The Use of Autologous Cell Therapy in Diabetic Patients with Chronic Limb-Threatening Ischemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LX22NPO5104
National Institute for Research on Metabolic and Cardiovascular Diseases (Programme EXCELES, Project No. LX22NPO5104), funded by the European Union Next-Generation EU.
PubMed
39337669
PubMed Central
PMC11431855
DOI
10.3390/ijms251810184
PII: ijms251810184
Knihovny.cz E-zdroje
- Klíčová slova
- chronic limb-threatening ischemia, peripheral artery disease, stem cell therapy,
- MeSH
- autologní transplantace * MeSH
- buněčná a tkáňová terapie metody MeSH
- chronická kritická ischemie končetin terapie MeSH
- diabetes mellitus terapie MeSH
- ischemie terapie MeSH
- lidé MeSH
- transplantace mezenchymálních kmenových buněk metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Autologous cell therapy (ACT) is primarily used in diabetic patients with chronic limb-threatening ischemia (CLTI) who are not candidates for standard revascularization. According to current research, this therapy has been shown in some studies to be effective in improving ischemia parameters, decreasing the major amputation rate, and in foot ulcer healing. This review critically evaluates the efficacy of ACT in patients with no-option CLTI, discusses the use of mononuclear and mesenchymal stem cells, and compares the route of delivery of ACT. In addition to ACT, we also describe the use of new revascularization strategies, e.g., nanodiscs, microbeads, and epigenetics, that could enhance the therapeutic effect. The main aim is to summarize new findings on subcellular and molecular levels with the clinical aspects of ACT.
1st Faculty of Medicine Charles University 14021 Prague Czech Republic
2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
Department of Endocrinology and Gastroenterology University of Manchester Manchester M13 9PL UK
Diabetes Centre Institute for Clinical and Experimental Medicine 14021 Prague Czech Republic
Zobrazit více v PubMed
Stoberock K., Kaschwich M., Nicolay S.S., Mahmoud N., Heidemann F., Riess H.C., Debus E.S., Behrendt C.A. The interrelationship between diabetes mellitus and peripheral arterial disease. Vasa. 2021;50:323–330. doi: 10.1024/0301-1526/a000925. PubMed DOI
Fitridge R., Chuter V., Mills J., Hinchliffe R., Azuma N., Behrendt C.A., Boyko E.J., Conte M.S., Humphries M., Kirksey L., et al. The intersocietal IWGDF, ESVS, SVS guidelines on peripheral artery disease in people with diabetes mellitus and a foot ulcer. J. Vasc. Surg. 2023;78:1101–1131. doi: 10.1016/j.jvs.2023.07.020. PubMed DOI
Golledge J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nat. Rev. Cardiol. 2022;19:456–474. doi: 10.1038/s41569-021-00663-9. PubMed DOI
Jude E.B., Oyibo S.O., Chalmers N., Boulton A.J. Peripheral arterial disease in diabetic and nondiabetic patients: A comparison of severity and outcome. Diabetes Care. 2001;24:1433–1437. doi: 10.2337/diacare.24.8.1433. PubMed DOI
Farber A., Menard M.T., Conte M.S., Kaufman J.A., Powell R.J., Choudhry N.K., Hamza T.H., Assmann S.F., Creager M.A., Cziraky M.J., et al. Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia. N. Engl. J. Med. 2022;387:2305–2316. doi: 10.1056/NEJMoa2207899. PubMed DOI
