: 10.1002/stem.2751 PubMed DOI

Nishio H, Minakata K, Kawaguchi A, Kumagai M, Ikeda T, Shimizu A, et al. . Transcutaneous oxygen pressure as a surrogate index of lower limb amputation. Int Angiol (2016) 35:565–72. PubMed

Attanasio S, Snell J. Therapeutic angiogenesis in the management of critical limb ischemia: current concepts and review. Cardiol Rev (2009) 17:115–20. doi: 10.1097/CRD.0b013e318199e9b7 PubMed DOI

Fadini GP, Agostini C, Avogaro A. Autologous stem cell therapy for peripheral arterial disease meta-analysis and systematic review of the literature. Atherosclerosis (2010) 209:10–7. doi: 10.1016/j.atherosclerosis.2009.08.033 PubMed DOI

Lawall H, Bramlage P, Amann B. Stem cell and progenitor cell therapy in peripheral artery disease. a critical appraisal. Thromb Haemost (2010) 103:696–709. doi: 10.1160/TH09-10-0688 PubMed DOI

Velazquez OC. Angiogenesis and vasculogenesis: inducing the growth of new blood vessels and wound healing by stimulation of bone marrow-derived progenitor cell mobilization and homing. J Vasc Surg (2007) 45 Suppl A:A39–47. doi: 10.1016/j.jvs.2007.02.068 PubMed DOI PMC

Dubsky M, Jirkovska A, Bem R, Fejfarova V, Varga M, Kolesar L, et al. . Role of serum levels of angiogenic cytokines in assessment of angiogenesis after stem cell therapy of diabetic patients with critical limb ischemia. Cell Transplant (2014) 23:1517–23. doi: 10.3727/096368913X674071 PubMed DOI

Nemcova A, Jirkovska A, Dubsky M, Kolesar L, Bem R, Fejfarova V, et al. . Difference in serum endostatin levels in diabetic patients with critical limb ischemia treated by autologous cell therapy or percutaneous transluminal angioplasty. Cell Transplant (2018) 27:1368–74. doi: 10.1177/0963689718775628 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...