Bradbury A.W., Moakes C.A., Popplewell M., Meecham L., Bate G.R., Kelly L., Chetter I., Diamantopoulos A., Ganeshan A., Hall J., et al. A vein bypass first versus a best endovascular treatment first revascularisation strategy for patients with chronic limb threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal revascularisation procedure to restore limb perfusion (BASIL-2): An open-label, randomised, multicentre, phase 3 trial. Lancet. 2023;401:1798–1809. PubMed
Chuter V., Schaper N., Mills J., Hinchliffe R., Russell D., Azuma N., Behrendt C.A., Boyko E.J., Conte M.S., Humphries M.D., et al. Effectiveness of revascularisation for the ulcerated foot in patients with diabetes and peripheral artery disease: A systematic review. Diabetes Metab. Res. Rev. 2024;40:e3700. doi: 10.1002/dmrr.3700. PubMed DOI
Panunzi A., Madotto F., Sangalli E., Riccio F., Sganzaroli A.B., Galenda P., Bertulessi A., Barmina M.F., Ludovico O., Fortunato O., et al. Results of a prospective observational study of autologous peripheral blood mononuclear cell therapy for no-option critical limb-threatening ischemia and severe diabetic foot ulcers. Cardiovasc. Diabetol. 2022;21:196. doi: 10.1186/s12933-022-01629-y. PubMed DOI PMC
Ventoruzzo G., Mazzitelli G., Ruzzi U., Liistro F., Scatena A., Martelli E. Limb Salvage and Survival in Chronic Limb-Threatening Ischemia: The Need for a Fast-Track Team-Based Approach. J. Clin. Med. 2023;12:6081. doi: 10.3390/jcm12186081. PubMed DOI PMC
Dubsky M., Jirkovska A., Bem R., Nemcova A., Fejfarova V., Hazdrova J., Sutoris K., Chlupac J., Skibova J., Jude E.B. Impact of severe diabetic kidney disease on the clinical outcome of autologous cell therapy in people with diabetes and critical limb ischaemia. Diabet. Med. 2019;36:1133–1140. doi: 10.1111/dme.13985. PubMed DOI
Munir Z., Akash M., Jaiprada F., Abu Tarboush B., Ijaz O., Bseiso A., Palleti S.K., Amin A. Evaluation of the Effects of Extracorporeal Shockwave Therapy in Patients With Peripheral Arterial Disease: A Meta-Analysis of Randomized Control Trials. Cureus. 2023;15:e34729. doi: 10.7759/cureus.34729. PubMed DOI PMC
Belch J.J., Ray S., Rajput-Ray M., Engeset J., Fagrell B., Lepantalo M., McKay A., Mackay I.R., Ostergren J., Ruckley C.V., et al. The Scottish-Finnish-Swedish PARTNER study of taprostene versus placebo treatment in patients with critical limb ischemia. Int. Angiol. 2011;30:150–155. PubMed
Lawall H., Pokrovsky A., Checinski P., Ratushnyuk A., Hamm G., Randerath O., Grieger F., Bentz J.W.G. Efficacy and Safety of Alprostadil in Patients with Peripheral Arterial Occlusive Disease Fontaine Stage IV: Results of a Placebo Controlled Randomised Multicentre Trial (ESPECIAL) Eur. J. Vasc. Endovasc. Surg. 2017;53:559–566. doi: 10.1016/j.ejvs.2016.12.035. PubMed DOI
Alhewy M.A., Abdo E.M., Ghazala E.A.E., Khamis A.A., Gado H., Abd-Elgawad W.A.A., Abdelhafez A.A., El Sayed A., Khedr A.M., Mosaed H.A.M. Outcomes of Alprostadil As an Adjuvant Therapy with Indirect Angiosomal Revascularization in Patients with Critical Limb Ischemia after Failure of Direct Revascularization. Ann. Vasc. Surg. 2024;103:58–67. doi: 10.1016/j.avsg.2023.12.078. PubMed DOI
Shishehbor M.H., Powell R.J., Montero-Baker M.F., Dua A., Martinez-Trabal J.L., Bunte M.C., Lee A.C., Mugglin A.S., Mills J.L., Farber A., et al. Transcatheter Arterialization of Deep Veins in Chronic Limb-Threatening Ischemia. N. Engl. J. Med. 2023;388:1171–1180. doi: 10.1056/NEJMoa2212754. PubMed DOI
Bayaraa O., Dashnyam K., Singh R.K., Mandakhbayar N., Lee J.H., Park J.T., Lee J.H., Kim H.W. Nanoceria-GO-intercalated multicellular spheroids revascularize and salvage critical ischemic limbs through anti-apoptotic and pro-angiogenic functions. Biomaterials. 2023;292:121914. doi: 10.1016/j.biomaterials.2022.121914. PubMed DOI
Friend N.E., Beamish J.A., Margolis E.A., Schott N.G., Stegemann J.P., Putnam A.J. Pre-cultured, cell-encapsulating fibrin microbeads for the vascularization of ischemic tissues. J. Biomed. Mater. Res. A. 2024;112:549–561. doi: 10.1002/jbm.a.37580. PubMed DOI PMC
Takematsu E., Massidda M., Howe G., Goldman J., Felli P., Mei L., Callahan G., Sligar A.D., Smalling R., Baker A.B. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci. Rep. 2024;14:2352. doi: 10.1038/s41598-024-52888-6. PubMed DOI PMC
Basuthakur P., Roy A., Ghosh S., Vijay V., Sinha D., Radhakrishnan M., Kumar A., Patra C.R., Chakravarty S. Pro-angiogenic Terbium Hydroxide Nanorods Improve Critical Limb Ischemia in Part by Amelioration of Ischemia-Induced Endothelial Injury. ACS Appl. Bio Mater. 2024;7:4389–4405. doi: 10.1021/acsabm.4c00252. PubMed DOI
Malhi N.K., Southerland K.W., Lai L., Chen Z.B. Epigenetic Regulation of Angiogenesis in Peripheral Artery Disease. Methodist. Debakey Cardiovasc. J. 2023;19:47–57. doi: 10.14797/mdcvj.1294. PubMed DOI PMC
Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 2011;9:12. doi: 10.1186/1478-811X-9-12. PubMed DOI PMC
Lozano Navarro L.V., Chen X., Girata Viviescas L.T., Ardila-Roa A.K., Luna-Gonzalez M.L., Sossa C.L., Arango-Rodriguez M.L. Mesenchymal stem cells for critical limb ischemia: Their function, mechanism, and therapeutic potential. Stem Cell Res. Ther. 2022;13:345. doi: 10.1186/s13287-022-03043-3. PubMed DOI PMC
Hong I.S. Endometrial stem/progenitor cells: Properties, origins, and functions. Genes. Dis. 2023;10:931–947. doi: 10.1016/j.gendis.2022.08.009. PubMed DOI PMC
Khodayari S., Khodayari H., Ebrahimi-Barough S., Khanmohammadi M., Islam M.S., Vesovic M., Goodarzi A., Mahmoodzadeh H., Nayernia K., Aghdami N., et al. Stem Cell Therapy in Limb Ischemia: State-of-Art, Perspective, and Possible Impacts of Endometrial-Derived Stem Cells. Front. Cell Dev. Biol. 2022;10:834754. doi: 10.3389/fcell.2022.834754. PubMed DOI PMC
Sullivan R., Dailey T., Duncan K., Abel N., Borlongan C.V. Peripheral Nerve Injury: Stem Cell Therapy and Peripheral Nerve Transfer. Int. J. Mol. Sci. 2016;17:2101. doi: 10.3390/ijms17122101. PubMed DOI PMC
Muir K.W., Bulters D., Willmot M., Sprigg N., Dixit A., Ward N., Tyrrell P., Majid A., Dunn L., Bath P., et al. Intracerebral implantation of human neural stem cells and motor recovery after stroke: Multicentre prospective single-arm study (PISCES-2) J. Neurol. Neurosurg. Psychiatry. 2020;91:396–401. doi: 10.1136/jnnp-2019-322515. PubMed DOI PMC
Asahara T., Murohara T., Sullivan A., Silver M., van der Zee R., Li T., Witzenbichler B., Schatteman G., Isner J.M. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964–967. doi: 10.1126/science.275.5302.964. PubMed DOI
Peichev M., Naiyer A.J., Pereira D., Zhu Z., Lane W.J., Williams M., Oz M.C., Hicklin D.J., Witte L., Moore M.A., et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952–958. doi: 10.1182/blood.V95.3.952.003k27_952_958. PubMed DOI
Medina R.J., Barber C.L., Sabatier F., Dignat-George F., Melero-Martin J.M., Khosrotehrani K., Ohneda O., Randi A.M., Chan J.K.Y., Yamaguchi T., et al. Endothelial Progenitors: A Consensus Statement on Nomenclature. Stem Cells Transl. Med. 2017;6:1316–1320. doi: 10.1002/sctm.16-0360. PubMed DOI PMC
Taljaard M., Ward M.R., Kutryk M.J., Courtman D.W., Camack N.J., Goodman S.G., Parker T.G., Dick A.J., Galipeau J., Stewart D.J. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): The first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am. Heart J. 2010;159:354–360. doi: 10.1016/j.ahj.2009.12.021. PubMed DOI
Granton J., Langleben D., Kutryk M.B., Camack N., Galipeau J., Courtman D.W., Stewart D.J. Endothelial NO-Synthase Gene-Enhanced Progenitor Cell Therapy for Pulmonary Arterial Hypertension: The PHACeT Trial. Circ. Res. 2015;117:645–654. doi: 10.1161/CIRCRESAHA.114.305951. PubMed DOI
Chambers S.E.J., O’Neill C.L., Guduric-Fuchs J., McLoughlin K.J., Liew A., Egan A.M., O’Brien T., Stitt A.W., Medina R.J. The Vasoreparative Function of Myeloid Angiogenic Cells Is Impaired in Diabetes Through the Induction of IL1beta. Stem Cells. 2018;36:834–843. doi: 10.1002/stem.2810. PubMed DOI PMC
Ii M., Takenaka H., Asai J., Ibusuki K., Mizukami Y., Maruyama K., Yoon Y.S., Wecker A., Luedemann C., Eaton E., et al. Endothelial progenitor thrombospondin-1 mediates diabetes-induced delay in reendothelialization following arterial injury. Circ. Res. 2006;98:697–704. doi: 10.1161/01.RES.0000209948.50943.ea. PubMed DOI
Ridker P.M., Everett B.M., Thuren T., MacFadyen J.G., Chang W.H., Ballantyne C., Fonseca F., Nicolau J., Koenig W., Anker S.D., et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N. Engl. J. Med. 2017;377:1119–1131. doi: 10.1056/NEJMoa1707914. PubMed DOI
Paschalaki K.E., Randi A.M. Recent Advances in Endothelial Colony Forming Cells Toward Their Use in Clinical Translation. Front. Med. 2018;5:295. doi: 10.3389/fmed.2018.00295. PubMed DOI PMC
Schwarz T.M., Leicht S.F., Radic T., Rodriguez-Arabaolaza I., Hermann P.C., Berger F., Saif J., Bocker W., Ellwart J.W., Aicher A., et al. Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy. Arter. Arterioscler. Thromb. Vasc. Biol. 2012;32:e13–e21. doi: 10.1161/ATVBAHA.111.239822. PubMed DOI
Edwards N., Langford-Smith A.W.W., Wilkinson F.L., Alexander M.Y. Endothelial Progenitor Cells: New Targets for Therapeutics for Inflammatory Conditions with High Cardiovascular Risk. Front. Med. 2018;5:200. doi: 10.3389/fmed.2018.00200. PubMed DOI PMC
Liu Y., Lyons C.J., Ayu C., O’Brien T. Enhancing endothelial colony-forming cells for treating diabetic vascular complications: Challenges and clinical prospects. Front. Endocrinol. 2024;15:1396794. doi: 10.3389/fendo.2024.1396794. PubMed DOI PMC
O’Neill C.L., McLoughlin K.J., Chambers S.E.J., Guduric-Fuchs J., Stitt A.W., Medina R.J. The Vasoreparative Potential of Endothelial Colony Forming Cells: A Journey Through Pre-clinical Studies. Front. Med. 2018;5:273. doi: 10.3389/fmed.2018.00273. PubMed DOI PMC
Rojas-Torres M., Beltran-Camacho L., Martinez-Val A., Sanchez-Gomar I., Eslava-Alcon S., Rosal-Vela A., Jimenez-Palomares M., Doiz-Artazcoz E., Martinez-Torija M., Moreno-Luna R., et al. Unraveling the differential mechanisms of revascularization promoted by MSCs & ECFCs from adipose tissue or umbilical cord in a murine model of critical limb-threatening ischemia. J. Biomed. Sci. 2024;31:71. PubMed PMC
Kang M.L., Kim J.E., Im G.I. Vascular endothelial growth factor-transfected adipose-derived stromal cells enhance bone regeneration and neovascularization from bone marrow stromal cells. J. Tissue Eng. Regen. Med. 2017;11:3337–3348. doi: 10.1002/term.2247. PubMed DOI
Lee H., Huh Y.H., Kang K.T. Mesenchymal Stem Cells Potentiate the Vasculogenic Capacity of Endothelial Colony-Forming Cells under Hyperglycemic Conditions. Life. 2022;12:469. doi: 10.3390/life12040469. PubMed DOI PMC
Goto K., Takemura G., Takahashi T., Okada H., Kanamori H., Kawamura I., Watanabe T., Morishita K., Tsujimoto A., Miyazaki N., et al. Intravenous Administration of Endothelial Colony-Forming Cells Overexpressing Integrin beta1 Augments Angiogenesis in Ischemic Legs. Stem Cells Transl. Med. 2016;5:218–226. doi: 10.5966/sctm.2015-0096. PubMed DOI PMC
Lee J.H., Lee S.H., Choi S.H., Asahara T., Kwon S.M. The sulfated polysaccharide fucoidan rescues senescence of endothelial colony-forming cells for ischemic repair. Stem Cells. 2015;33:1939–1951. doi: 10.1002/stem.1973. PubMed DOI
Hache G., Garrigue P., Bennis Y., Stalin J., Moyon A., Cerami A., Brines M., Blot-Chabaud M., Sabatier F., Dignat-George F., et al. ARA290, a Specific Agonist of Erythropoietin/CD131 Heteroreceptor, Improves Circulating Endothelial Progenitors’ Angiogenic Potential and Homing Ability. Shock. 2016;46:390–397. doi: 10.1097/SHK.0000000000000606. PubMed DOI
Langford-Smith A.W.W., Hasan A., Weston R., Edwards N., Jones A.M., Boulton A.J.M., Bowling F.L., Rashid S.T., Wilkinson F.L., Alexander M.Y. Diabetic endothelial colony forming cells have the potential for restoration with glycomimetics. Sci. Rep. 2019;9:2309. doi: 10.1038/s41598-019-38921-z. PubMed DOI PMC
Schroder-Heurich B., von Hardenberg S., Brodowski L., Kipke B., Meyer N., Borns K., von Kaisenberg C.S., Brinkmann H., Claus P., von Versen-Hoynck F. Vitamin D improves endothelial barrier integrity and counteracts inflammatory effects on endothelial progenitor cells. FASEB J. 2019;33:9142–9153. doi: 10.1096/fj.201802750RR. PubMed DOI
Smadja D.M., Rossi E., Haviari S., Bieche I., Cras A., Gaussem P. Thrombin receptor PAR1 silencing in endothelial colony-forming cells modifies stemness and vasculogenic properties. J. Thromb. Haemost. 2023;21:3640–3648. doi: 10.1016/j.jtha.2023.08.029. PubMed DOI
Luo Y.F., Wan X.X., Zhao L.L., Guo Z., Shen R.T., Zeng P.Y., Wang L.H., Yuan J.J., Yang W.J., Yue C., et al. MicroRNA-139-5p upregulation is associated with diabetic endothelial cell dysfunction by targeting c-jun. Aging. 2020;13:1186–1211. doi: 10.18632/aging.202257. PubMed DOI PMC
Patel A.S., Ludwinski F.E., Kerr A., Farkas S., Kapoor P., Bertolaccini L., Fernandes R., Jones P.R., McLornan D., Livieratos L., et al. A subpopulation of tissue remodeling monocytes stimulates revascularization of the ischemic limb. Sci. Transl. Med. 2024;16:eadf0555. doi: 10.1126/scitranslmed.adf0555. PubMed DOI
Chambers S.E.J., Pathak V., Pedrini E., Soret L., Gendron N., Guerin C.L., Stitt A.W., Smadja D.M., Medina R.J. Current concepts on endothelial stem cells definition, location, and markers. Stem Cells Transl. Med. 2021;10((Suppl. S2)):S54–S61. doi: 10.1002/sctm.21-0022. PubMed DOI PMC
Walter D.H., Krankenberg H., Balzer J.O., Kalka C., Baumgartner I., Schluter M., Tonn T., Seeger F., Dimmeler S., Lindhoff-Last E., et al. Intraarterial administration of bone marrow mononuclear cells in patients with critical limb ischemia: A randomized-start, placebo-controlled pilot trial (PROVASA) Circ. Cardiovasc. Interv. 2011;4:26–37. doi: 10.1161/CIRCINTERVENTIONS.110.958348. PubMed DOI
Norgren L., Weiss N., Nikol S., Lantis J.C., Patel M.R., Hinchliffe R.J., Reinecke H., Volk H.D., Reinke P., Fadini G.P., et al. PACE: Randomized, controlled, multicentre, multinational, phase III study of PLX-PAD for critical limb ischaemia in patients unsuitable for revascularization: Randomized clinical trial. Br. J. Surg. 2024;111:znad437. doi: 10.1093/bjs/znad437. PubMed DOI PMC
Arango-Rodriguez M.L., Mateus L.C., Sossa C.L., Becerra-Bayona S.M., Solarte-David V.A., Ochoa Vera M.E., Viviescas L.T.G., Berrio A.M.V., Serrano S.E., Vargas O., et al. A novel therapeutic management for diabetes patients with chronic limb-threatening ischemia: Comparison of autologous bone marrow mononuclear cells versus allogenic Wharton jelly-derived mesenchymal stem cells. Stem Cell Res. Ther. 2023;14:221. doi: 10.1186/s13287-023-03427-z. PubMed DOI PMC
Dubsky M., Jirkovska A., Bem R., Fejfarova V., Pagacova L., Sixta B., Varga M., Langkramer S., Sykova E., Jude E.B. Both autologous bone marrow mononuclear cell and peripheral blood progenitor cell therapies similarly improve ischaemia in patients with diabetic foot in comparison with control treatment. Diabetes Metab. Res. Rev. 2013;29:369–376. doi: 10.1002/dmrr.2399. PubMed DOI
Gupta P.K., Chullikana A., Parakh R., Desai S., Das A., Gottipamula S., Krishnamurthy S., Anthony N., Pherwani A., Majumdar A.S. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia. J. Transl. Med. 2013;11:143. doi: 10.1186/1479-5876-11-143. PubMed DOI PMC
Yunir E., Kurniawan F., Rezaprasga E., Wijaya I.P., Suroyo I., Matondang S., Irawan C., Soewondo P. Autologous Bone-Marrow vs. Peripheral Blood Mononuclear Cells Therapy for Peripheral Artery Disease in Diabetic Patients. Int. J. Stem Cells. 2021;14:21–32. doi: 10.15283/ijsc20088. PubMed DOI PMC
Shirbaghaee Z., Hassani M., Heidari Keshel S., Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res. Ther. 2022;13:462. doi: 10.1186/s13287-022-03148-9. PubMed DOI PMC
Klepanec A., Mistrik M., Altaner C., Valachovicova M., Olejarova I., Slysko R., Balazs T., Urlandova T., Hladikova D., Liska B., et al. No difference in intra-arterial and intramuscular delivery of autologous bone marrow cells in patients with advanced critical limb ischemia. Cell Transpl. Transplant. 2012;21:1909–1918. doi: 10.3727/096368912X636948. PubMed DOI
Kean T.J., Lin P., Caplan A.I., Dennis J.E. MSCs: Delivery Routes and Engraftment, Cell-Targeting Strategies, and Immune Modulation. Stem Cells Int. 2013;2013:732742. doi: 10.1155/2013/732742. PubMed DOI PMC
Sun Y., Zhao J., Zhang L., Li Z., Lei S. Effectiveness and safety of stem cell therapy for diabetic foot: A meta-analysis update. Stem Cell Res. Ther. 2022;13:416. doi: 10.1186/s13287-022-03110-9. PubMed DOI PMC
Pu H., Huang Q., Zhang X., Wu Z., Qiu P., Jiang Y., Wang R., Zhao Z., Xu Z., Qin J., et al. A meta-analysis of randomized controlled trials on therapeutic efficacy and safety of autologous cell therapy for atherosclerosis obliterans. J. Vasc. Surg. 2022;75:1440–1449.e5. doi: 10.1016/j.jvs.2021.10.051. PubMed DOI
Meloni M., Giurato L., Andreadi A., Bellizzi E., Bellia A., Lauro D., Uccioli L. Peripheral Blood Mononuclear Cells: A New Frontier in the Management of Patients with Diabetes and No-Option Critical Limb Ischaemia. J. Clin. Med. 2023;12:6123. doi: 10.3390/jcm12196123. PubMed DOI PMC
Dubsky M., Jirkovska A., Bem R., Fejfarova V., Pagacova L., Nemcova A., Sixta B., Chlupac J., Peregrin J.H., Sykova E., et al. Comparison of the effect of stem cell therapy and percutaneous transluminal angioplasty on diabetic foot disease in patients with critical limb ischemia. Cytotherapy. 2014;16:1733–1738. doi: 10.1016/j.jcyt.2014.08.010. PubMed DOI
Lu D., Chen B., Liang Z., Deng W., Jiang Y., Li S., Xu J., Wu Q., Zhang Z., Xie B., et al. Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: A double-blind, randomized, controlled trial. Diabetes Res. Clin. Pr. Pract. 2011;92:26–36. doi: 10.1016/j.diabres.2010.12.010. PubMed DOI
Teraa M., Sprengers R.W., Schutgens R.E., Slaper-Cortenbach I.C., van der Graaf Y., Algra A., van der Tweel I., Doevendans P.A., Mali W.P., Moll F.L., et al. Effect of repetitive intra-arterial infusion of bone marrow mononuclear cells in patients with no-option limb ischemia: The randomized, double-blind, placebo-controlled Rejuvenating Endothelial Progenitor Cells via Transcutaneous Intra-arterial Supplementation (JUVENTAS) trial. Circulation. 2015;131:851–860. PubMed
Sharma S., Pandey N.N., Sinha M., Kumar S., Jagia P., Gulati G.S., Gond K., Mohanty S., Bhargava B. Randomized, Double-Blind, Placebo-Controlled Trial to Evaluate Safety and Therapeutic Efficacy of Angiogenesis Induced by Intraarterial Autologous Bone Marrow-Derived Stem Cells in Patients with Severe Peripheral Arterial Disease. J. Vasc. Interv. Radiol. 2021;32:157–163. doi: 10.1016/j.jvir.2020.09.003. PubMed DOI
Powell R.J., Comerota A.J., Berceli S.A., Guzman R., Henry T.D., Tzeng E., Velazquez O., Marston W.A., Bartel R.L., Longcore A., et al. Interim analysis results from the RESTORE-CLI, a randomized, double-blind multicenter phase II trial comparing expanded autologous bone marrow-derived tissue repair cells and placebo in patients with critical limb ischemia. J. Vasc. Surg. 2011;54:1032–1041. doi: 10.1016/j.jvs.2011.04.006. PubMed DOI
Dubsky M., Husakova J., Bem R., Jirkovska A., Nemcova A., Fejfarova V., Sutoris K., Kahle M., Jude E.B. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial. Front. Endocrinol. 2022;13:888809. doi: 10.3389/fendo.2022.888809. PubMed DOI PMC
Wahid F.S.A., Ismail N.A., Wan Jamaludin W.F., Muhamad N.A., Mohamad Idris M.A., Lai N.M. Efficacy and Safety of Autologous Cell-based Therapy in Patients with No-option Critical Limb Ischaemia: A Meta-Analysis. Curr. Stem Cell Res. Ther. 2018;13:265–283. doi: 10.2174/1574888X13666180313141416. PubMed DOI
Murphy M.P., Lawson J.H., Rapp B.M., Dalsing M.C., Klein J., Wilson M.G., Hutchins G.D., March K.L. Autologous bone marrow mononuclear cell therapy is safe and promotes amputation-free survival in patients with critical limb ischemia. J. Vasc. Surg. 2011;53:1565–1574.e1. doi: 10.1016/j.jvs.2011.01.074. PubMed DOI PMC
Holig K. G-CSF in Healthy Allogeneic Stem Cell Donors. Transfus. Med. Hemother. 2013;40:225–235. doi: 10.1159/000354196. PubMed DOI PMC
Balaguer H., Galmes A., Ventayol G., Bargay J., Besalduch J. Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion. 2004;44:1260–1261. doi: 10.1111/j.1537-2995.2004.00413.x. PubMed DOI
Azoulay E., Attalah H., Harf A., Schlemmer B., Delclaux C. Granulocyte colony-stimulating factor or neutrophil-induced pulmonary toxicity: Myth or reality? Systematic review of clinical case reports and experimental data. Chest. 2001;120:1695–1701. doi: 10.1378/chest.120.5.1695. PubMed DOI
Falanga A., Marchetti M., Evangelista V., Manarini S., Oldani E., Giovanelli S., Galbusera M., Cerletti C., Barbui T. Neutrophil activation and hemostatic changes in healthy donors receiving granulocyte colony-stimulating factor. Blood. 1999;93:2506–2514. doi: 10.1182/blood.V93.8.2506. PubMed DOI
Qin H.L., Zhu X.H., Zhang B., Zhou L., Wang W.Y. Clinical Evaluation of Human Umbilical Cord Mesenchymal Stem Cell Transplantation After Angioplasty for Diabetic Foot. Exp. Clin. Endocrinol. Diabetes. 2016;124:497–503. doi: 10.1055/s-0042-103684. PubMed DOI
Uzun E., Guney A., Gonen Z.B., Ozkul Y., Kafadar I.H., Gunay M., Mutlu M. Intralesional allogeneic adipose-derived stem cells application in chronic diabetic foot ulcer: Phase I/2 safety study. Foot Ankle Surg. 2021;27:636–642. doi: 10.1016/j.fas.2020.08.002. PubMed DOI
Moon K.C., Suh H.S., Kim K.B., Han S.K., Young K.W., Lee J.W., Kim M.H. Potential of Allogeneic Adipose-Derived Stem Cell-Hydrogel Complex for Treating Diabetic Foot Ulcers. Diabetes. 2019;68:837–846. doi: 10.2337/db18-0699. PubMed DOI
Conte M.S., Bradbury A.W., Kolh P., White J.V., Dick F., Fitridge R., Mills J.L., Ricco J.B., Suresh K.R., Murad M.H., et al. World Federation of Vascular, S. Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia. Eur. J. Vasc. Endovasc. Surg. 2019;58((Suppl. S1)):S1–S109.e33. doi: 10.1016/j.ejvs.2019.05.006. PubMed DOI PMC